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Background: Mutations in the IDH1 gene have been shown to be an important
driver in the development of acute myeloid leukemia, gliomas and certain solid
tumors, which is a promising target for cancer therapy.

Methods: Bidirectional recurrent neural network (BRNN) and scaffold hopping
methods were used to generate new compounds, which were evaluated by
principal components analysis, quantitative estimate of drug-likeness, synthetic
accessibility analysis and molecular docking. ADME prediction, molecular
docking and molecular dynamics simulations were used to screen candidate
compounds and assess their binding affinity and binding stability with mutant
IDH1 (mIDH1).

Results: BRNN and scaffold hopping methods generated 3890 and 3680 new
compounds, respectively. The molecules generated by the BRNN performed
better in terms of molecular diversity, druggability, synthetic accessibility and
docking score. From the 3890 compounds generated by the BRNN model, 10
structurally diverse drug candidates with great docking score were preserved.
Molecular dynamics simulations showed that the RMSD of the four systems, M1,
M2, M3 and M6, remained stable, with local flexibility and compactness similar to
the positive drug. The binding free energy results indicated that compound M1
exhibited the best binding properties in all energy aspects and was the best
candidate molecule among the 10 compounds.

Conclusion: In present study, compounds M1, M2, M3 and M6 generated by
BRNN exhibited optimal binding properties. This study is the first attempt to use
deep learning to design mIDH1 inhibitors, which provides theoretical guidance
for the design of mIDH1 inhibitors.
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1 Introduction

The tricarboxylic acid cycle (TCA cycle) is an important metabolic
pathway in aerobic organisms (Scagliola et al., 2020). Isocitrate
dehydrogenase (IDH) is an important rate-limiting enzyme in this
pathway, which catalysis the oxidative decarboxylation of isocitrate to
produce α-ketoglutarate (α-KG) and CO2 (Dang et al., 2016). The IDH
family consists of three isozymes: IDH1 in the cytoplasm, and
IDH2 and IDH3 in the mitochondria (Tian et al., 2022). Among
them, IDH1 plays important functions in cellular energy supply,
redox balance, biosynthesis and signal transduction, etc. (Waitkus
et al., 2018). Small variations in its structure and function can
trigger a chain reaction and promote the formation and
development of tumors. IDH1 mutations occur mainly in the early
stage of tumors, especially in gliomas and glioblastoma multiforme.
IDH1 mutations include five types: R132H/C/L/S/G, of which R132H
mutations are the most common, accounting for 30% of all mutations
(Platten et al., 2021).2-Hydroxyglutaric acid (2-HG) has a relatively low
content at normal physiological levels, but IDH1 mutations lead to
abnormally high levels of 2-HG (Yan et al., 2009). 2-HG is structurally
similar to α-KG and can competitively inhibit α-KG and occupy the
active site of α-KG-dependent dioxygenase. This inhibition hinders the
conversion of 5-methylcytosine to 5-hydroxycytosine, thereby
impairing the process of DNA demethylation. At the same time, it
inhibits the expression and regulation of histone demethylases of the
JmjC structural domain during cell differentiation, leading to DNA
hypermethylation and epigenetic dysregulation. This greatly disrupts
the normal physiological activities of the organism (Golub et al., 2019).

Currently there are many investigational mIDH1 inhibitors in
the clinic. For example, Mindy et al. first reported the
mIDH1 inhibitor ML309 with phenylglycine backbone in 2012,
and ML309 showed good selectivity between wild-type and R132H
mutant IDH1, which could effectively reduce the production of 2-
HG in the U87MG cell line (Davis et al., 2014). Dan et al. optimized
the structure of ML309 to obtain the compound AGI-5198, which
has an IC50 value of 70 nM for inhibiting the activity of IDH1 R132H
enzyme. However, its metabolism and clearance in vivo and its poor
druggability have limited its further clinical application (Rohle et al.,
2013; Popovici-Muller et al., 2012). Based on the molecular structure
of AGI-5198, Angios designed and synthesized Ivosidenib, which is
highly selective for IDH1 mutants. Ivosidenib was also the first
mIDH1 inhibitor to be approved for clinical use by the FDA, but has
been reported to develop resistance during treatment. Despite the
current progress in research on IDH1-type mutant inhibitors, there
is still a lack of effective mIDH1 inhibitors in the clinic. Therefore,
the development of novel, highly selective small molecule inhibitors
targeting IDH1 mutants is important to improve the efficacy of
tumor therapy and reduce drug resistance.

The search for new drugs is a long, expensive and difficult
process. Studies have shown that the number of chemically
synthesizable active compounds is estimated to be 1030 to 1060,
which is a huge amount of work and inefficient for traditional drug
discovery based high throughput screening (Polishchuk et al., 2013;
Macarron et al., 2011). Whereas designing molecules with desired
properties from scratch can face complex multivariate optimization
tasks (Macarron et al., 2011). Computational methods have proved
to be valuable in generating new molecules (Munk, 1998). Studies
have shown that generative deep learning techniques, such as

Recurrent Neural Networks (RNN), have emerged as a potential
alternative to rule-based methods for designing molecules from
scratch (Rumelhart et al., 1985; Hopfield, 1982). RNN can use
SMILES strings to generate new chemical molecular structures.
Typically, RNN-based methods operate unidirectionally in
generating molecular structures, i.e., constructing SMILES strings
step by step in a left-to-right order (Gómez-Bombarelli et al., 2018).
However, considering that small molecules themselves do not have a
fixed start or end point, and that SMILES strings are a non-unique
representation of molecular maps, this suggests that we could try a
bidirectional approach to generating molecular structures. This
means that not only can the SMILES string be grown from left
to right during the generation of molecules, but also right-to-left or
simultaneous bi-directionality can be considered as a way to increase
the efficiency and diversity of the generation (Grisoni et al., 2018).
Francesca Grisoni and Gisbert Schneider et al. constructed a bi-
directional strategy for molecular design from scratch (BRNN)
based on SMILES, and by comparing the novelty, backbone
diversity, and chemical-biological relevance of the molecules
generated by uni-directional RNN versus BRNN, it was found
that most of the standard BRNN showed superior properties
than the uni-directional RNN for most of the standard BRNN
under the tested conditions (Grisoni et al., 2020). Therefore, the
BRNN model was used in this study for the design of
mIDH1 inhibitors. Scaffold hopping are for the functional groups
of compounds for fragment substitution based on the principle of
electron isomers (Sun et al., 2012), whereas the BRNN model is an
encoder-decoder architecture based on the attention mechanism for
the prediction of fragments (Polishchuk et al., 2013; Hopfield, 1982).
Specifically, the encoder of the BRNN model consists of a bi-
directional RNN that processes the input vectors and then sums
the resulting hidden states in both directions into the decoder. The
bi-directional RNN consists of a forward RNN and a backward
RNN, making full use of string future and past features. The decoder
is a unidirectional RNN that predicts the next character by decoding
the previous state vector. Then the global attention mechanism is
applied to give different weights and attention to the outputs of the
information in the hidden layer to further learn the intrinsic
correlation information of the skeleton and fragment structure
(Grisoni et al., 2020). In this way, the BRNN model is able to
learn and understand the intrinsic connection between the
compound backbone and its fragment structure in a deeper way,
leading to more accurate fragment prediction.

