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Malignant tumors are a category of diseases that possess invasive and metastatic
capabilities, with global incidence and mortality rates remaining high. In recent
years, the pivotal role of fibrosis in tumor progression, drug resistance, and
immune evasion has increasingly been acknowledged. Fibrosis enhances the
proliferation,migration, and invasion of tumor cells bymodifying the composition
and structure of the extracellular matrix, thereby offering protection for immune
evasion by tumor cells. The activation of cancer-associated fibroblasts (CAFs)
plays a significant role in this process, as they further exacerbate the malignant
traits of tumors by secreting a variety of cytokines and growth factors. Anti-
fibrotic tumor treatment strategies, including the use of anti-fibrotic drugs and
inhibition of fibrosis-related signaling pathways such as Transforming Growth
Factor-β (TGF-β), have demonstrated potential in delaying tumor progression and
improving the effectiveness of chemotherapy, targeted therapy, and
immunotherapy. In the future, by developing novel drugs that target the
fibrotic microenvironment, new therapeutic options may be available for
patients with various refractory tumors.
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1 Introduction

Malignant tumors are a category of abnormal cellular proliferation diseases
characterized by invasiveness and metastatic potential. In 2022, it was estimated that
there were 20 million new cases and 9.7 million deaths worldwide (Bray et al., 2024).
Although cancer treatment methods, such as surgery, radiotherapy, chemotherapy, targeted
therapy, and immunotherapy, have continuously advanced, the complexity and
heterogeneity of the disease make it challenging to cure, posing a significant global
public health problem (Hirsch et al., 2017). Hanahan stated that the progression of
tumors involves more than just an increase in tumor cell numbers and must be
understood within the framework of the “tumor microenvironment (TME).” (Hanahan
and Weinberg, 2011) TME is a complex system composed of tumor cells, stromal cells,
immune cells, blood vessels, and the extracellular matrix (ECM). A growing body of
research indicates that the TME is vital in the growth, invasion, metastasis, and treatment
resistance of multiple tumors. Additionally, tumor cells can secrete cytokines and growth
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factors, inducing stromal cell reprogramming to regulate the TME,
providing new perspectives for clinical treatment (Ding et al., 2024;
Mao et al., 2024; Nie et al., 2024).

Fibrosis is defined as the excessive accumulation of ECM
components, like collagen, resulting in abnormal alterations in
tissue structure and function. It is a chronic and progressive
process, typically linked to prolonged inflammation and damage
(Rimal et al., 2022). Additionally, fibrosis, as an essential part of the
TME, is mainly manifested by the excessive deposition of ECM and
the abnormal activation of stromal cells, including tumor-associated
fibroblasts (CAFs) and myofibroblasts (Rimal et al., 2022). With
deeper research, the intricate interactions between fibrosis and
tumors are increasingly being clarified. Fibrosis facilitates tumor
cell proliferation, invasion, and immune evasion (Thomas and
Radhakrishnan, 2019; Metcalf et al., 2022). Additionally, tumor
cells further aggravate fibrosis by secreting pro-fibrotic factors
and inducing chronic inflammatory responses (Wu et al., 2020;
Giarratana et al., 2024). Anti-fibrotic treatments, including anti-
TGF-β therapy and targeting CAFs, have demonstrated important
potential in the treatment of malignant tumors (Mohapatra et al.,
2022; Li J. et al., 2023). Thus, comprehending the interaction
mechanisms between fibrosis and different tumors is crucial for
further research, developing novel therapeutic strategies, and
enhancing cancer treatment efficacy.

2 Mechanisms that promote fibrosis in
malignant tumors

2.1 The function of CAFs

2.1.1 Pro-fibrotic factors induce the activation
of CAFs

Pro-fibrotic factors are vital in the activation and transformation
of CAFs. Malignant tumor cells secrete pro-fibrotic factors (like
TGF-β and PDGF), which can directly induce the transformation of
fibroblasts into CAFs. CAFs represent one of the main cell types
within the TME. The high expression of α-smooth muscle actin (α-
SMA) and the biological characteristics of secreting multiple
cytokines by CAFs play a vital role in tumor fibrosis (Geng et al.,
2021). In renal clear cell carcinoma (RCC), cancer cells secrete TGF-
β, which induces the transformation of normal fibroblasts into CAFs
through the TGF-β-Smad2/3 pathway (Wang Y. et al., 2024). circ_
0020256 is highly expressed in cholangiocarcinoma (CCA) and
enhances CCA cells’ secretion of TGF-β1, which subsequently
activates CAFs via Smad2/3 phosphorylation. Mechanistically,
circ_0020256 stabilizes KLF4 mRNA by recruiting
EIF4A3 protein and increasing its expression. KLF4 then binds to
the TGF-β1 promoter, enhancing its transcription in CCA cells (Li
Z. et al., 2023). Hepatocellular carcinoma (HCC) cells secrete
exosomes containing miRNA-21, directly targeting the PTEN
gene and activating the PDK1/AKT signaling pathway, which
promotes the transformation of normal hepatic stellate cells
(HSCs) into CAFs with pro-cancer characteristics (Zhou et al.,
2018). In oral squamous cell carcinoma (OSCC), PDGF secreted
by cancer cells binds to PDGFR-β, activating lncRNA LURAP1L-
AS1, which subsequently regulates the IKK/NF-κB signaling

pathway, facilitating the activation and transformation of
fibroblasts (Ren et al., 2021).

2.1.2 ECM remodeling
CAFs contribute to malignant tumor fibrosis by enhancing the

synthesis of collagen, fibronectin, and other ECM components,
resulting in excessive ECM accumulation in tissues. CAFs
produce and secrete substantial quantities of type I and III
collagen, the primary components of the ECM. The over-
deposition of these collagens results in tissue stiffening and
densification (Xu et al., 2024). Gastric cancer cells induce the
abnormal expression and secretion of collagen by activating the
FAK/AKT pathway in CAFs, driving malignant transformation and
fibrosis (Zhang J. et al., 2024). CAFs secrete small extracellular
vesicles (sEVs) that associate with the ECM; these sEVs are enriched
with active lysyl oxidase (LOX). LOX interacts with collagen I under
the action of sEVs, facilitating collagen cross-linking. Moreover,
integrin α2β1 in sEVs mediates their binding to collagen, further
strengthening the cross-linking process (Liu Y. et al., 2023). In lung
cancer models, increased lipid droplet (LD) content in CAFs
promotes their pro-tumor phenotype, characterized by high
expression of α-SMA and collagen α-2 chain (COL1A2) (Zhang
et al., 2022).

Moreover, CAFs secrete matrix metalloproteinases (MMPs)
and tissue inhibitors of metalloproteinases (TIMPs), which
control the degradation and remodeling of the ECM. In the
process of fibrosis, CAFs aggravate fibrosis by adjusting the
balance between MMPs and TIMPs, inhibiting normal ECM
degradation, and facilitating ECM accumulation and
stabilization (Najafi et al., 2019). For instance, when co-
cultured with gastric cancer cells, CAFs significantly
upregulate IL-17a expression and enhance the expression of
MMP2 and MMP9, while downregulating their inhibitors
TIMP1 and TIMP2 (Zhang J. et al., 2020).

