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Diabetes is one of the most common metabolic diseases worldwide, leading to
complications, mortality, and significant healthcare expenditures, which impose a
substantial social and financial burden globally. A diabetic environment can
induce metabolic changes, negatively affecting tendon homeostasis, leading
to alterations in biomechanical properties and histopathology. Numerous
studies have investigated the mechanisms through which diabetes exerts
pathological effects on tendons, including increased free radical production,
oxidative stress, inflammatory responses, deposition of advanced glycation end
products (AGEs), and microvascular changes. These metabolic changes damages
tendon structure, biomechanics, and tendon repair processes. The proliferation
of tendon stem cells decreases, apoptosis increases, and abnormal
differentiation, along with abnormal expression of myofibroblasts, ultimately
lead to insufficient tendon repair, fibrosis, and remodeling. Although
researches unveiling the effects of diabetes on tendinopathy, fibrosis or
contracture, and tendon injury healing are growing, systematic understanding
is still lacking. Therefore, this review summarizes the current research status and
provides a comprehensive overview, offering theoretical guidance for future in-
depth exploration of the impact of diabetes on tendons and the development of
treatments for diabetes-related tendon diseases.
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1 Introduction

Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia,
primarily caused by insufficient insulin secretion (type 1 diabetes, T1DM) or insulin
resistance (type 2 diabetes, T2DM) (DiMeglio et al., 2018; Chatterjee et al., 2017). The latter
accounts for approximately 90% of all diabetes cases and is one of the most prevalent
metabolic diseases worldwide (Chatterjee et al., 2017; Giha et al., 2022). By 2045, the
prevalence is projected to rise to 12.2% of the population worldwide (Sun et al., 2022). The
high prevalence of DM has significant social, economic, and developmental implications
(Chatterjee et al., 2017; Vasiljević et al., 2022). Complications, mortality, and healthcare
costs associated with DM impose a considerable social and financial burden (Cho et al.,
2018; Nichols et al., 2019).

DM induces metabolic changes in microenvironment, such as increased free radical
production, oxidative stress, abnormal expression of inflammatory factors (Vasiljević et al.,
2022), copper metabolism abnormalities (Jia et al., 2024a), and the deposition of advanced
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glycation end products (AGEs) (Lee and Veres, 2019; Haus et al.,
2007) These diabetes-related microenvironmental changes lead to
numerous clinical complications, such microvascular diseases (Puri
et al., 2022) and macrovascular diseases (Puri et al., 2022; Kato et al.,
2024). In addition, musculoskeletal abnormalities, including tendon
dysfunction, are also common complications of diabetes (Giha et al.,
2022; Shalit et al., 2024).

Tendons connect muscles and bones, effectively transmitting
muscle forces during musculoskeletal movements (Lu et al., 2020;
Sharma and Maffulli, 2005; Singh et al., 2022). While there are
extensive research on the impact of DM on musculoskeletal
disorders, including arthritis (Wang et al., 2024a; Banu and
Köseoğlu, 2023), osteoporosis (Li et al., 2024a), skeletal muscle
atrophy (Atala et al., 2021; Cruz-Jentoft et al., 2019), and fibrosis
(Singh et al., 2022; Wu et al., 2024), recent years witnesses an
increasing number of investigations on the effects of DM on tendon
homeostasis, providing knowledgeable foundation for
further studies.

2 Impact of DM on normal tendons

The primary components of tendons are dense fibrous
connective tissue and collagen, connecting muscles to bones and
efficiently transmits forces during movements (Lu et al., 2020;
Sharma and Maffulli, 2005). T2DM leads to impaired cellular
glucose uptake and chronic hyperglycemia, exposing tissues to
abnormally high glucose concentrations (Chatterjee et al., 2017).
In both basic and clinical studies, the impact of T2DM on tendon
homeostasis is generally overlooked, possibly due to a lack of
recognition of the chronic pathological changes in tendon
structure caused by T2DM (Nichols et al., 2019; Kim et al., 2022;
Filgueiras et al., 2022).