In this study, the BRNN model and scaffold hopping were
used to generate mIDH1 inhibitors. Based on the superiority of
the molecules generated by the two methods, the molecules
generated by the BRNN model were selected for virtual
screening, and the optimal molecules were subjected to
molecular dynamics simulations. The specific workflow is
shown in Figure 1.

2 Materials and methods

2.1 Experimental environment

The computing platform used in this study consists of a Bauder
PR271ORN 2U rackmount server with an Intel Xeon GOLD 6248R
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FIGURE 1
Workflow for mIDH1 inhibitor design based on BRNN model, DS Scaffold Hopping, molecular docking and molecular dynamics simulations.

FIGURE 2
Workflow for generation of mIDH1 inhibitors based on the BRNN model.
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CPU and an NVIDIA V100S graphics card. The software
environment includes Discovery Studio 3.5, Schrödinger
2020 and GROMACS 2022.

2.2 BRNN models

In this study, novel small molecules with potential
mIDH1 inhibitory activity were generated using BRNN models
(https://github.com/ETHmodlab/BIMODAL) based on
TensorFlow (Grisoni et al., 2020). The methodology is as follows:
first, the smiles format of 625 active compounds were downloaded
from the PubChem(https://pubchem.ncbi.nlm.nih.gov) database for
feature learning. Second, the MMP algorithm proposed by Arús-
Pous was used to split the 625 mIDH1 inhibitors (Arús-Pous et al.,
2020), which obtains a tuple of skeleton-decorated fragments by
cutting all possible combinations of acyclic bonds in each molecule.
In order to distinguish backbone from decorated fragments, the
following restrictions were added to the MMP algorithm: backbone
fragments need to contain at least one ring; decorated fragments
need to satisfy certain criteria (Congreve et al., 2003), i.e., HBD ≤5,
ClogP ≤5, and RotBonds ≤5. A library of backbone-decorated
fragments containing 27,711 molecule pairs was finally obtained,
which was divided into training set, testing set and validation set in
the ratio of 8:1:1, and the generative model was trained to learn
potential information about how the skeleton molecules are
connected to the decorated fragments. While the model was
trained and parameters optimally tuned using the training set
and validation set, the valid accuracy of the model was analyzed
using the test set. In order to fully understand the connectivity
features of the different structures of the mIDH1 inhibitor, a
molecularly generated model containing four hidden layers as
well as 1,272,967 tunable parameters was constructed using
BRNN. After model training, simulated sampling was performed
using the optimized model for a total of 10,000 samples. The
sampled molecules were used to compute the InChI descriptors
of the molecules using the RDInChI module in the RDKit (https://
github.com/rdkit) package and the duplicate molecules were
removed. The obtained molecules were stored in SDF format and
the molecules with MW > 500 was filtered out (Figure 2).

2.3 Scaffold hopping

The Lead Optimization module of DS 3.5 software (Sheoran
et al., 2023)was used to carry out molecular scaffold hopping.
Randomly select 100 IDH1 inhibitors split by the MMP
algorithm was imported into the DS 3.5 software, and then select
the Fragment part of the molecule and choose the Replace Fragment
module to replace the Fragment part of these 100 IDH1 inhibitors in
situ, and the threshold for the number of molecules to be
generated to 100.

2.4 SA, QED and PCA analysis

In the development of new drug candidates, it is important to
consider their synthetic accessibility (SA) and drug-like properties.

In this study, chemical synthesizability was assessed using SA based
on fragment contribution and complexity penalty. This approach
defines SA as a score between 1 (easy to synthesize) and 10 (difficult
to synthesize) (Ertl et al., 2000). The assessment of drug-like
properties was based on the quantitative estimated drug (QED)
similarity index, which measures how closely a given compound
resembles currently known drugs in terms of structural and
physicochemical properties (Roy and Kadam, 2007). The index
value ranges from 0 to 1, with closer to 1 indicating better drug-
like properties. Then, the SA and QED scores of the new molecules
generated by the DS 3.5 and BRNN models were calculated
separately through RDKit package. In order to quantify the
chemical properties of small molecules, the rdkit.
Chem.Descriptors.descList function of the RDKit package was
employed to generate approximately 200 different molecular
descriptors, which encompass a wide range of molecular
properties, including basic molecular weight and LogP, as well as
more complex topological and geometric descriptors, thereby
providing a comprehensive description of the physical, chemical,
and structural properties of molecules. Furthermore, the PCA
method was utilized to decrease the data’s dimensionality and aid
in visual analysis.

2.5 Redocking validation

The co-crystal ligands of the 6B0Z protein were redocked using
Schrödinger 2022 (Onikanni et al., 2023). The validation of the
docking results was based on the RMSD (Root Mean Square
Deviation) value (indicating the degree of deviation), i.e., the
higher the RMSD value, the higher the deviation. If the RMSD
value is less than 2 Å, the method is dependable (Khan et al., 2022).
The BRNN model and the molecules generated by DS 3.5 were
docked using three docking modes, HTVS, SP and XP, respectively,
in the Glide module of Schrödinger software.

2.6 Processing of crystal structures

In the previous study, nine crystal structures of mIDH1 (PDB
ID: 5LGE, 5SUN, 5SVF, 5TQH, 4UMX, 5L57, 5L58, 6ADG, 6B0Z)
were obtained from the PDB database, and the docking and
enrichment abilities of each crystal structure were evaluated using
cross-docking (Wang et al., 2020). Ultimately, it was found that
targeting the 6B0Z conformation with the best enrichment ability
could better screen mIDH1 inhibitors accurately from the virtual
compound database. After the 6B0Z crystal structure was imported
into Schrödinger 2022, Protein Preparation Wizard module was
used to pre-process the crystal structure, including the removal of
water molecules, hydrogenation, charging, creation of disulfide
bonds and complementary residues. Restriction optimization of
the protein backbone was then performed using the OPLS_
2005 force field (Tiwari et al., 2018). The Receptor Grid
Generation module was then used to generate hexahedral boxes
of similar size to the native ligand (IDH305) as the center of the grid
in the protein structure defined as the binding pocket.
IDH305 demonstrates an IC50 value of 18 nM against the
IDH1 R132H enzyme, exhibiting approximately 200-fold greater
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selectivity compared to the wild-type IDH1 enzyme (Cao et al.,
2019). Preclinical studies have shown that IDH305 effectively
reduces the level of 2-HG in tumors. Due to its favorable
pharmacological activity and pharmacokinetic properties,
IDH305 was employed as a positive control in the study (Cho
et al., 2017).

2.7 Preparation of ligand

Molecular libraries generated through the BRNN model and DS
scaffold hopping were used as a screening database, containing
approximately 7,570 molecules. Small molecule processing was
performed using the LigPrep module of the Schrödinger
2022 with the OPLS-2005 force field, and Epik module was used
to generate the possible states of the molecules at pH 7.0 ± 2.0,
followed by the generation of tautomer, with up to 10 low-energy
conformations per molecule (Shelley et al., 2007).