2.2 Inflammation

Tumor cells promote fibrosis by persistently releasing
inflammatory factors like IL-1, TGF-β1, TNF, and IL-6, which
activate the NF-κB and JAK/STAT signaling pathways, inducing
fibroblast differentiation into a pro-inflammatory phenotype or
myofibroblasts. These fibroblasts further drive fibrosis
(Anderson-Crannage et al., 2023). In a lung cancer mouse model,
tumor cells induce an inflammatory response in the kidneys by
secreting nephrotoxic proteins, which increase the expression of IL-
6 and monocyte chemoattractant protein-1 (MCP-1), resulting in
glomerular capillary collapse and tumor antigen deposition.
Concurrently, the TGF-β signaling pathway is activated,
triggering renal fibrosis (Hung et al., 2020). In pancreatic ductal
adenocarcinoma (PDAC), tumor cells induce an inflammatory
response in pancreatic stellate cells (PSCs) by absorbing lipids,
which subsequently promotes PSC activation and triggers fibrosis
(Hata et al., 2017). In pancreatic neuroendocrine tumors, cancer
cells secrete interleukin-1 (IL-1), which induces CAFs to secrete
stromal cell-derived factor 1 (SDF1), aggravating the extent of tumor
fibrosis (Lai et al., 2024).
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2.3 Signaling pathway

2.3.1 TGF-β/Smad signal transduction pathway
The TGF-β/Smad pathway serves as a key regulator in the

fibrosis of malignant tumors. This pathway drives fibrosis
formation and progression by modulating fibroblast proliferation,
differentiation, activation, and the synthesis and deposition of ECM.
TGF-β binds to the type II TGF-β receptor (TGF-βRII) on the cell
surface, which then activates the kinase activity of TGF-βRI and
triggers the phosphorylation of downstream Smad proteins. The
phosphorylated Smad2 and Smad3 associate with the co-
transcription factor Smad4, forming an active complex that
moves into the nucleus to regulate the transcription of fibrosis-
related genes (Lee and Massagué, 2022; Li J. et al., 2024).

Activation of the TGF-β-Smad2/3 pathway induces the
expression of fibrotic factors, which leads to fibroblast activation,
promoting their proliferation and differentiation into
myofibroblasts. Myofibroblasts display increased α-SMA
expression and an enhanced ability to synthesize ECM, thereby
intensifying fibrosis within tumors and promoting tumor growth
and progression (Su et al., 2020). The activation of the upstream
Notch signaling pathway triggers the TGF-β/Smad pathway, which
promotes the migration of mesenchymal stem cells to the stroma
and their differentiation into fibroblasts (Peng et al., 2014). In breast
cancer, a lack of glutamine can trigger the activation of TGF-β
signaling, leading to the activation of associated fibroblasts and
subsequent fibrosis. The activity of histone deacetylase 1 and the
inhibition of mTORC1 are required for TGF-β signaling activation
and the conversion of CAFs into a myofibroblast state (Mezawa
et al., 2023). During cachexia, inflammation within tumors drives
fibrosis. This process might be driven by TGF-β-induced
differentiation of fibroblasts into myofibroblasts, resulting in
imbalanced inflammatory cytokine expression, enhanced
angiogenesis, and increased ECM components (Lima et al., 2019).

The TGF-β/Smad signaling pathway is essential in fibrosis,
tumor progression, and metastasis by enhancing ECM synthesis
and deposition. The epigenetic regulators UBR7 and histone
methyltransferase EZH2 regulate TGF-β/Smad signaling. With
the activation of the TGF-β/Smad pathway, collagen content and
lysyl oxidase activity rise, directly impacting ECM stiffness
(Adhikari et al., 2024). In unilateral breast cancer-associated
lymphedema, TGF-β1 intensifies the fibrosis process by
increasing the stiffness of fibroblasts, lymphatic endothelial cells,
and lymphatic smooth muscle cells, and by enhancing ECM
deposition (Baik et al., 2022).

2.3.2 JAK/STAT signal transduction pathway
The JAK/STAT signaling pathway drives fibrosis formation and

reshapes the tumor microenvironment by mediating cell
proliferation, differentiation, immune regulation, and
inflammatory responses. Cytokines (like IL-6, IFN, and IL-13)
bind to receptors, leading to JAK activation, followed by STAT
protein phosphorylation. Phosphorylated STAT proteins dimerize
and move into the nucleus, where they bind to DNA sequences to
regulate the transcription of fibrosis-related genes (Liu X. et al.,
2023). Bioinformatics analysis has shown that hub genes are
significantly enriched in the JAK/STAT pathway in expression
profiles associated with liver fibrosis and liver cancer (Hamdy

et al., 2023). With the marked activation of pSTAT5 and
pSTAT3, levels of pro-inflammatory and pro-tumor mediators
rise, resulting in higher liver tumor burden and significantly
increased fibrosis in mice (Cabrera-Galván et al., 2023). In RCC,
RCC-derived CXCL5 promotes fibrosis by activating the JAK/
STAT3 pathway, facilitating the transformation of normal
fibroblasts into CAFs (Liu Y. et al., 2023). Research indicates that
reprogrammed mouse liver cells, driven by IL6/Jak/Stat3 signaling
pathways, convert into LGR5-positive cells. When transplanted into
syngeneic mice, these LGR5-positive cells develop into invasive and
metastatic tumors with marked fibrosis, underscoring the
significance of the JAK/STAT pathway in malignant tumor
fibrosis (Chaker et al., 2024). Research by Grohmann et al. shows
that inhibiting STAT-1 signaling prevents T cell recruitment and
fibrosis but does not prevent hepatocellular carcinoma; whereas
correcting STAT-3 signaling can prevent liver cancer without
affecting fibrosis. This research provides a more detailed
explanation of the role of the JAK/STAT signaling pathway in
malignant tumor fibrosis (Grohmann et al., 2018).

2.3.3 Wnt/β-catenin signal transduction pathway
Wnt proteins bind to cell surface receptors, activating β-

catenin, leading to its accumulation and translocation to the
nucleus, where it regulates the expression of fibrosis-related
genes. These genes generally pertain to ECM synthesis and
fibroblast activation (Feng et al., 2018). In lung
adenocarcinoma, smoking induces the downregulation of
filamin A interacting protein 1-like (FILIP1L), which activates
the Wnt/β-catenin signaling pathway, resulting in mucin
secretion, inflammation, and fibrosis (Kwon et al., 2022). In
oral submucous fibrosis and OSCC tissues, hypermethylation
of dickkopf-1 may lead to its downregulation, causing abnormal
activation of the Wnt/β-catenin signaling pathway, potentially
playing a crucial role in the pathogenesis of oral submucous
fibrosis (He et al., 2020). Additionally, proteins associated with
the Wnt/β-catenin pathway are highly expressed in pancreatic
exocrine tissues, with significant alterations in their cellular and
subcellular expression patterns, correlating with increased
fibrosis (Bläuer et al., 2019). Stearoyl-CoA desaturase (SCD)
in liver tumor-initiating stem-like cells (TIC) is regulated by
Wnt/β-catenin signaling. The monounsaturated fatty acids
produced by SCD stabilize LRP5/6 mRNA, forming a positive
feedback loop that amplifies Wnt signaling, which in turn
promotes liver fibrosis and tumor growth (Lai et al., 2017).