DM alters muscle microcirculation and metabolic responses. In
diabetic patients with a high risk of peripheral arterial or
neurological disease, microcirculation deterioration is present in
muscles and tendons, and tendon homeostasis may be affected by
hyperglycemia (Kim et al., 2022; Kim et al., 2021; Panji Sananta et al.,
2019), leading to structural changes and inflammation (Nopparat
et al., 2023). Furthermore, T2DM is associated with increased
oxidative stress (OS), which negatively affects tendon conditions
(Vasiljević et al., 2022; Atala et al., 2021; Alabadi et al., 2023).
Advanced glycation end products (AGEs) are compounds formed by
aging and DM, which activate NADPH oxidase (NOX), increase
reactive oxygen species (ROS) production and leads to OS (Kato
et al., 2023; Shinohara et al., 2022a). AGEs also induces OS and
triggers inflammatory responses (Shinohara et al., 2022a). The
accumulation of AGEs, combined with other systemic and
behavioral factors, further complicates tendon dysfunction (Singh
et al., 2022; Zellers et al., 2021). AGEs, formed by non-enzymatic
reactions, bind to membrane receptors to exacerbate inflammation
and accelerate protein degradation (Puri et al., 2022; Cruz-Jentoft
et al., 2019).

Structural changes in tendons of DM patients include collagen
fiber disorder and micro-tears (Lo et al., 2013; Zaib et al., 2024;
Chang et al., 2022). The metabolic changes in the microenvironment
affect tendon stiffness, collagen composition, and physiology (Lee
and Veres, 2019; Shi et al., 2021), which may be associated with

AGEs (Fessel et al., 2014; Li et al., 2013). Research has shown that the
crosslinking of AGEs in DM tendon inhibits the biomechanical
plasticity and significantly disrupts tissue morphology (Lee and
Veres, 2019; Indyk et al., 2021). The accumulated AGEs not only
crosslinks adjacent collagen molecules to weaken biomechanics (Lee
and Veres, 2019), but also induces inflammatory responses (Indyk
et al., 2021). Moreover, pro-inflammatory chemokines, such as
CCL-1, 2, 4, and 5, are highly expressed in the circulation of
T2DM, further mediating inflammation (Mir et al., 2024).

Degenerative changes in tendons are common in DM patients
(Abate et al., 2010). For example, histological studies confirm that
hyperglycemia caused by DM is associated with degeneration of the
rotator cuff or Achilles tendons (Kim et al., 2022; Kent and Bailey,
1985). Even asymptomatic DM patients may exhibit morphological
abnormalities in the Achilles tendon (Afolabi et al., 2020), such as
thickening, collagen disorder, or calcific changes at the tendon-bone
junction (Harish et al., 2020; Vaidya et al., 2022; Xu et al., 2022).
Specifically, Sneha et al. (Harish et al., 2020) evaluated the Achilles
tendons of 61 healthy volunteers and 81 T2DM patients using
ultrasound. Compared with healthy volunteers, the Achilles in
T2DM patients was thickened and softened. DM can also lead to
increased risk of Achilles tendon and plantar fascia contracture,
impairing foot biomechanics and contributing to foot ulcers (Zellers
et al., 2021; Harish et al., 2020; Ra and Hn, 2022). These changes
reduce the extensibility of normal tendons and the strain energy of
rupture (Lopez-Pedrosa et al., 2024; Su et al., 2024).