2.8 ADME prediction and prime MM-GBSA

The ADME (Absorption, Distribution, Metabolism and Excretion)
properties of the compounds are determined using the QikProp tool of
the Schrödinger 2022 software. The QikProp tool calculates physically
meaningful descriptors and pharmaceutically relevant properties of
organic molecules, enabling rapid and accurate ADME prediction
and the early identification of problematic small molecule
candidates, significantly reducing time and resources (Patel H. M.
et al., 2020). Drug similarity and drug factors were evaluated for
small molecules with all hits (Daina et al., 2017). In Maestro, the
binding free energy of potential inhibitors to the mIDH1 crystal
structure was calculated using the Prime MM-GBSA method for
assessing the strength of interaction between the ligand and the
target protein (Bouzian et al., 2024).

2.9 Glide-based virtual screening

The generated grid and the prepared ligands were underwent virtual
screening using Glide’s virtual screening workflow (Friesner et al., 2006).
The prepared ligands were prefiltered with QikProp to ensure they had
the necessary properties (Lipinski et al., 1997). The initial stage involved
HTVS docking for rapid high-throughput screening. The top 30% of
molecules from this stagemoved on to SP docking, which retains the top
20%ofmolecules.Molecules that passed this selection process proceeded
to the final stage, where XPdockingwas performed and only the top 10%
of molecules were retained.

2.10 Molecular dynamics simulations

Molecular dynamics simulations for the conformations with the
outcomes of docking for candidate small molecules were conducted
using the GROMACS 2022 with CHARMM 36 force field. Prior to
simulation, all molecules underwent hydrogen addition and
deprotonation processes executed through the Avogadro software.
Subsequently, the CgenFF (Bouchouireb et al., 2024) (https://cgenff.

silcsbio.com, accessed on 9 July 2024) was employed to generate
parameters of small molecules. The complexes were then solvated in
a cubic box of TIP3P water, maintaining a distance of 10 Å from the
protein, with the box thickness ensuring a minimum of 1 nm clearance.
To neutralize the system, sodium and chloride ions were introduced,
while periodic boundary conditions (PBCs) were imposed in all
dimensions to mitigate edge effects during the simulation. Relevant
long-range electrostatic interactions were calculated using the Particle-
Mesh-Ewald (PME)method. Following optimization, the ensemble was
subjected to 100ps of NVT and NPT equilibration phases at 300 K and
1 atm, respectively. The actual molecular dynamics simulations were
carried out for 400 ns with a time step of 2 fs. Post-simulation analyses
comprised the root mean square deviation (RMSD) of each complex
and the root mean square fluctuation (RMSF) of residues within the
protein, providing insights into structural stability and flexibility.

2.11 Calculation of binding free energy

The MM-PBSAmethod offers a straightforward way to measure
the free energy of binding between receptors and ligands (Miller
et al., 2012). In this study, the binding affinities of simulated
receptor-ligand complexes were calculated using the gmxapbs
tool in GROMACS, employing specific formulas as outlined
below (Kumari et al., 2014):

ΔGbind � ΔGcomplex − ΔGprotein + ΔGligand( )

ΔGbind � ΔEMM + ΔEPB + ΔESA − TΔS
ΔG � ΔGbind � ΔH − TΔS

ΔEbinding � ΔH � ΔEMM + ΔEPB + ΔESA

ΔEMM � ΔECOU + ΔEVDW

ΔEPB � ΔEPBcom − ΔEPBpro + ΔEPBlig( )

ΔESA � ΔESAcom − ΔESApro + ΔESAlig( )

In brief, a total of 5,000 snap-shots were extracted from the
stable simulation trajectories of each system over the last 10 ns, with
a 2 ps interval, for MM/PBSA calculation.

2.12 Computation of DCCM and FEL

In this study, the covariance matrix was calculated using the
Covar command of GROMACS. The covariance matrix data were
then converted into dynamic correlation maps (DCCM) (https://
github.com/busrasavas). The free energy landscape (FEL) was
plotted using RMSD and Gyrate, and the trajectories were
plotted using simulated post-stabilization protein trajectories at
20 ns and 3D free energy landscape maps.

3 Result

3.1 Performance of BRNN models

The model was trained for 200 Epochs using the Adam
optimizer, and the generated model converged after 75 Epochs,
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and the loss value did not decrease further after 100 Epochs
(Figure 3A). The model generated by the 100th Epoch was used
as the subsequent decorated model to build a library of skeleton-
based molecules by modifying the skeletons of 100 randomly
selected split mIDH1 inhibitors. A total of 9,736 new molecules
were generated, which were decorated and screened for new
molecules with MW > 500, resulting in 3,890 new compounds.

To visualize the distribution of the generated molecules in the
chemical space relative to each other, PCA was used for
dimensionality reduction to map the high-dimensional data
into a two-dimensional representation. Figure 3B displays the
diversity distribution maps of the PCA chemical space for the
molecules generated by the BRNN model (Generate) and the
625 mIDH1 inhibitors in 2.2 (Train set). The results of PCA
analysis showed that the molecules generated by BRNN and
Train set molecules were mainly divided into two clusters in
terms of chemical space distribution, with the left clusters
accounting for the majority and the right clusters accounting

for a small portion. The molecules generated by BRNN in the two
clusters cover a larger area and a wider chemical space, almost
completely covering the chemical space of the Train set molecules
and filling in part of the empty space around them, which
indicates that the molecules generated by BRNN are more
diversified, and also reflects that the BRNN model is not only
capable of generating structures similar to those of the active
molecules but also of generating completely new molecules. In
order to evaluate the quality of the generated molecules, the
physicochemical properties such as synthesizability, drug-like
properties (QED), and water-octanol partition coefficient (LogP)
of the generated molecules and the train set molecules were
calculated separately. Figures 3C–J demonstrate the
distribution of physicochemical properties of the generated
molecule library versus the train set molecules. It can be seen
from Figure 3C that the highest point of the distribution of SA
scores of the generated molecules is at 2.9, while the highest point
of the distribution of SA scores of the train set molecules is at 4.

FIGURE 3
Plot of BRNN model training accuracy over time (A), and chemical space analysis and distribution of physicochemical properties (B–J).
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The SA scores of the generated molecules are more skewed
towards 1, showing a left-skewed distribution, which suggests
that the generated molecules have better synthesizability. The
highest point in the distribution of QED scores of the train set
molecules in Figure 3D was at 0.5 and the overall distribution was
skewed towards 0, while the highest point in the distribution of
QED scores of the generated molecules was at 0.65 and the overall
distribution was skewed towards 1, suggesting that the generated
molecules had a more higher drug-like properties. The
distribution of LogP values of the newly generated molecules
is closer to −4 relative to the train set molecules (Figure 3E),
indicating that the newly generated molecules have better water
solubility and are more readily absorbed through the
gastrointestinal mucosa, resulting in better oral bioavailability.
Based on the characteristics of extended rule of five (eRo5):MW ≤
500, HBD ≤ 5, HBA ≤ 10, LogP ≤ 5, PSA ≤ 200 (Doak et al., 2014),
it was observed that the distribution of PSA (Figure 3F), MW
(Figure 3G), HBA (Figure 3H) and HBD (Figure 3I) of newly
generated molecules shifted towards lower values compared to
those in the train set. This observation suggests that the newly
generated molecules exhibit a more drug-like profile.