2.3.4 Notch signal transduction pathway
The Notch signaling pathway is activated by the interaction

between Notch receptors and ligands. After receptor activation,
proteolytic cleavage releases the Notch intracellular domain
(NICD), which then translocates to the nucleus to regulate
the transcription of specific genes. Suppressing Notch
signaling can inhibit the activation of the classical TGF-β1
pathway and reduce the peritumoral desmoplastic reaction in
cholangiocarcinoma (Mancarella et al., 2022). In liver cancer
cells chronically exposed to low concentrations of cadmium, the
activation of Notch and AKT/mTOR signaling pathways can
induce the expression of the pro-inflammatory cytokine tumor
necrosis factor-α (TNF-α) and its downstream target TNF-α-
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induced protein 8 (TNFAIP8), thus regulating fibrosis and
oncogenic signaling in liver cancer cells (Niture et al., 2023).
Refer to Figure 1 for the mechanisms by which malignant tumors
promote fibrosis.

2.3.5 The cross-talk effects of signaling pathways
It is worth noting that during the fibrosis process in

malignant tumors, multiple signaling pathways do not
function independently but often co-regulate fibrosis and
tumor progression through complex interaction mechanisms.
The interactions between different signaling pathways form a
highly integrated network, which has a profound impact on the
tumor microenvironment, cell proliferation, invasion, and
treatment resistance. For instance, TGF-β1-induced activation
of activating transcription factor 4 (ATF4) is dependent on the
activation of the classical TGF-β1/Smad3 signaling and
mTORC1-4E-BP1. ATF4 then promotes the de novo synthesis
of enzymes from the serine-glycine biosynthesis pathway and
transcription of the GLUT1 gene. This process meets the
biosynthetic demands required for enhanced ECM synthesis
(Selvarajah et al., 2019).

3 The effect of fibrosis on tumor
progression

3.1 Enhances tumor proliferation
and survival

Fibrosis results in the abnormal accumulation of extracellular
matrix (ECM), especially the increase in collagen, fibronectin, and
hyaluronic acid. These ECM components not only offer structural
support for tumor cells but also interact with cell surface receptors,
activating signaling pathways that promote proliferation and
survival. In liver cancer, Sema3C supports tumor fibrosis by
promoting the proliferation of hepatic stellate cells (HSCs).
Moreover, Sema3C interacts with NRP1 and ITGB1 receptors,
activating the AKT/Gli1/c-Myc signaling pathway, promoting the
self-renewal and proliferation of HCC cells (Peng et al., 2024). The
increased tissue stiffness due to fibrosis further promotes tumor cell
proliferation and survival via mechanotransduction pathways, such
as the YAP pathway (Schrader et al., 2011; Deng et al., 2022).

Fibroblasts and CAFs within the fibrotic microenvironment
secrete numerous growth factors, such as TGF-β and EGF. These

FIGURE 1
(By Figdraw, ID: RASTR41933) Mechanism of fibrosis promotion by malignant tumors: Tumor cells secrete pro-fibrotic factor TGF-β and activate
CAFs through the TGF-β/Smad signaling pathway. Furthermore, tumor cells and CAFs secrete inflammatory factors (such as IL-1 and IL-6), which can
further induce the production of additional pro-fibrotic factors, thus further activating CAFs. The activated CAFs promote the synthesis of collagen,
fibronectin, and other ECM components, and affect ECM degradation and remodeling by regulating the secretion of MMPs and TIMPs. Additionally,
the activation of the TGF-β/Smad signaling pathway is linked to the occurrence of EMT in malignant tumors, and the interaction between EMT and ECM
remodeling further accelerates the fibrosis process.
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factors facilitate tumor cell proliferation and survival by activating
downstream signaling pathways. In prostate cancer, TGF-β1 is
recognized as a highly secreted growth factor in CAFs,
significantly enhancing tumor cell growth and proliferation in
both in vivo and in vitro settings (Dy et al., 2019). In PDAC,
CAF-derived thrombospondin 1 (TSP1) activates TGF-β
signaling, leading to the loss of Smad4 expression in cancer cells
and accelerating their proliferation andmigration (Matsumura et al.,
2022). In cholangiocarcinoma, CAF-secreted TSP-4 binds to
integrin α2 on cancer cells, activating HSF1 and Akt signaling
pathways. Activated HSF1 further enhances TGF-β1 expression
and secretion, inducing the transformation of fibroblasts into
CAFs and creating a positive feedback loop that promotes cell
proliferation and advances cholangiocarcinoma progression (Shi
et al., 2021).

3.2 Enhances angiogenesis

3.2.1 Secretion of angiogenesis-promoting factors
In malignant tumors, fibrosis promotes angiogenesis through

various mechanisms, supplying the necessary nutrients and oxygen
for tumor growth and expansion. During the fibrosis process in
malignant tumors, fibroblasts and CAFs are activated, leading to the
secretion of significant amounts of pro-angiogenic factors, including
vascular endothelial growth factor (VEGF), platelet-derived growth
factor (PDGF), and basic fibroblast growth factor (bFGF). These
factors interact with receptors on vascular endothelial cells,
activating signaling pathways that promote the formation of new
blood vessels (Sobierajska et al., 2020).

In several malignant tumors, such as head and neck squamous
cell carcinoma, RCC, and cholangiocarcinoma, CAFs can directly
secrete VEGF to promote angiogenesis (Sun et al., 2022; Zhou et al.,
2022; Liu J. et al., 2023). In colorectal cancer patients, exosomes
released by CAFs enhance endothelial cell proliferation, migration,
and angiogenesis by increasing the expression and secretion of
VEGF. Specifically, circ_0084043 is highly expressed in CAF-
derived exosomes and regulates HIF-1α and VEGFA by sponging
miR-140-3p, suggesting that the circ_0084043/miR-140-3p/VEGF
signaling pathway plays a critical role in CAF exosome-induced
angiogenesis (Payervand et al., 2024). miR-210 secreted by lung
cancer cells enhances angiogenesis by increasing VEGF via the
activation of the JAK2/STAT3 signaling pathway in CAFs (Fan
et al., 2020). Similarly, research by Dai et al. (2022) showed that
CAF-derived extracellular vesicles promote angiogenesis in
colorectal adenocarcinoma cells via the miR-135b-5p/
FOXO1 axis, indicating the crucial role of non-coding RNAs in
enhancing the secretion of angiogenic factors by CAFs.

Moreover, several signaling pathways are also crucial in
regulating VEGF secretion. When CAFs are co-cultured with
glioma C6 cells, the expression levels of VEGF-A and EGF
proteins are significantly elevated, thereby enhancing glioma cell
invasiveness, proliferation, and angiogenesis (Zhang S. et al., 2023).
In triple-negative breast cancer (TNBC), particularly in patients
with BRCA1 mutations, iCAFs have been found to be enriched and
promote angiogenesis by interacting with tumor endothelial cells
(TECs) via VEGF signaling. iCAFs activate angiogenesis-related
genes (such as FLT1 and KDR) in TECs through the VEGF

signaling pathway, promoting endothelial cell migration and
sprouting angiogenesis (Lee et al., 2024). In breast cancer, the
upregulation of VEGF-A and IL-8, along with their upstream
effectors mTOR and HIF-1α, can enhance the pro-angiogenic
potential of CAFs (Al-Kharashi et al., 2022). In melanoma,
CD38-positive CAFs promote tumor cell migration and invasion,
as well as endothelial cell tube formation, by secreting factors like
VEGF-A, FGF-2, and CXCL-12 through paracrine signaling in vitro
(Ben Baruch et al., 2020).