3 Impact of DM on tendinopathy

Tendinopathy is a common connective tissue disease, widely
described as involving cellular proliferation, changes in extracellular
matrix (ECM) turnover/synthesis, and inflammation associated
with chronic tendon pathology (Sikes et al., 2021). The etiology
is multifactorial and not yet fully understood (Giha et al., 2022; Xu
et al., 2022). Tendinopathy is usually caused by overuse, metabolic
disorders, and other metabolic factors related to micro-injuries in
tendons. Tendinopathy is a challenging complication in diabetic
patients (Shi et al., 2021; Cannata et al., 2020), often leading to
chronic pain, restricted joint mobility, and even tendon rupture.
DM, especially hyperglycemia, leads to elevated levels of acetylated
p53, promoting cell apoptosis and OS, shifting the response of
tenocytes from anabolic to pathogenic (Chang et al., 2022;
Shinohara et al., 2022b), increasing the risk of developing
tendinopathy (Panji Sananta et al., 2019; Harish et al., 2020). The
potential pathogenic mechanisms by which DM leads to
tendinopathy can generally be categorized into several
aspects (Figure 1).

Chronic Inflammation: It is well known that diabetic patients are
in a pro-inflammatory state, and the hyperglycemic environment in
diabetes may lead to chronic inflammation in tendons, eventually
progressing to tendinopathy (Kwan et al., 2020). Diabetic patients
typically exhibit elevated levels of pro-inflammatory cytokines, such
as prostaglandins, tumor necrosis factor-α (TNF-α), interleukin-6
(IL-6), and leukotriene B4, which are significantly elevated in the
serum of diabetic patients (Vasiljević et al., 2022; Zaib et al., 2024).
These elevated levels of pro-inflammatory cytokines and
chemokines may contribute to the chronic development of
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tendinopathy (Indyk et al., 2021; Xu et al., 2022; Kwan et al., 2020).
Evidence indicates that the chronic inflammation observed in
tendinopathy may be due to the reduced proteolytic response of
tendon-derived stem cells (TDSCs) in tendinopathy, where the
hyperglycemic environment may stimulate chronic inflammation
and reduced proteolytic response, leading to tendinopathy (Kwan
et al., 2020). Studies on the role of T2DM in rotator cuff
tendinopathy suggest that persistent hyperglycemia may impair
the proliferation and autophagy of tenocytes, further leading to
increased expression of pro-inflammatory and pro-fibrotic
mediators (Song et al., 2022).

Excessive Production of AGEs: AGEs can alter collagen within
tendons, increase collagen crosslinking, reduce tendon fiber sliding
and viscoelasticity, inhibit the biomechanical plasticity of natural
tendons, and disrupt tendon morphology (Lee and Veres, 2019;
Indyk et al., 2021). TDSCs are involved in tendinopathy, and AGEs
can alter the pathophysiology of tendons in diabetic patients by
regulating the proliferation and differentiation of TSPCs (Lu et al.,
2020). However, other studies suggest that the relationship between
AGE content and tendon tensile mechanics may be obscured by
collagen disorder (Zellers et al., 2021).

OS: Diabetic patients may experience impaired angiogenesis,
promoting tissue hypoxia and the production of ROS, leading to OS
and pathological damage (Abu Khadra et al., 2024). In addition, DM
patients have lower levels of catalase (CAT) activity, with an
imbalance between oxidants and antioxidants, which increases
OS to induce cell death and trigger tendinopathy (Lu et al., 2020;
Abu Khadra et al., 2024; Yoon et al., 2024).

Vascular Changes: Vascular disease is one of the most common
long-term complications of poorly DM, leading to functional and

structural changes in the macrovascular and microvascular systems
of tendons (Panji Sananta et al., 2019). These biochemical and
structural abnormalities are also observed in various organs and
tissues, including nephropathy, retinopathy, peripheral neuropathy,
atherosclerosis, etc. (Kato et al., 2024; Tavares et al., 2021; Zheng
et al., 2021). Diabetes-induced endothelial cell damage reduces the
synthesis and secretion of protective factors, resulting in
vasoconstriction and inflammation (Sharma and Maffulli, 2005).