Chiral_Centers indicates the number of chiral centers of a
compound, and too many chiral centers can lead to a significant
increase in the difficulty of the synthesis and purification process
(Li et al., 2024). As shown in Figure 3J, the number of chiral
centers of the generated molecules is distributed below 2 for
about 90% of the generated molecules, while the train set
molecules are distributed below 2 for about 60% of the
generated molecules. The number of chiral centers of the
generated molecules is lower than that of the train set
molecules, which further explains that the generated molecules
have better synthesizability than the Train set molecules. To
further evaluate the diversity of the generated molecules, this
study applied RDKit to calculate the Bemism-Murcko skeleton of
each molecule generated, which totaled 3,890 molecules with a
total of 1,789 Bemism-Murcko skeletons. This analysis also
confirms the feasibility of the generative model to generate a
diverse library of molecules based on backbones.

3.2 Generation of mIDH1 inhibitors based on
scaffold hopping

Each of the 100 scaffolds produced 90–400 new molecules after
hopping, resulting in a total of 18,770 new molecules. The
compounds with molecular weight less than 500 were screened
and ranked by molecular similarity. Compounds with fragment
similarity greater than 0.6 were screened, and a total of 3,680 new
compounds were obtained.

3.3 Chemical spatial analysis of molecules
generated by BRNN and scaffold hopping

In order to reduce the dimensionality of the data and facilitate
visual analysis, the principal component analysis (PCA) method was
employed. The application of PCA allows the reduced-dimensional
representation of the BRNN model and DS framework to be
visualized in two or three dimensions (Figure 4). The 2D PCA
representation employs two principal components to illustrate the
distribution of data in a two-dimensional space, which facilitates the
identification of similarities and differences between compounds,
particularly in the context of key molecular descriptors. Conversely,
3D PCA provides a more comprehensive spatial perspective,
enabling further differentiation of these distinctions. As
illustrated in the Figure 4, the 2D plot shows that the results of
the PCA analysis are mainly divided into two clusters, with the left
cluster accounting for the majority and the right cluster accounting
for a small portion. The molecules generated by BRNN in the left
cluster cover a larger area and have a wider chemical space,
indicating that the molecular diversity generated by BRNN in
this cluster is higher. The molecules generated by DS in the right
cluster cover a larger area, indicating a higher diversity of DS-
generated molecules in this cluster. The molecular distributions
generated by the BRNN model and the DS-generated molecules
show some overlap, as well as a clear clustering pattern. This
distribution model suggests that the two groups of compounds
exhibit some similarity in chemical and physical properties. The

FIGURE 4
Principal component analysis of molecules generated by BRNN and scaffold hopping.
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3D plots show that the coverage of BRNN-generated molecules and
DS-generated molecules is more similar, with BRNN molecules
appearing wherever DS molecules appear. Overall, BRNN-
generated molecules cover a larger area, indicating that BRNN-
generated molecules are more diverse than DS-generated molecules.

3.4 Distribution of QED and SA of molecules

To explore the drug-likeness and synthetic difficulty of the
molecules generated by BRNN and scaffold hopping, QED and
SA values of these molecules were calculated. It can be seen from
Figure 5 that the highest point in the distribution of SA scores of
molecules generated by DS is at 3.5, while the highest point in the
distribution of SA scores of molecules generated by BRNN is at 2.8,
and the SA scores of molecules generated by BRNN are more skewed
towards 1 and show a left-skewed distribution, which suggests that
molecules generated by BRNN have a better synthesizability. The
highest point in the distribution of QED scores of molecules
generated by DS is at 0.5 and the overall distribution is skewed
towards 0, while the highest point of QED score distribution of
molecules generated by BRNN is at 0.65 and the overall distribution
is skewed towards 1, indicating that molecules generated by BRNN
have higher drug-like properties. Overall, the BRNN-generated
molecules have higher synthesizability and drug-like properties
relative to the DS-generated molecules.

3.5 Redocking validation

During the process of HTVS, SP and XP docking modes, the
docking scores of the co-crystal IDH305 after sub-stacking
were −9.768 kcal/mol, −10.658 kcal/mol and −11.097 kcal/mol,
respectively. The RMSD values were 1.7287 Å, 0.4983 Å,
0.3044 Å, which were less than 2 Å (Figure 6), indicating that
the docking results were reliable and the Schrödinger 2022 can
reproduce the binding mode of the protein and ligand.

3.6 Distribution of docking score
of molecules

The results of the distribution of docking score of molecules are
shown in Figure 7. The molecular scoring distributions of BRNN-
generated molecules are more to the left relative to those of DS-
generated molecules under the three docking accuracy modes of
HTVS, SP and XP, and the P-values of the docking scores of both are
less than 0.01, which proves that BRNN-generated molecules have a
better docking scores under these three docking accuracies. In order
to further compare the differences between the two, the MMGBSA
of the XP precision docking results were calculated separately, and
the results showed that the molecular binding free energy
distribution of BRNN-generated molecules was more to the left
relative to that of DS-generated molecules, and the P-value of the

FIGURE 5
Distribution of QED and SA scores of molecules generated by BRNN and scaffold hopping.
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binding free energy of the two was less than 0.05, which further
proved that the molecules generated by the BRNNmodel were more
promising as potential mIDH1 inhibitors.

3.7 Virtual screening of BRNN for
mIDH1 inhibitor

In order to find mIDH1 inhibitors, virtual screening was utilized to
uncover the most promising compounds based on docking score. The
screening was carried out using three screening processes, HTVS, SP
and XP, provided by the VSW module in the Schrödinger software.
Firstly, a large-scale virtual screening was carried out using HTVS,
retaining the top 30% to obtain 1,167 compounds. Secondly, in order to
make the screening results more precise, a molecular docking screening
with standard accuracy was performed on the obtained results using the
SP calculation module of Glide, and 234 compounds were obtained by
retaining the first 20%. In order to obtain more accurate screening
results, Glide’s XP calculation module was used to perform more
accurate virtual screening of the drugs, retaining the top 10% of the
drug molecules. After undergoing a three-step screening procedure that
included HTVS, SP, and XP, 21 compounds were discovered with the
top docking score. The MM-GBSA analysis was carried out on a group
of 21 compounds, with ΔG Bind being chosen as the parameter.
Consequently, a total of 10 compounds showing an affinity of

below −50 kcal/mol were identified as potential inhibitors (Figure 8).
The detailed docking scores are shown in Table 1.