PDGF and other angiogenesis-promoting factors likewise play a
crucial role in driving angiogenesis facilitated by CAFs. Chu et al.
(2022) discovered that VEGF, angiopoietin, bFGF, and other factors
secreted by CAFs are crucial in the angiogenesis of precancerous and
malignant lesions in laryngeal cancer. In OSCC, reprogramming of
glucose metabolism results in increased secretion of angiogenesis-
promoting factors (VEGF-A, PDGF-C, andMMP9) by CAFs, which
enhances the angiogenic phenotype (Li X. et al., 2022). In
cholangiocarcinoma, CAFs secrete stem cell factor (SCF), which
recruits mast cells and stimulates them to release hyaluronic acid
(HA) via the MRGPRX2-Gαq signaling pathway. These bile-
induced MCs subsequently release PDGF-B, which further
enhances angiogenesis in cholangiocarcinoma (Shi et al., 2024).

3.2.2 ECM remodeling
Fibrosis caused by malignant tumors results in excessive

extracellular matrix (ECM) deposition, offering a physical
scaffold for new blood vessel formation and supporting vascular
expansion within the dense matrix. In cholangiocarcinoma, the
overexpression of PI3Kδ is closely related to stromal remodeling,
manifesting as a thick ECM at the basement membrane and
significant angiogenesis and lymphangiogenesis. The mechanism
involves PI3Kδ promoting ECM remodeling via the TGFβ/Src/
Notch signaling pathway, which in turn enhances angiogenesis
(Bou Malham et al., 2023). In bladder cancer, the Sigma
1 receptor (Sig1R) can regulate crosstalk between the ECM and
tumor cells, facilitating ECM-mediated cell proliferation and
angiogenesis (Feng et al., 2023).

3.2.3 Hypoxia and the activation of HIF-1α
Fibrosis increases the density of tumor tissue, limiting oxygen

diffusion and creating a hypoxic microenvironment. Hypoxia-
inducible factors (HIFs) become stabilized and activated in
hypoxic conditions, enhancing the expression of pro-angiogenic
genes like VEGF, which drives the formation of new blood vessels
(Yehia et al., 2015; De Marco et al., 2022). Pancreatic cancer features
excessive desmoplastic reaction and a hypoxic microenvironment
within the solid tumor mass. Hypoxia induces the production of
HIF-1, which not only enhances the migration of pancreatic stellate
cells (PSCs) and the expression of type I collagen but also increases
VEGF secretion, promoting angiogenesis (Masamune et al., 2008; N
et al., 2016).

3.3 Enhances immune evasion

The dense ECM structure created by fibrosis obstructs immune
cell infiltration, diminishing their tumor-killing capacity and aiding
tumor cells in evading immune surveillance. In the fibrotic tumor
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microenvironment, tumor-associated macrophages (TAMs) initiate
collagen synthesis via the TGF-β signaling pathway, causing tumor
tissue stiffening and establishing a metabolic environment that
impairs CD8+ T cell function. Macrophages engaged in collagen
synthesis deplete arginine in the environment and produce proline
and secrete ornithine, which further suppresses the antitumor
response of CD8+ T cells. Therefore, fibrosis not only physically
repels CD8+ T cells but also weakens the immune response against
cancer by altering the metabolic environment (Tharp et al., 2024). In
non-small cell lung cancer (NSCLC), significant fibrosis corresponds
with reduced T cell infiltration, resulting in impaired immune
surveillance. Fibrosis not only accelerates tumor progression but
also reduces the number and function of dendritic cells and alters
macrophage phenotypes, further intensifying immune suppression
(Herzog et al., 2023). Liver fibrosis enhances tumor immune evasion
in hepatocellular carcinoma, resulting in decreased CD8+ T cell
infiltration and increased expression of the immune checkpoint
molecule programmed death-ligand 1 (PD-L1). Specifically, Golgi
membrane protein 1 (GOLM1) in fibrosis induces PD-L1 expression
via the activation of the EGFR pathway, thereby suppressing
antitumor immune responses (Ke et al., 2021). In the lung
adenocarcinoma microenvironment, CAFs increase the
expression of PD-L1 in tumor cells by secreting cytokines like
CXCL2. High PD-L1 expression allows tumor cells to suppress
CD8+ T cell activity in the immune system, facilitating immune
evasion (Inoue et al., 2019). Regulatory T cells (Tregs) and CAFs
interact to collaboratively enhance fibrosis and immune
suppression. Specifically, IL-33 enhances Treg cell activity
through the IL1RL1 signaling pathway, and these Tregs interact
with CAFs via the AREG/EGFR axis, inducing CAFs into a pro-
fibrotic and immunosuppressive state (Sun et al., 2023). However, it
is important to note that fibrosis in malignant tumors can facilitate
tumor immune evasion while also constraining tumor size
expansion (Li et al., 2021).

4 Fibrosis enhances treatment
resistance

4.1 Chemotherapy resistance

Chemotherapy is a treatment approach that employs chemical
agents to kill cancer cells or inhibit their growth and division,
commonly used in the treatment of various malignant tumors.
However, chemoresistance is a significant challenge in the
treatment of malignant tumors, and it is often accompanied by
fibrosis in affected patients. In a pancreatic ductal adenocarcinoma
model, ectopic tumors showed more pronounced fibrosis, which led
to increased resistance to FOLFIRINOX chemotherapy. Despite
similar drug absorption in tumor tissues, fibrosis and
microenvironmental differences significantly impacted the
treatment response (Erstad et al., 2018). In breast cancer,
fibrosis-related signaling pathways are significantly upregulated in
patients who do not achieve a complete response to neoadjuvant
chemotherapy; patients with high fibrosis have lower complete
response rates and shorter survival durations (Wang X. et al., 2024).

Fibrosis is frequently accompanied by epithelial-mesenchymal
transition (EMT), which converts tumor cells from an epithelial

phenotype to a mesenchymal phenotype. EMT provides tumor cells
with enhanced migratory ability and resistance to apoptosis, thereby
increasing their resistance to chemotherapy. In 5-Fu-resistant (5-
FU) breast cancer cell lines, tumor cells induce normal dermal
fibroblasts to convert into a CAF phenotype via TGF-β1 paracrine
signaling, promoting fibrosis, reducing E-cadherin expression, and
facilitating EMT (Chandra Jena et al., 2021). CAFs can transfer
exosomes to colorectal cancer cells, promoting stemness and EMT in
CRC cells, which in turn enhances resistance to 5-FU/oxaliplatin
(L-OHP) chemotherapy. Mechanistically, exosomes induce miR-
92a-3p production, activating the Wnt/β-catenin pathway,
inhibiting FBXW7 and MOAP1 expression, and suppressing
mitochondrial apoptosis, thereby enhancing stemness and
chemoresistance (Hu et al., 2019). In ovarian cancer, CAFs may
activate the Wnt/β-catenin pathway via the CXCL12/CXCR4 axis,
promoting cisplatin resistance by inducing EMT (Zhang F. et al.,
2020). IL-6 derived from CAFs plays a crucial role in maintaining
the paracrine loop between CAFs and NSCLC cells by enhancing
EMT in NSCLC cells. This paracrine loop enhances intercellular
communication, which subsequently leads to the development of
chemoresistance (Shintani et al., 2016).