Circulating AGEs are associated with vascular complications
(Kato et al., 2024). Impaired vascular supply may also reduce the
nutrients and oxygen supply to connective tissues, leading to
degenerative changes and hindering tendon healing, thus
promoting tendinopathy (Kato et al., 2024; Indyk et al., 2021;
Abu Khadra et al., 2024). Some studies suggest that dysregulated
glucose and lipid metabolism exacerbate the aging of TDSCs and
promote osteogenic differentiation (Chen et al., 2024).

Calcific tendinopathy of the Achilles tendon is common, but
most patients are asymptomatic. The incidence of Achilles tendon
insertional calcific tendinopathy increases with age and is
significantly higher in diabetic patients (Giai Via et al., 2022).
Research shows that the risk of developing calcific tendinopathy
of the shoulder increases by 27% at 8 years following DM diagnosis
(Su et al., 2021). On the other hand, the etiology and pathogenesis of
calcific tendinopathy remain unclear. Riley et al. (1994). proposed a
theory suggesting that ischemic injury and rotator cuff degeneration
associated with metabolic diseases lead to further calcification,
indicating that metabolic diseases may be related to calcific
tendinopathy. Chen et al. (2024) demonstrated that dysregulated
glucose and lipid metabolism can activate the CXCL13-CXCR5 axis
in aged TDSCs, thereby promoting ectopic ossification.

FIGURE 1
Schematic illustration of the potential mechanisms by whcich diabetes mellitus triggers tendinopathy.
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Hyperglycemia, inflammatory responses, AGEs, OS, and
diabetic vascular changes can all influence tendon cell behavior.
However, the extent to which these specific changes lead to diabetic
tendinopathy and impaired healing remains unclear (Vaidya et al.,
2022). Antidiabetic drugs may have beneficial effects on diabetic
tendinopathy. Pioglitazone improves TDSC dysfunction caused by
AGEs through autophagy promotion, and pioglitazone has been
identified as a potential pharmacological option for tendinopathy
(Xu et al., 2020). Research on metformin suggests that it may affect
gene expression of myogenesis and adipogenesis, while whether
metformin benefits tendinopathy remain unclear (Chang et al.,
2022). Further efforts are required to develop effective therapeutics.

4 Impact of DM on tendon fibrosis

DM is associated with several fibrotic conditions, such as frozen
shoulder, Dupuytren’s contracture, trigger finger, Achilles tendon
contracture, and plantar fasciitis, which limit the range of motion of
the affected joints, impairing function and the ability to perform
daily activities (Abate et al., 2013; Al-Matubsi et al., 2011). Fibrosis is
characterized by the accumulation of ECM, usually involving
changes in ECM quality. The morphological and biochemical
disruption of the ECM is directly related to the loss of target
organ function (Primadhi and Herman, 2021; Ramirez et al.,
2024). The excessive production of AGEs under hyperglycemic
conditions can alter collagen within tendons, increase collagen
crosslinking, reduce tendon fiber sliding and viscoelasticity,
inhibit the biomechanical plasticity of natural tendons, and
disrupt tendon morphology (Lee and Veres, 2019; Indyk et al.,
2021; Gautieri and Silván, 2016). By stimulating transforming
growth factor-beta (TGF-β) pathway, AGEs and ROS regulate the
expression of various matrix proteins, forming fibrotic tissue
(Primadhi and Herman, 2021; Li et al., 2024b; Noonin and
Thongboonkerd, 2024). Myofibroblasts, the main producers and
organizers of collagen/ECM during tissue healing, are also sensitive
to DM related pathological changes, initiating hypertrophic scar
formation and tissue fibrosis (Schuster et al., 2023). Given the
aberrant fibrogenesis process, T2DM significantly impairs tendon
healing by inducing scar formation (Zhao et al., 2017).