3.8 ADME prediction of small molecules

ADME is a comprehensive study of drug absorption, distribution,
metabolism and excretion, which is an important method to study the
in vivo processes of drugs and an important criterion to be considered in
drug screening (Zhang et al., 2024). The information in Table 2 shows
that CNS ranges from −2 to 0, QPlogPo/w values range from 2.795 to
5.026, QPlogPC16 values range from 11.474 to 15.411, and QPlogPoct
values range from 16.543 to 25.911. In addition, QplogPw ranges from
8.954 to 16.834. QPlogS values ranged from −3.33 to −7.55. CIQPlogS
values ranged from −3.77 to −8.73 and QplogHERG values ranged
from −4.014 to −7.665. The human oral absorption values ranged from
1 to 3, with a percentage range of 73.275%–100%. The ADME results
indicated that the selected compounds exhibit suitable oral absorption
capacity, along with appropriate solubility and absorption
characteristics in line with drug-like principles and low central
nervous system activity. Human intestinal absorption is critical for
determining drug bioavailability, and in vitro models such as Caco-2
andMDCK cell lines are widely used to assess intestinal drug absorption
and blood-brain barrier permeability. The QPlogKp of these molecules
ranges from −1.413 to −4.812, the QPPCaco ranges from 52.306 to
197.299, the QPlogBB ranges from −0.157 to −2.169, the QPPMDCK
ranges from 32.653 to 368.919, the #Metab ranges from two to eight, the
QPlogKhsa ranged from 0.146 to 0.783, indicating that these molecules
have high intestinal, skin and blood-brain barrier permeability with
high solubility and bioavailability.

3.9 RMSD/RMSF analysis

To gain the detailed structural basis, molecular dynamics
simulations were performed. RMSD is commonly utilized for
assessing the stability and dynamics of the overall molecular
structure (Gogoi et al., 2021). The simulation ran for 400 ns, during
which the stability of mIDH1 backbone and ligands was assessed
through RMSD calculations. As depicted in Figure 9, compounds
IDH305, M1 and M2 reached stability after 200 ns, and the RMSD
fluctuations of both Backbone and Ligand remained within 2 Å,
indicating that the three compounds had high overall system
stability during the simulation. Among them, compounds M1 and
M2 showed lower RMSDamplitudes compared to the active compound
IDH305, indicating that compounds M1 and M2 possessed higher
kinetic stability properties than the positive drug IDH305. In contrast,
compoundsM3,M4 andM6 showedmore pronounced Ligand stability
throughout the kinetic simulation, indicating that the three compounds
weremore stable at their binding sites.M5 had better Backbone stability
during the simulation, but Ligand stability was lower compared to the
other compounds, probably due to the conformational change of
compound M5 during the simulation. RMSF analysis is a widely
used technique for evaluating local flexibility and residue fluctuation
(Alamri et al., 2021). Simulation results indicated that the RMSF values
of these five systems displayed similar trends, highlighting the dynamic
impact of inhibitors on protein interiors. As can be seen in Figure 10, the
RMSF values ofmost residues in the seven systems fluctuatedwithin the

FIGURE 6
Superposition of conformational proto-ligand and co-crystalline
molecular docking conformations.
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range of 2 Å, indicating that these regions were relatively stable during
the simulation, but there were some regions that showed higher
fluctuations, for example, significant differences in RMSF values
(greater than 2 Å) were observed in the regions of residues 75–100,
125–200 and 275–300. These regions may be flexible regions of the
protein and may correspond to functionally relevant active sites. These
regions are mainly located near the binding site, suggesting that there
are large conformational changes as well as higher flexibility in this
region. Larger conformational changesmay have an important effect on
ligand binding and dissociation, and higher flexibility is usually
associated with compactness and reduction of intramolecular
hydrogen bonding, which may affect the distances between key
residues. M1, M2 and M5 have the lowest RMSF values among the
complexes, indicating that these three complex systems have better
binding stability during the simulations.

3.10 Radius of gyration (Rg), hydrogen bond
and Solvent Accessible Surface Area
(SASA) analysis

The radius of gyration (Rg) is commonly utilized to evaluate the
overall compactness and structural evolution, serving as a key

parameter in assessing the conformational properties (Patel C. N.
et al., 2020). As depicted in Figure 11, the Rg values for these seven
complexes remained consistent during 400 ns dynamic simulations,
suggesting a level of compactness similar to that of the IDH305.

H-bond analysis was performed to examine the hydrogen
bonding in complexes over the 400 ns simulation period, as
depicted in Figure 11. The number of hydrogen bonds in M1 is
stable at 4 during the simulation, and the number of hydrogen bonds
inM2, M3,M4, M5 andM6 ranges from 0-4Å during the simulation.
The number of hydrogen bonds in IDH305 reaches up to 8 during
the simulation at 400 ns?

The SASA was theoretically utilized as a parameter for
characterizing the ratio of protein-solvent interaction, which can
predict the extent of conformational change during the binding
process and assess protein accessibility (Vivek-Ananth et al., 2021).
The gmx sasa program was employed to calculate SASA, and the
outcomes are depicted in Figure 11. The SASA of IDH305, M1, M2,
M3, M4 and M6 fluctuated within the range of 200–215, 200–190,
195–215, 195–225, 196–223 and 195–225 nm2, and the overall
fluctuation was relatively smooth, indicating that the molecular
structure was relatively stable. While the SASA of M5 had a
decreasing trend during the molecular dynamics simulation.
Among them, the SASA of M5 rapidly decreased from 220 to

FIGURE 7
Distributions of Glide docking scores of molecules generated by BRNN and scaffold hopping.

Frontiers in Pharmacology frontiersin.org10

Sun et al. 10.3389/fphar.2024.1491699

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1491699


185 nm2 at 100 ns, which indicated that the interaction between the
surface of the mIDH1 protein and the solvent was reduced at this
time, and the small molecule might have undergone a
conformational change or conformational rearrangement.

3.11 Dynamic cross-correlation maps and
free energy landscape

The gmx covar command in the GROMACS 2022 software was
utilized to extract the C-alpha coordinates of MD trajectories, and

DCCMs graphs were generated for investigating the dynamic
interactions between inhibitors and mIDH1. Figure 12 illustrates
the correlated motions among residues in seven systems, with blue-
purple regions denoting positive correlation and brown regions
indicating negative correlation. The correlation values range
from −1 to 1, where values falling between −0.25 and 0.25 signify
low correlation. The diagonal primarily depicts positively correlated
motions within individual residues, while the off-diagonal region
mainly reveals reverse correlations or cooperative actions between
residues. Alterations in these patterns are especially conspicuous
within the regions demarcated by black boxes. The diagonal

FIGURE 8
Chemical structures of 10 compounds identified by structural virtual screening and docking scores.
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elements of part A, part B and part C region in IDH305, M1, M2,
M3, M4, M5 and M6 show a strong positive correlation among
residues. Compared to IDH305, the binding of M1, M2, M4, M5 and
M6 notably weakened the positive correlation motion in part A
while weakening it significantly in parts B for M1, M4 and M6.
Additionally, M3 and M6 notably increased positive correlation
motion in part C. These observed significant changes corresponded
to previous RMSF findings with in part B. Therefore, distinct

substitutions at the same position can induce variations in
mDIH1 internal dynamics.