In addition to EMT, fibrosis can promote chemoresistance by
activating tumor stem cell properties and anti-apoptotic signaling
pathways. In PDAC, proliferating resident macrophages
(proliferating rMφs) significantly increase tumor resistance to
chemotherapy by promoting fibrosis and immune suppression.
Multi-omics analysis found that these macrophages promote
cancer cell survival during chemotherapy by producing more
deoxycytidine (dC) and less dC kinase (dCK), reducing the
absorption of gemcitabine (Zhang J. et al., 2023). Additionally,
CAFs promote tumor fibrosis via the IL1β-IRAK4 signaling
pathway, which enhances tumor cell survival and proliferation,
resulting in gemcitabine resistance (Zhang et al., 2018). In lung
adenocarcinoma, cancer stem cells (CSCs) secrete the acute-phase
protein serum amyloid A (SAA), remodeling the tumor
microenvironment, promoting fibrosis, and enhancing cisplatin
(DDP) chemoresistance (Wang et al., 2023). In ovarian cancer,
high expression of CHI3L1 (a secretory glycoprotein) is closely
linked to fibrosis. CHI3L1 activates the Akt and Erk signaling
pathways, enhancing the expression of β-catenin and SOX2,
promoting stem-like characteristics in ovarian cancer cells, such
as resistance to apoptosis, thereby increasing paclitaxel
chemoresistance (Lin et al., 2019). In CAF-derived exosomes, the
significantly upregulated circBIRC6 promotes the SUMOylation of
XRCC4, enhancing its interaction with SUMO1 at lysine 115,
facilitating XRCC4 chromatin localization, and increasing
pancreatic cancer cell resistance to oxaliplatin (Zheng et al.,
2023). In conclusion, fibrosis can enhance chemotherapy
resistance through multiple mechanisms, including EMT, CSC,
and anti-apoptotic pathways.

4.2 Resistance to immunotherapy

Presently, immunotherapy is an emerging cancer treatment
method that fights cancer by enhancing or regulating the
immune system. Immune checkpoint inhibitors are widely used
immunotherapy strategies, among which PD-1/PD-L1 inhibitors
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(like pembrolizumab and nivolumab) and CTLA-4 inhibitors (such
as ipilimumab) have shown significant therapeutic potential in
tumor immunotherapy (Li W. et al., 2022). In tumors that
respond to immunotherapy, the TME shows enrichment of
immune cells and CAFs, along with pro-inflammatory signaling
and ECM remodeling, which aligns with proliferative fibrosis and
immune-mediated tumor regression. However, tumor heterogeneity
may result in immune-deficient regions, promoting immune evasion
and early recurrence via HCC-CAF interactions and the expression
of cancer stem cell markers. This indicates that fibrosis may
contribute to immunotherapy resistance in certain cases,
heightening treatment challenges (Zhang M. et al., 2023). In
breast cancer, fibrosis facilitates immunotherapy resistance by
increasing TAMs, EMT, fibroblast proliferation, ECM
enhancement, and Wnt pathway activation. These alterations
together create an immune-tolerant microenvironment,
diminishing the effectiveness of PD-1 inhibitors (Yuan et al.,
2022). Further research by Song et al. (2024) revealed a link
between anti-PD-L1 therapy and fibrosis: During liver fibrosis,
pathogenic Th17 cells (pTh17) significantly increase, and anti-
PD-L1 therapy promotes pTh17 cell infiltration and activation in
the liver. These pTh17 cells secrete IL-17A, which increases PD-L1
expression on the surface of hepatocellular carcinoma cells, further
worsening liver cirrhosis and leading to resistance to anti-PD-
L1 therapy (Song et al., 2024).

4.3 CAFs enhance resistance to
targeted therapy

Targeted therapy is a form of cancer treatment that specifically
targets certain molecules or signaling pathways in cancer cells.
Unlike traditional chemotherapy, targeted therapy precisely
identifies and inhibits abnormal proteins or genetic mutations in
cancer cells, preventing tumor growth and spread while minimizing
harm to normal cells.

4.3.1 Resistance to tyrosine kinase inhibitors
In the fibrotic microenvironment, CAFs play a key role in

promoting resistance to tyrosine kinase inhibitors (TKIs). For
example, in RCC, CAFs facilitate resistance to VEGFR-TKIs
(Ambrosetti et al., 2022). In HCC, bioinformatics analysis
identified SPP1 secreted by CAFs as a candidate molecule for
resistance to sorafenib and lenvatinib. CAF-secreted
SPP1 activates the RAF/MAPK and PI3K/AKT/mTOR pathways
via the integrin-PKCα signaling pathway and promotes EMT,
resulting in TKI resistance (Eun et al., 2023). CAFs enhance the
secretion of HGF and IGF-1, activating the c-met and IGF-1R
receptors, leading to increased ANXA2 expression and
phosphorylation, inducing EMT and resulting in resistance to
EGFR-TKIs (e.g., gefitinib) in NSCLC (Yi et al., 2018). Similarly,
in NSCLC, CAFs derived from osimertinib-resistant cells secrete
higher levels of IL-6, IL-8, and hepatocyte growth factor (HGF),
express stronger CAF markers such as α-SMA, FAP, and PDGFR,
and increase stemness and osimertinib resistance in NSCLC cells
(Huang W. et al., 2021). In EGFR-TKI-resistant tumors, part of the
CAF-derived tumor stroma is composed of EMT-derived tumor
cells that express resistance markers, such as epithelial membrane

protein-1. CAFs secrete paracrine factors that reduce the inhibitory
effects of TKIs on pEGFR and pMAPK, thereby promoting tumor
cell survival and drug resistance (Sr et al., 2010). In gastric cancer,
cancer cells secrete lactate, inducing CAFs to produce BDNF,
activating the TrkB-Nrf2 signaling pathway, inhibiting anlotinib-
induced apoptosis and reactive oxygen species (ROS) generation,
thus reducing drug efficacy (Jin et al., 2021). In RCC, CAFs increase
sunitinib resistance by secreting CXCL3, which activates the
CXCR2-ERK1/2 signaling pathway in tumor cells, promoting
EMT and stemness (Wang Y. et al., 2024).

4.3.2 Resistance to monoclonal antibodies
Monoclonal antibodies (mAbs) are a crucial class of drugs in

targeted therapy, specifically targeting certain antigens or receptors
on cancer cell surfaces. They kill specific cancer cells by directly
blocking signal transduction, activating ADCC, or inducing
complement-dependent cytotoxicity (CDC). Common
monoclonal antibodies include trastuzumab, bevacizumab,
and cetuximab.

Trastuzumab can target the HER2 receptor and is used for
treating HER2-positive breast cancer and gastric cancer. CAFs are
enriched in trastuzumab-resistant HER2-positive breast cancer
cases. These CAFs secrete immunosuppressive factors IDO1 and
TDO2, inhibiting NK cell-mediated antibody-dependent cellular
cytotoxicity (ADCC), thereby causing resistance to trastuzumab
(Du et al., 2023). CAF-derived Neuregulin 1 (NRG1) also
mediates trastuzumab resistance in breast cancer by activating
the HER3/AKT signaling pathway. However, pertuzumab may
reverse resistance by targeting this pathway (Guardia et al.,
2021). Mao et al. (2015)’s research shows that CAFs can induce
trastuzumab resistance by expanding cancer stem cells and
activating multiple pathways including NF-κB, JAK/STAT3, and
PI3K/AKT.