Tendon injuries can occur at the muscle-tendon junction (e.g.,
gastrocnemius, quadriceps), within the tendon itself (e.g., Achilles
tendon), and at the tendon-bone interface (e.g., rotator cuff)
(Sharma and Maffulli, 2005; Tavares et al., 2021; Takahashi et al.,
2021; Yuan et al., 2024). Tendon healing occurs in three overlapping
phases: the initial inflammatory phase, where erythrocytes and
inflammatory cells, particularly neutrophils, infiltrate the injury
site, with monocytes and macrophages predominating within the
first 24 h, leading to the phagocytosis of necrotic material; a few days
later, the proliferative phase begins and lasts for several weeks,
during which the synthesis of type III collagen peaks; approximately
6 weeks later, the remodeling phase begins, characterized by a
reduction in cell numbers, and decreased collagen and
glycosaminoglycan synthesis. The remodeling phase can be
divided into a consolidation phase, beginning around 6 weeks
and lasting up to 10 weeks, and a maturation phase, starting
10 weeks after injury and continuing for up to a year, during
which fibrous tissue gradually transforms into scar-like tendon

tissue (Sharma and Maffulli, 2005; Farkas et al., 1973;
Adawhhflf et al., 1983).

The increased risk of rotator cuff tears (RCTs) in diabetic
patients may be related to impaired microcirculation (Yuan et al.,
2024). Studies have shown that sodium-glucose cotransporter
2 inhibitors (SGLT2is) promote systemic anti-inflammatory
effects by increasing fat utilization and regulating macrophage-
mediated inflammatory pathways. SGLT2 inhibitors may prevent
rotator cuff tears and subsequent repairs by reducing inflammation
(Su et al., 2024). Diabetes leads to severe damage to the
inflammatory, angiogenic, and proliferative processes, which may
adversely affect tendon healing or remodeling after injury (Chbinou
and Frenette, 2004).

Diabetic patients are at a higher risk of requiring tendon repair
surgery (Cho et al., 2015), and diabetes can affect tendon healing
post-operatively (Tavares et al., 2021; Takahashi et al., 2021; Griffith
et al., 2022). Elevated hemoglobin A1c levels 3–6 months after
rotator cuff repair surgery in diabetic patients are associated with an
increased rate of re-tears (Kim et al., 2023). Nevertheless, for diabetic
patients with perioperative glycemic control, the re-tear rate
following rotator cuff repair is observed to be comparable to that
of non-diabetic patients (Smith et al., 2021), underlying the
importance of blood glucose control.

Tendon-bone healing is a challenging process in orthopedics
and sports medicine (Wang et al., 2024b), while DM is a significant
risk factor for poor tendon-to-bone healing. The hyperglycemic
microenvironment inhibits TDSCs proliferation and inducing
osteochondral differentiation, a potential mechanism by which
diabetes impairs tendon-to-bone healing (Cao et al., 2022).
Additionally, diabetes-induced hyperglycemia increases the
expression of AGE and RAGE, resulting in significantly elevated
mRNA expression levels of NOX1, NOX4, IL-6, RAGE, type III
collagen, MMP2, TIMP1, and TIMP2 in the rotator cuff tendon,
along with an increase in ROS-positive cells and apoptotic cells (Lee
and Veres, 2019; Shinohara et al., 2022b; Yoshikawa et al., 2022).
These inflammatory factors also induce a crosstalk between immune
cells and tenocytes/TDSCs, while breaking this vicious cycle has
therapeutic potential against this condition (Peng et al., 2024).
Fibroblasts is closely correlated with collagen levels, and a
hyperglycemic environment negatively impacts fibroblast
quantity, adversely affecting tendon healing (Panji Sananta et al.,
2019). AGEs-related increased expression of inflammatory factors
can result in insufficient type I collagen synthesis of fibroblasts,
delaying recovery process (Yoshikawa et al., 2022; Jia et al., 2024b).