FEL is a tool for visualizing the energy-structure relationship of
proteins. Figure 13 illustrates the 3D free energy landscape, 2D
binding mode and 3D binding mode maps for the seven
mIDH1 complex systems. The lowest point in the 3D free energy
landscape represents the lowest energy state or conformation of the
mIDH1 system. The conformational transitions within each
complex are delineated by a subspace, indicating that these small
molecule inhibitors bind to the protein through different binding
modes, resulting in minimal binding effects. Representative
conformations during the simulations were chosen based on
these principal components. The 3D and 2D binding patterns
between IDH305 and mIDH1 indicate that a hydrogen bond is
formed between the carbonyl group in the molecule and LEU120,
another hydrogen bond is formed between the nitrogen atom in the
pyrimidine ring and ILE128, and a third hydrogen bond is formed
between the nitrogen atom in the pyridine ring and SER278.
Additionally, TRP124 interacts with the pyridine and pyrimidine
rings through π-π stacking. The binding mode of M1 and
mIDH1 leads to a significant shift in the position of the carbon-
oxygen bond, causing a notable change in the docking orientation of
the small molecule. In particular, SER278 forms a hydrogen bond
with the carbonyl, anisole interacts with ALA111 through a
hydrogen bond, ILE128 engages in a hydrogen bond interaction
with the phenolic hydroxyl, and a set of hydrogen bonds is formed
between ILE112 and the amino group. In the interaction between
M2 and mIDH1, a series of hydrogen bonds are formed with
LEU120 by the nitrogen atom in the imidazole ring, with
ILE128 by the amide group, and with SER278 by the oxygen

TABLE 1 The Docking score, MW and MM-GBSA energy of the top
10 compounds screened.

ID MW Docking score (kcal/mol)

SP XP MMGBSA

IDH305 490.459 −10.658 −11.097 −55.65

M1 406.483 −11.659 −13.931 −70.93

M2 417.909 −11.412 −12.295 −69.02

M3 429.477 −11.163 −12.167 −66.21

M4 413.493 −11. 117 −11.691 −64.19

M5 401.424 −10.939 −11.375 −58.72

M6 400.821 −10.736 −11.314 −57.95

M7 401.461 −10.586 −10.929 −54.49

M8 415.488 −10.533 −10.844 −53.34

M9 324.397 −10.370 −10.838 −52.76

M10 274.091 −10.025 −10.438 −50.51

TABLE 2 The ADME prediction of the top 10 compounds screened.

ID IDH305 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

CNS −1 −2 −1 −2 −2 −2 −2 −2 0 1 −2

QPlogPo/w 4.881 4.037 2.787 2.795 4.181 2.611 2.511 5.026 3.872 3.643 2.954

QPlogPC16 13.287 13.569 13.022 15.036 13.224 14.904 13.133 15.411 13.7 11.474 13.036

QPlogPoct 23.705 21.067 20.762 25.911 19.338 24.21 21.264 19.855 20.098 16.543 22.145

QPlogPw 12.267 10.834 13.67 16.834 9.196 16.227 13.169 10.331 10.795 8.954 12.845

QPlogS −7.549 −6.269 −3.516 −5.635 −6.201 −6.472 −5.634 −6.773 −5.049 −3.926 −4.135

CIQPlogS −7.221 −6.346 −4.677 −6.181 −6.497 −6.045 −5.551 −6.436 −3.918 −3.601 −6.82

QPlogHERG −6.383 −5.782 −4.087 −6.189 −5.472 −6.777 −5.606 −7.665 −5.562 −6.947 −4.014

QPPCaco 87.533 197.299 117.795 80.89 85.456 102.813 58.511 52.306 142.573 86.717 117.924

QPlogBB −0.638 −1.749 −0.461 −2.116 −1.673 −2.169 −1.931 −1.605 −0.842 −0.157 −1.457

QPPMDCK 286.901 85.598 205.874 32.653 103.276 42.315 57.105 245.673 111.114 368.919 49.075

QPlogKp −2.3 −3.46 −1.303 −4.001 −3.598 −3.495 −4.812 −1.413 −4.151 −3.14 −4.01

#Metab 5 6 2 8 4 2 3 6 3 4 8

QPlogKhsa 0.641 0.751 −0.367 0.348 0.783 0.146 0.273 0.753 0.535 0.369 0.461

Human Oral Absorption 1 1 3 2 1 1 2 1 3 3 2

Percent Human Oral Absorption 100 91.661 100 77.457 92.024 78.245 73.275 92.073 88.172 95.879 81.319
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atom of the sulfonyl group. Additionally, there is a π-π stacked
interaction between the benzene ring and TRP124. In the binding
mode of M3 and mIDH1, ILE128 forms hydrogen bonds with the
two nitrogen atoms of the thiazole ring, while SER278 forms a
hydrogen bond with one nitrogen atom. Furthermore, ILE128 also
interacts with the phenolic hydroxyl group through a set of
hydrogen bonding interactions. Additionally, a hydrogen bond
interaction is formed between LEU and another phenolic
hydroxyl group of M3. In the binding mode of M4 and mIDH1,
SER278 forms a hydrogen bond with the nitrogen atom of the
pyrrole ring, LEU120 forms a hydrogen bond with the nitrogen
atom in the pyrazole ring, and ILE128 forms a set of hydrogen bonds
with anisole. Additionally, TRP124 and TYR285 each engage in π-π
stacked interactions with the benzene ring. In the binding mode of
M5 and mIDH1, LEU120 forms hydrogen bonds with the carbonyl
group, ILE112 forms hydrogen bonds with the phenolic hydroxyl
group, SER287 forms hydrogen bonds with the nitrogen atoms of
the amide, and ILE128 forms hydrogen bonds with another set of
amides of M5. In the binding mode of M6 and mIDH1, the carbonyl
group forms hydrogen bonds with SER278 and LEU120,
respectively, while CYS379 forms a hydrogen bond with the
amino. In addition, the nitrogen atom in the pyrimidine ring
forms a set of hydrogen bonds with ILE112. By comparing the
interaction patterns of IDH305, we found that M2, M3, M4,
M6 have a set of hydrogen-bonding interactions with the key

amino acids ILE128, SER278 and ILU120 with a distance of less
than 3.5 Å. Six small molecules have a similar binding interaction
pattern to IDH305, and the similar interaction pattern may be the
reason for the higher affinity. Furthermore, the binding modes of
M1, M2, M3, M4, M5 and M6 with mIDH1 exhibited a higher level
of interaction with the active site in comparison to IDH305. This
finding is in line with the results obtained from their binding
affinity analyses.

3.12 Analysis of binding free energy

The calculation of the free energy of intermolecular binding and
the resulting inhibition constant (Ki) are commonly used to assess
the strength of the interaction between a molecule (e.g., a drug
molecule and a target protein). The ΔGbind of IDH305, M1, M2, M3,
M4, M5 and M6 were −19.817 kcal/mol, −30.718 kcal/
mol, −28.241 kcal/mol, −22.717 kcal/mol, −22.399 kcal/
mol, −22.369 kcal/mol and −21.860 kcal/mol, respectively (as
shown in Table 3). In these complexes, M1 possessed the optimal
binding affinity, and all complexes showed better binding affinity
than the positive control IDH305 (−19.817 kcal/mol), consistent
with the molecular docking results. The van der Waals energy
(ΔEvdw) values were −43.768 kcal/mol, −46 kcal/
mol, −42.583 kcal/mol, −44.93 kcal/mol, −37.799 kcal/

FIGURE 9
Fluctuation of RMSD values for IDH305 and six molecules during 400 ns MD simulations.
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FIGURE 10
Fluctuation RMSF values for IDH305 and six molecules during 400 ns MD simulations.