Bevacizumab targets VEGF to inhibit angiogenesis and is used in
the treatment of colorectal cancer, non-small cell lung cancer, renal
cell carcinoma, and more. In OSCC, CAFs play a key role in
angiogenesis by secreting sEVs. CAF-derived sEVs bind to VEGF
and activate the VEGFR2 signaling pathway in human umbilical
vein endothelial cells (HUVECs). Even after Bevacizumab
treatment, VEGF bound to sEVs can continue to activate
VEGFR2. This indicates that sEVs secreted by CAFs can bind
VEGF via heparan sulfate proteoglycans on their surface, making
them resistant to Bevacizumab (Li et al., 2020).

Cetuximab targets EGFR and is used for targeted therapy in
colorectal cancer and head and neck squamous cell carcinoma
(HNSCC). In CRC, CAFs significantly increase CRC cell
resistance to Cetuximab by regulating the expression of the
EMT key factor SNAI1 and remodeling the ECM (Galindo-
Pumariño et al., 2022). In HNSCC, TGF-β-activated CAFs
limit Cetuximab efficacy by upregulating the TGF-β signaling
pathway, thereby enhancing drug resistance in the tumor
microenvironment (Yegodayev et al., 2020). Further studies
indicate that CAF-derived MMP-1 expression increases in
both tumor cells and CAFs, promoting resistance to
Cetuximab (Johansson et al., 2012). Refer to Figure 2 for
fibrosis-promoted malignant tumor progression and treatment
resistance. Refer to Table 1 for details on how fibrosis promotes
treatment resistance.
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5 Tumor therapeutic strategies
targeting fibrosis

5.1 Nintedanib

5.1.1 Clinical trials
Nintedanib is a small-molecule TKI with antifibrotic and anti-

inflammatory properties, mainly used in the treatment of idiopathic
pulmonary fibrosis. The clinical use of antifibrotic drugs such as
Nintedanib can significantly improve the survival time of patients
with certain malignant tumors. In refractory metastatic CRC,
Nintedanib combined with capecitabine is well tolerated and
clinically more effective than regorafenib or trifluridine/tipiracil
monotherapy. In a study of 36 patients, the median progression-
free survival (PFS) was 3.4 months, and the median overall survival
(OS) was 8.9 months after 18 weeks (Boland et al., 2024). Nintedanib
combined with chemotherapy significantly improved PFS in NSCLC
patients, though it had no significant impact on OS. A meta-analysis

of three randomized controlled trials involving 2,270 patients
showed that PFS in the Nintedanib group was significantly better
than in the placebo group (HR = 0.79; 95% CI 0.71–0.88, p < 0.0001)
(Alhadeethi et al., 2024). Additionally, a multicenter retrospective
study indicated that Nintedanib combined with docetaxel had some
efficacy in advanced NSCLC patients following the failure of
immune checkpoint inhibitors (ICI) and/or chemotherapy. In
96 patients, the objective response rate (ORR) was 18.8%, the
disease control rate (DCR) was 57.3%, the median PFS was
3.0 months, and the median OS was 8.0 months. Particularly in
patients treated with Nintedanib and docetaxel after first-line ChT-
ICI therapy, the ORR was 29.2%, the DCR was 66.7%, and the
median PFS was 4.0 months (Ljubicic et al., 2023). These studies
indicate that Nintedanib can effectively improve survival time in
patients with certain malignant tumors.

However, there are ongoing debates regarding the response rate
and safety of Nintedanib. In a double-blind, randomized, phase
2 trial adding Nintedanib to neoadjuvant chemotherapy for muscle-

FIGURE 2
(By Figdraw, ID: RYWAR2b2b6) Fibrosis facilitatesmalignant tumor progression: (A) enhances tumor proliferation, (B) promotes immune evasion, (C)
drives angiogenesis, (D) increases treatment resistance (A) Malignant tumors enhance tumor cell proliferation by secreting TGF-β, which activates
pathways such as PI3K-AKT and MAPK/ERK. Furthermore, the increased tissue stiffness from fibrosis promotes tumor cell proliferation via
mechanotransduction pathways (like the YAP pathway). (B) The interaction between Treg cells and CAFs not only promotes fibrosis but also
intensifies immunosuppression. Moreover, the dense ECM structure resulting from fibrosis obstructs immune cell infiltration and aids tumor cells in
evading immune surveillance by upregulating PD-L1 expression. (C) CAFs enhance the secretion of pro-angiogenic factors like VEGF and PDGF via the
regulation of non-coding RNAs and signaling pathways such as JAK, thereby promoting tumor angiogenesis. The excessive deposition of ECM provides a
physical scaffold for new blood vessel formation, supporting vascular expansion within the dense matrix. Additionally, excessive ECM accumulation
restricts oxygen, activating HIF-1 and further promoting angiogenesis. (D) Fibrosis facilitates treatment resistance in malignant tumors through multiple
mechanisms, including CSC activation, EMT induction, apoptosis inhibition, enhanced DNA damage repair, and reduced drug uptake, thereby weakening
the efficacy of chemotherapy, targeted therapy, and immunotherapy.
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invasive bladder cancer, the pathological complete response rate
(pCR) was similar between the Nintedanib and placebo groups (37%
vs. 32%). However, the Nintedanib group showed a higher incidence
of grade 3 or higher toxic events (93% vs. 79%), with the most
common serious adverse events being thromboembolic events (30%
vs. 21%) and neutropenia (39% vs. 11%) (Hussain et al., 2022). In
ovarian cancer, the Nintedanib treatment group showed worse PFS
and OS compared to the placebo group, along with higher toxicity
(92% vs. 69% for grade 3/4 adverse events), primarily consisting of
hematologic and gastrointestinal side effects (Ferron et al., 2023).
Refer to Table 2 for the clinical trial results of Nintedanib.

5.1.2 Sensitization to chemotherapy and
immunotherapy

Combining Nintedanib with immunotherapy or
chemotherapy drugs can significantly improve treatment
outcomes and promote tumor cell death. Nintedanib

significantly inhibits tumor growth in mouse models. When
combined with anti-PD-1 antibodies, Nintedanib enhances
antitumor efficacy primarily by reducing the number of TAMs
and polarizing them into the antitumor M1 phenotype. The
combination therapy also restores macrophage phagocytic
function, enhancing treatment effectiveness (Tada et al., 2023).
In malignant tumors, combining Nintedanib with PD-L1
enhances immune cell infiltration and activation within the
tumor, boosts interferon-γ response, and activates MHC class
I-mediated antigen presentation. It also promotes PD-L1
expression and STAT3 phosphorylation, thereby improving
the effectiveness of immunotherapy (Tu et al., 2022). In
PDACs, Nintedanib inhibits CAF secretion of IL-6 by blocking
the PDGFRβ signaling pathway. Moreover, MSLN-targeted
chimeric antigen receptor-NK cells combined with Nintedanib
significantly enhanced tumor-killing ability in xenograft models,
triggering robust NK cell infiltration (Lee et al., 2023).

TABLE 1 Summarize the mechanisms and associated signaling pathways through which fibrosis promotes resistance to chemotherapy, immunotherapy,
and targeted therapy.