5 Potential therapies under
development

The ability to manage targets related to tendinopathy/tendon
healing and strictly control diabetes may be effective in treating
tendon pathology in diabetic patients (Yoon et al., 2024). However,
the cellular and molecular components involved in various aspects
of tendons disrupted by diabetes remain to be elucidated (Yoon
et al., 2024). AGE inhibitors that prevent AGE formation could be a
novel approach to treating diabetic tendon-to-bone healing (Jud and
Sourij, 2019) (Menè and Pugliese, 2003). These therapeutic options
include AGE crosslink breakers, AGE inhibitors, RAGE antagonists,
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clinically approved drugs for various indications (e.g., antidiabetic
and antihypertensive drugs, or statins), and dietary and herbal
treatments (Jud and Sourij, 2019). Direct AGE inhibitors include
pyridoxamine and aminoguanidine, which reduce AGE/RAGE by
increasing activation of the detoxifying enzyme Glo-1 and inhibiting
ROS derived from NOX, as well as by inhibiting the formation of
reactive dicarbonyl compounds (such as methylglyoxal) (Sourris
et al., 2020). Hyperglycemic conditions increase intracellular ROS
levels, a major cause of OS, which may interfere with the repair
capacity of damaged or degenerated tendons under hyperglycemic
conditions (Yoon et al., 2024; Osonoi et al., 2020). Inhibiting OS and
improving mitochondrial function is another manner to facilitate
tissue repair (Li et al., 2024c; Quetglas-Llabrés et al., 2024). Dietary
polyphenols is noticed to mitigate OS and mitochondrial
dysfunction in the crosstalk between type 2 diabetes and
tendinopathy (Wang et al., 2024c). Polyphenols, such as
pomegranate peel extract, have also shown beneficial effects on
inflammatory states and OS biomarkers in T2DM (Vasiljević
et al., 2022).

The decline in regenerative function of adipose-derived stem
cells is partly mediated by the OS and inflammatory environment
induced by diabetes. The induction of antioxidant stress factors in
adipose-derived stem cells may represent an adaptive mechanism to
cope with the increased OS in the diabetic microenvironment
(Ahmed et al., 2024). After applying adipose tissue-derived
stromal vascular fraction (SVF) in diabetic rats, the number of
tenocytes, capillaries, and collagen increased, improving Achilles
tendon rupture healing (Panji Sananta et al., 2019). 3D-printed
biological scaffolds have the potential to improve rotator cuff healing
by enhancing osteogenesis, reducing inflammation, and promoting
macrophage polarization (Wang et al., 2024b). Some studies also
suggest that antidiabetic drugs may have beneficial effects on tendon
healing. For example, pioglitazone can prevent the harmful effects of
AGEs on Achilles tendon healing, improving the biomechanical
properties of the Achilles tendon (Jia et al., 2024b). Pioglitazone is a
peroxisome proliferator-activated receptor-gamma (PPAR-γ)
agonist widely used in clinical practice to treat T2DM. It can also
reduce RAGE expression and block its downstream signaling
pathways, thereby alleviating OS and inflammation in tissues (Xu
et al., 2020; Yuan et al., 2011). Diabetes has adverse effects on the
neurotrophic pathways in tendon regeneration. Therefore, new
therapeutic strategies for regenerating tendons after injury in
diabetic patients may include the modulation of neurotrophic
pathway molecules, such as NGF and its receptors (Quaini
et al., 2017).

6 Conclusion

In summary, DM alters the microcirculation and metabolic
responses in tendons, leading to negative changes that affect the
biomechanical properties and histopathology. Specifically, increased

free radical production, OS, inflammatory responses, and the
deposition of AGEs collectively damage tendon structure,
biomechanics, and tendon fibrosis and repair. The decreased
proliferation of tendon stem cells, increased apoptosis, and
incorrect differentiation ultimately result in insufficient tendon
repair, maintenance, and remodeling. Although current research
has explored the impact of diabetes on tendons, tendinopathy, and
tendon injury healing, detailed evidence on the underlying
mechanisms remains to be revealed. Future researches are needed
to delve deeper into the mechanisms DM-associated tendon
pathology to provide references for developing treatment
methods against this disorder.
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