FIGURE 11
Rg values, hydrogen bonding interactions and Area values for compounds IDH305, M1, M2, M3, M4, M5 and M6 for 400 ns MD simulation time.
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mol, −44.847 kcal/mol and −46.047 kcal/mol, respectively,
indicating the positive role of van der Waals interactions in
ligand binding. ΔESA represents the solvable surface area, where
M1 has the smallest solvable surface area and is the most favorable
for stable binding. The Ki value is used to quantify the affinity or
binding strength of an inhibitor, and in this study, the Ki value for
M1 was the smallest of the six compounds at 3.045E-14, which
suggests that M1 binds most strongly to the receptor and is the
most potent.

In this research, histograms were used to visualize the binding
free energy (Binding), molecular mechanics (MM), Poisson
Boltzman (PB) and Solvent Accessible Surface Area values of the
seven compounds (Figure 14). It was visualized that M1 had the best
binding among the seven small molecules and all the six candidate
small molecules had better binding free energies than the positive
drug IDH305. The six small molecules exhibited higher energies in
MM than the positive drug, which may imply that they have
stronger electrostatic and hydrophobic interactions with

IDH1 protein. The seven small molecules showed a small
difference in PB values varied less and were all lower, the lower
ΔEPB may indicate more favorable electrostatic interactions between
the molecules and the IDH1 protein, thus enhancing the binding
stability and affinity. The SA values of the seven small molecules
varied less and were all negative, suggesting that all of them had a
smaller solvent-accessible surface area with the target
solvent molecules.

3.13 Energy decomposition diagrams for
per residue

In this study, we further investigated the interaction energies
of IDH305, M1, M2, M3, M4, M5 and M6 in order to gain a more
comprehensive understanding of their interactions. Specifically,
we examined the residue interaction energies that were greater
than 1.0 kcal/mol in terms of Coulombic Interactions, polar

FIGURE 12
DCCM of the six molecules and IDH305.
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FIGURE 13
3D free energy landscape, 2D interaction and 3D interaction diagrams for IDH305, M1, M2, M3, M4, M5 and M6.

TABLE 3 MM/PBSA binding Free energy (kcal/mol) analysis of the hit compound’s complexes.

Energy terms
(Kcal/mol)

IDH305 M1 M2 M3 M4 M5 M6

ΔG/ΔGbind −19.817 ± 3.874 −30.718 ± 1.672 −28.241 ± 1.373 −22.717 ± 2.962 −22.399 ± 2.491 −22.369 ± 2.96 −21.86 ± 1.448

ΔH/ΔEBinding −21.204 ± 3.874 −32.634 ± 1.672 −30.997 ± 1.373 −24.732 ± 2.962 −25.469 ± 2.491 −24.843 ± 2.96 −25.465 ± 1.448

Ki (nM) 2.98E-06 3.045E-14 1.99E-12 2.23E-08 3.81E-11 4.01E-08 9.48E-08

−TΔS 1.387 1.9161 2.755 2.015 3.070 2.474 3.605

ΔEVDW −43.768 ± 2.855 −46 ± 1.013 −42.583 ± 2.178 −44.93 ± 1.54 −37.799 ± 2.253 −44.847 ± 3.383 −46.047 ± 1.624

ΔECOU −18.055 ± 2.552 −10.494 ± 1.214 −11.782 ± 2.206 −6.52 ± 0.87 −5.923 ± 1.461 −3.264 ± 2.379 −7.005 ± 1.084

ΔEMM −61.823 ± 1.626 −56.494 ± 1.794 −54.365 ± 2.619 −51.45 ± 2.346 −43.722 ± 2.805 −48.111 ± 3.625 −53.052 ± 2.569

ΔEPB 47.133 ± 2.976 31.171 ± 1.493 29.766 ± 2.084 33.681 ± 1.623 24.357 ± 2.328 29.808 ± 2.179 34.64 ± 2.002

ΔESA −6.514 ± 0.198 −7.311 ± 0.141 −6.398 ± 0.167 −6.963 ± 0.144 −6.104 ± 0.426 −6.54 ± 0.071 −7.052 ± 0.192

ΔEPBcom −3135.426 ±
43.007

−3316.136 ±
102.502

−3310.787 ±
80.483

−3253.908 ±
117.952

−3274.957 ±
88.882

−3426.912 ±
31.894

−3,348.73 ±
82.995

ΔEPBpro −3145.018 ±
43.997

−3322.892 ±
103.359

−3307.11 ± 80.62 −3251.864 ±
117.302

−3268.931 ±
89.265

−3433.222 ±
31.742

−3350.214 ±
80.941

ΔEPBlig −37.541 ± 1.023 −24.415 ± 0.605 −33.444 ± 0.94 −35.725 ± 1.483 −30.383 ± 1.392 −23.498 ± 1.603 −33.156 ± 1.514

ΔESAcom 144.111 ± 1.624 143.705 ± 1.253 147.166 ± 1.21 146.995 ± 1.322 145.804 ± 2.951 148.143 ± 1.47 145.449 ± 1.09

ΔESApro 146.028 ± 1.636 145.861 ± 1.33 148.884 ± 1.142 149.159 ± 1.345 147.234 ± 2.684 150.291 ± 1.395 147.689 ± 1.031

ΔESAlig 4.597 ± 0.054 5.155 ± 0.099 4.68 ± 0.085 4.798 ± 0.075 4.674 ± 0.091 4.391 ± 0.064 4.812 ± 0.1
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solvation free energy (PB), nonpolar solvation free energy (SA)
and van der Waals interactions (VDW), as shown in Figure 15.
The IDH305 system shows the importance of certain residues,
including ALA111, ILE113, LEU120, ILE128, SER278 and
TYR285. Van der Waals interactions play a critical role in the
binding of ligands, while the polar effect negatively impacts this
binding process. The carbonyl group of IDH305 is involved in a
hydrogen bond with LEU120, the nitrogen atom in the
pyrimidine ring forms a hydrogen bond with ILE128, and the
nitrogen atom in the pyridine ring forms a hydrogen bond with
SER278. Furthermore, π-π stacking interactions are observed
between TRP124 and the pyridine and pyrimidine rings.

The interaction energy of M1 with mIDH1 exceeds 1.0 kcal/
mol, which is mainly attributed to the van der Waals interactions

of M1 with seven specific residues: ALA111, LEU120, TRP124,
ILE130, SER278, ALA282 and MET291. In the M2 system,
ALA111 interacts with M5 mainly from electrostatic forces,
and forms p-alkyl interactions with the benzene ring of M2.
Interactions and forms p-alkyl interactions with the benzene ring
of M2. The interaction energies of ILE112, LEU120, TPR124,
TRP267 and SER278 with M2 are mainly from van der Waals
interactions. In the M3, M4 and M6 systems, the interaction
forces between the amino acids and the molecules are mainly
from van der Waals interactions. In the M5 system, the
interaction force between ILE112 and M5 is mainly due to
Coulombic energy. The interaction energies of ILE112,
LEU120, TPR124, ILE128, MET259 and SER278 with M5 are
mainly due to van der Waals interactions.