Type of drug Drug Disease Mechanism of resistance Signaling pathway Reference

Chemotherapy 5-Fu/L-OHP CRC EMT, CSC miR-92a-3p/Wnt/β-catenin Hu et al. (2019)

5-Fu Breast cancer EMT -- Chandra Jena et al. (2021)

Gemcitabine PDAC Drug uptake Increased -- Zhang J. et al. (2023)

Gemcitabine PDAC Resistance to apoptosis IL1β-IRAK4 Zhang et al. (2018)

DDP Ovarian cancer EMT CXCL12/CXCR4-Wnt/β-
catenin

Zhang F. et al. (2020)

DDP Lung adenocarcinoma CSC -- Wang et al. (2023)

Paclitaxel Ovarian cancer CSC CHI3L1/Akt/Erk-β- catenin Lin et al. (2019)

L-OHP PDAC DNA damage repair circBIRC6-XRCC4 Zheng et al. (2023)

ICI PD-1 mAb Breast cancer EMT, TAM increase Wnt signaling pathway Yuan et al. (2022)

TKI Sorafenib/
lenvatinib

HCC EMT\ RAF/MAPK、PI3K/AKT/
mTOR

Eun et al. (2023)

Gefitinib NSCLC EMT HGF/IGF-1/c-met、
IGF-1R-ANXA2

Yi et al. (2018)

Axitinib NSCLC CSC -- Huang W. et al. (2021)

Sunitinib RCC CSC, EMT CXCR2-ERK1/2 Wang Y. et al. (2024)

Anlotinib Gastric cancer Resistance to apoptosis and ROS BDNF-TrkB-Nrf2 Jin et al. (2021)

mAbs Trastuzumab Gastric cancer, Breast
cancer

Resistance to ADCC -- Du et al. (2023)

Trastuzumab Breast cancer Resistance to apoptosis NRG1/HER3/AKT Guardia et al. (2021)

Trastuzumab Breast cancer CSC NF-κB, PI3K/AKT and JAK/
STAT3

Mao et al. (2015)

Bevacizumab OSCC Continuous activation of VEGF -- Li et al. (2020)

Cetuximab HNSCC, CRC EMT, ECM Remodeling -- Galindo-Pumariño et al.
(2022)

Cetuximab HNSCC Upregulation of the TGF-β signaling
pathway

TGF-β signaling pathway Johansson et al. (2012)

5-Fu, 5-Fluorouracil; L-OHP, Oxaliplatin; CRC, Colorectal cancer; EMT, Epithelial–mesenchymal transition; CSC, Cancer stem cell; PDAC, Pancreatic Ductal Adenocarcinoma; DDP,

Cisplatin; TAM, Tumor-associated macrophages; HCC, Hepatocellular carcinoma; NSCLC, Non-small cell lung cancer; RCC, Renal cell carcinoma; ADCC, Antibody dependent cell-mediated

cytotoxicity; OSCC, Oral squamous cell carcinoma; HNSCC, Head and neck squamous cell carcinoma.
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In a xenograft model derived from gastric adenocarcinoma cells,
Nintedanib inhibited tumor cell proliferation, reduced tumor
angiogenesis, and increased tumor cell death. Notably, when
combined with docetaxel and irinotecan, it significantly extended
the animals’ survival (Awasthi et al., 2023).

5.2 Pirfenidone (PFD)

5.2.1 PFD suppresses tumor invasion capability
Clinically, PFD is an approved drug used to treat idiopathic

pulmonary fibrosis. It alleviates fibrotic responses by inhibiting
TGF-β and other profibrotic factors and can significantly reduce
tumor invasiveness by inhibiting EMT, regulating immune
responses in the tumor microenvironment, and remodeling the
ECM. For instance, PFD can inhibit the growth of breast tumors
in mice and alcohol-promoted metastasis (Li H. et al., 2024). In
TNBC, PFD reduces the expression of EMT-related transcription
factors and mesenchymal genes by inhibiting the TGF-β/Smad
signaling pathway, thereby inhibiting the proliferation, migration,
and invasion of breast cancer cells while promoting apoptosis (Luo
et al., 2023). PFD promotes the downregulation of ZEB1 via miR-
200 in NSCLC exosomes, slowing down migration, invasion, and
EMT processes (Liu et al., 2022). In RCC, PFD significantly inhibits
the progression of renal cancer by targeting the TGF-β signaling
pathway. PFD decreases TGF-β expression and secretion, blocking
TGF-β-induced EMT and thus reducing the proliferation,
migration, and invasion of renal cancer cells. Additionally, PFD
enhances the immunosuppressive tumor microenvironment by
limiting the recruitment of tumor-infiltrating myeloid-derived

suppressor cells (MDSCs) (Wang et al., 2022). PFD targets CAFs,
inhibiting EMT and stemness features in breast cancer cells. In
breast cancer samples with a high stromal index, CAFs promote
cancer cell spheroid formation and induce the expression of YAP1,
VIM, and CD44. PFD treatment significantly reduces cancer cell
migration and the protein expression levels of these genes (Es et al.,
2021). PFD inhibits the expression of CAFs, hyaluronic acid, and
collagen I, reducing tumor stromal pressure, eliminating the
immunosuppressive microenvironment, and increasing cytotoxic
T lymphocyte infiltration, thereby remodeling the desmoplastic
tumor microenvironment. Moreover, PFD, in combination with
therapies targeting the mitochondrial ROS-PYK2 pathway,
significantly inhibits the growth and metastasis of malignant
breast cancer (Zuo et al., 2021). PFD effectively eliminates the
ethanol-mediated promotion of the TGF-β/RUNX3/Snail axis in
CRC metastasis by specifically blocking the TGF-β signaling
pathway (Zheng et al., 2019).

5.2.2 Sensitization to chemotherapy and
immunotherapy

In chemotherapy, PFD can significantly enhance tumor cell
death. PFD can reprogram several biological pathways, inhibiting
tumor cell secretion of PDGF by downregulating the TGM2/NF-kB/
PDGFB pathway, thus exerting antifibrotic effects. This leads to a
reduction in collagen X and fibronectin secretion by CAFs, and in a
mouse pancreatic tumor orthotopic model, PFD showed the
potential to enhance gemcitabine sensitivity (Lei et al., 2024).
PFD’s use in NSCLC primarily focuses on its antitumor and
chemosensitizing effects. PFD exerts anticancer effects by
inhibiting the TGF-β1 signaling pathway, reducing lactate and

TABLE 2 Efficacy and adverse reactions of Nintedanib in different malignant tumors.