FIGURE 14
Comparison of ligand energies for IDH305, M1, M2, M3, M4 and M5.
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4 Discussion

IDH1 mutations occur in about 20%–30% of gliomas and are a
promising target for the treatment of cancer. In recent years, the
development of inhibitors targeting IDH1 mutations has become a
research hotspot in cancer therapy. The mIDH1 inhibitors inhibit
tumor growth by blocking mutant IDH1 enzyme activity, reducing
2-HG production and restoring normal epigenetic regulation.
However, although existing IDH1 inhibitors have shown
promising therapeutic effects, they have certain limitations, such
as the development of drug resistance, adverse reactions, and effects
on wild-type IDH1. Therefore, the development of a new generation
of mIDH1 inhibitors that are more effective, more selective, and
with lower side effects remains one of the important directions of
current medicinal chemistry research.

In this study, a series of potential inhibitors against mIDH1 were
successfully designed by combining BRNNmodel, scaffold hopping,
molecular docking andmolecular dynamics simulations. The BRNN
model and scaffold hopping were used to generate 3,890 and
3,680 small molecules, respectively. PCA of the generated small
molecules revealed that the molecular distributions generated by the
BRNN model and the molecular distributions generated by DS
showed some overlap as well as obvious clustering patterns. This
distribution model indicates that the two groups of compounds

show some similarity in chemical and physical properties. And
overall, the molecules generated by BRNN cover a larger area,
indicating that the molecular diversity of BRNN-generated
molecules is higher than that of DS-generated molecules. The
reason for the similarity between molecules generated by the
BRNN model and those generated by DS may be due to the fact
that they optimize the same batch of molecules. BRNN, as a kind of
AI model, can sufficiently learn the patterns and regularities in the
large number of molecule data in the training stage, which makes it
to innovate based on these patterns when generating new molecules,
rather than simply copying known structures. The DS skeleton
leaping approach usually starts from a known active molecule
and searches for new compounds by changing the parts of the
molecule that need to be modified. This approach, although it can
produce a range of derivatives related to the original molecule, may
limit the range and diversity of generated molecules due to its
reliance on predetermined rules of skeleton leaps. QED and SA
results indicate that BRNN-generated molecules have superior
synthesizability and drug-like properties relative to DS-generated
molecules. This may be attributed to the ability of the BRNN model
to capture the complex patterns and interactions of the molecules
more efficiently when learning from a large number of known active
compounds, resulting in the generation of molecules with higher
scores in terms of synthetic acceptability and drug-like properties.

FIGURE 15
Key residues energy decomposition diagram of the IDH305, M1, M2, M3, M4, M5 and M6.
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In order to ensure the accuracy of the virtual screening, nine
crystal structures of mIDH1 (PDB ID: 4UMX, 5L57, 5L58, 5LGE,
5SUN, 5SVF, 5TQH, 6ADG, 6B0Z) were obtained from the PDB
database, and the docking and enrichment ability of each crystal
structure were evaluated by using multi-target cross-docking. The
complex crystal (PDBID: 6B0Z) structure with the best enrichment
ability was finally selected as the target. The study was carried out by
superimposing the docked conformation of the complex crystalline
molecule (IDH305) with the original complex ligand conformation
and calculating the RMSD value to show the reliability of the results
obtained based on molecular docking screening. The results showed
that the ligand docked conformation and the co-crystalline
conformation were almost completely overlapped with the
RMSD < 2Å, indicating that the virtual screening model
constructed in this study has a high degree of reliability, and that
Schrödinger software is suitable for this system.

The 3,890 small molecules generated by BRNN were screened
using three screening processes provided by the VSW module in
the Schrödinger software, resulting in 21 compounds.
Subsequently, MM-GBSA analysis was performed to identify
10 candidate molecules with binding affinities lower
than −50 kcal/mol. ADME prediction results identified
10 candidate molecules all exhibited positive ADME
characteristics to be potential drug candidates, including good
lipophilicity, water-solubility balance, and high intestinal and
oral absorption rates, further illustrating the applicability of the
BRNN model for this system. Six small molecules with scoring
rankings superior to the positive compounds were selected for
molecular dynamics simulations. RMSD results show that
IDH305, M1 and M2 stabilized after 200 ns and RMSD
fluctuations remained within a range of 2 Å.
IDH305 fluctuated between 275 ns and 400 ns but within a
range of 2 Å. M3 and M6 RMSD after 350 ns fluctuations
gradually stabilized. The results of the RMSF analysis suggest
that there are notable variances in RMSF values (>2 Å) in regions
75–100, 125–200 and 275–300, which are mainly situated close to
the binding site. Generally, increased flexibility is associated with
decreased density and intramolecular hydrogen bonds,
potentially affecting the distance between crucial residues. Rg,
H-bond and SASA results indicate that all six small molecules
have a higher affinity and more stable relationship with the target
proteins during the simulation at 400 ns. Rg, H-bond and SASA
results indicate that all six small molecules have higher affinity
and more stable binding to the target protein during the
simulation at 400 ns. The results of DCCM indicate that
different substitutions at the same position can lead to
variations in the internal dynamics of mDIH1. The lowest
energy conformational relationship analyses of the six
compounds revealed that six small molecules have a similar
binding interaction pattern to IDH305, and the similar
interaction pattern may be the reason for the higher affinity.
Moreover, the binding modes of M1, M2, M3, M4, M5 and
M6 with mIDH1 showed a higher degree of interaction with
the active site compared to IDH305. This observation is
consistent with the results obtained from IDH305.
Observation is consistent with the results obtained from their
binding affinity analyses. Binding free energy analyses of the six
candidate molecules revealed that among these complexes,

M1 had the best binding affinity and all the complexes
showed a higher degree of interaction with the active site
compared to the positive control IDH305 (−19.817 kcal/mol)
with better binding affinity, in agreement with the molecular
docking results.

Although the BRNN model-generated molecules showed
superiority over the reported 625 mIDH1 inhibitors in terms
of physicochemical properties such as synthesizability, drug-like
properties and LogP, and that six molecules screened from the
BRNN model-generated molecules were superior to the positive
drug in terms of molecular docking, molecular dynamics
simulations and binding free energy calculations, experimental
validation is lacking. BRNN models are trained using fragments
derived from real molecules, so the predicted molecules have a
high degree of drug-like properties and synthesizability, but the
use of reported molecular fragments for model training can result
in generating molecules that are less novel, making it difficult to
form compounds with entirely new structural types, and may not
be able to bypass some patents. The effectiveness of BRNN
models depends heavily on the quality and diversity of the
training data. If the training data is not rich enough or biased,
the generated results may also be limited or biased.

5 Conclusion

In this study, by comparing the molecules generated by the
BRNN model with the molecules generated by DS scaffold hopping,
it was found that the molecules generated by the BRNN model had
better diversity, drug-likeness, docking score and synthesizability.
Ten potential mIDH1 inhibitors were obtained through virtual
screening the molecules generated by the BRNN model. The
molecular dynamics simulation results showed that compound
M1, M2, M3, M4, M5, M6 exhibited the best binding properties
in all energy aspects, which have the potential to act as
mIDH1 inhibitors. This study provides a drug design strategy by
integrating deep learning, molecular docking and molecular
dynamics simulation technology, provides new candidate drugs
for the treatment of mIDH1-related tumors, and also provides a
theoretical and practical basis for future drug design and
development. Future work will include experimental verification
of the biological activity of these compounds and further
optimization of their structures to enhance their therapeutic
effects as anticancer drugs.
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