Disease Trial-
registration

Phase Case OS
(month)

PFS
(month)

PFS HR
(95% CI)

Serious treatment-
related adverse events

(Grade 3–4)

Reference

RAIR DTC NCT01788982 II 56 -- 3.7 0.65
(0.42–0.99)

50% Leboulleux et al.
(2024)

MTC NCT01788982 II 20 -- 7.0 0.49
(0.16–1.53)

59.1% Leboulleux et al.
(2024)

NSCLC NCT02299141 -- 20 11.3 4.3 -- 35% Auberle et al.
(2024)

CRC NCT02393755 I/II 42 8.9 3.4 -- 44% Boland et al.
(2024)

SCLC jRCTs031190119 II 33 13.4 4.2 -- 81.8% Ikeda et al. (2024)

NSCLC -- -- 27 15.8 5.4 -- 44.4% Makiguchi et al.
(2023)

Ovarian
Cancer

NCT01583322 II 188 37.7 14.4 1.50 96% Ferron et al.
(2023)

NSCLC jRCTs071180049 III 243 15.3 6.2 0.68
(0.50–0.92)

72.5% Otsubo et al.
(2022)

NSCLC -- II 59 6.9 2.7 -- 53.7% Auliac et al.
(2021)

CRC NCT01362361 II 53 17.1 8.1 0.65
(0.32–1.30)

73.1% Ettrich et al.
(2021)

PFS, Progression-Free-Survival; OS, Overall survival; HR, Hazard Ratio; RAIR DTC, Radioiodine-refractory differentiated thyroid cancer; MTC, Medullary thyroid cancer.
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ATP production, and thus inhibiting glycolysis. When combined
with cisplatin, PFD enhances the targeted inhibition of TGF-β1,
improving chemotherapy sensitivity in A549 and H1299 cells
(Zhang S. et al., 2024). In TNBC, PFD inhibits the TGF-β/Smad
signaling pathway, reducing the expression of EMT-related
transcription factors and mesenchymal genes, inhibiting breast
cancer cell proliferation, migration, and invasion, and promoting
apoptosis. Additionally, although PFD has a relatively mild
standalone antitumor effect in vivo, its combination with nab-
paclitaxel (nab-PTX) significantly enhances the anticancer effect
in TNBC (Luo et al., 2023).

PFD demonstrates significant potential when combined with
immunotherapy. When combined with PD-L1 inhibitors, PFD
significantly delays tumor growth, improves survival rates,
enhances both innate and adaptive immune responses, increases
immune cell infiltration, and optimizes T cell localization. This
combination therapy also effectively alleviates lung fibrosis and
reduces tumor growth (Qin et al., 2020). In bladder cancer, the
combination of PD-L1 inhibitors and PFD can significantly inhibit
bladder cancer progression, potentially by modulating the tumor
immune microenvironment and inhibiting tumor cell epithelial-
mesenchymal transition (Chen et al., 2024).

5.2.3 Targeted drug delivery increases
therapeutic efficacy

In pancreatic cancer, PFD combined withmiR-138-5p, delivered
through targeted engineered exosomes, successfully reprogrammed
CAFs, inhibiting their pro-tumor effects. The combination inhibited
the TGF-β signaling pathway and collagen synthesis, significantly
improving the TME, reducing tumor pressure, enhancing the
penetration of the chemotherapeutic drug gemcitabine, and
increasing the sensitivity of cancer cells to chemotherapy (Zhou
et al., 2024). In Jia et al. (2024)’s study, cell membrane-fused
liposomes were used for targeted delivery of PFD and
doxorubicin to inhibit CAF activity and remodel the TME,
thereby significantly enhancing chemotherapy efficacy in TNBC.
Furthermore, the optimized delivery strategy amplified the effects of
anti-PD-L1 immunotherapy (Jia et al., 2024). Targeted drug delivery
provides new insights for precision medicine in clinical practice.

5.3 Galunisertib

5.3.1 Clinical trials
Galunisertib is a selective inhibitor of TGF-β receptor type I

(ALK5), capable of blocking TGF-β signaling, inhibiting tumor
growth and metastasis, and demonstrating potential in the
treatment of malignant tumors. In a trial evaluating Galunisertib
combined with nivolumab for NSCLC treatment, patients received
Galunisertib (150 mg, 14 days on/14 days off) along with nivolumab
(3 mg/kg IV every 2 weeks). 24% of patients showed confirmed
partial responses, and 16% of patients exhibited stable disease. The
median progression-free survival was 5.26 months, and the median
overall survival was 11.99 months. The response rate for locally
advanced NSCLC is generally low, about 10%–20%, suggesting that
this drug may partially increase patient survival rates (Nadal et al.,
2023). In another study, patients with locally advanced rectal cancer
received Galunisertib-containing neoadjuvant chemoradiotherapy,

resulting in an increase in the complete response rate to 32% with
good tolerability, markedly increases the complete response rate
compared to the previous treatment regimen (Yamazaki et al., 2022).
Galunisertib has demonstrated potential in increasing complete
response rates clinically, and its efficacy deserves further
evaluation in randomized trials.

5.3.2 Sensitization to chemotherapy and
immunotherapy

Fibrosis forms a physical barrier and also creates an
immunosuppressive microenvironment by secreting multiple
cytokines. Anti-TGF-β drugs reduce fibrosis and can partially
relieve this immunosuppression, promoting the infiltration of
T cells and other immune effector cells into the tumor area. In
OSCC, Galunisertib downregulates TGF-β signaling, enhances
CD8+ T cell activity, and improves the efficacy of anti-PD-
1 immunotherapy (Tao et al., 2024). In aggressive B-cell non-
Hodgkin lymphoma (B-NHL), Galunisertib promotes immune
system activation, reduces detrimental Treg cells, and prevents
CD8+ T cell exhaustion (Rej et al., 2023). In PDAC, Galunisertib
combined with dual immune checkpoint inhibitors (anti-PD-L1 and
CTLA-4) significantly inhibits tumor growth and induces the
infiltration of antitumor M1 macrophages. Additionally, it can
enhance the immune system’s tumor-attacking ability by
reducing the number of tumor-associated immunosuppressive
cells (Rana et al., 2022). Galunisertib combined with IL-15-
activated dendritic cells significantly enhances immunotherapy
efficacy in highly invasive and metastatic mouse lymphoma. This
combination therapy improves prognosis by inhibiting Treg cells in
tumor-draining lymph nodes and spleen and through the
inactivation of p-SMAD2 and Neuropilin-1 (Hira et al., 2020).

Galunisertib, when combined with chemotherapy drugs,
enhances therapeutic efficacy. In B-NHL, Galunisertib enhances
the antiproliferative and pro-apoptotic effects of doxorubicin and
further inhibits tumor growth by upregulating p-P38 MAPK and
inhibiting the TGF-β/Smad2/3 and PI3K/AKT signaling pathways
(Rej et al., 2023).

5.4 Tranilast

Tranilast is an anti-allergic medication originally used to treat
allergic conditions such as bronchial asthma, allergic rhinitis, and
eczema. However, as research has advanced, Tranilast has
demonstrated potential in the treatment of fibrosis-related
diseases and certain cancers by inhibiting fibroblast activation,
reducing malignant tumor resistance, and decreasing tumor
proliferation. For instance, in CRC, Tranilast inhibits tumor
growth by reducing tumor size, fibrosis, and angiogenesis. When
combined with 5-FU, Tranilast further enhances the antitumor
effect, leading to increased ROS production, decreased collagen
deposition, and enhanced tumor necrosis (Hashemzehi et al., 2021).

5.4.1 Tranilast impacts CAF function
Tranilast inhibits the migration of M2 macrophages by

suppressing CXCL12 secretion by CAFs, while also inhibiting
tumor growth, fibrosis, and the infiltration of M2 macrophages
and mast cells. Additionally, it significantly promotes CD8+
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lymphocyte infiltration into the tumor, thereby inducing cancer cell
apoptosis via immune response (Nakamura et al., 2022). In NSCLC,
Tranilast inhibits IL-6 secretion by CAFs, blocks CAF-induced
upregulation of the STAT3 signaling pathway, reduces EMT, and
reverses CAF-mediated resistance of NSCLC to osimertinib/
selumetinib (Ochi et al., 2022). Furthermore, Tranilast, by
inhibiting CAF activity, prevents them from promoting the
survival and radioresistance of nasopharyngeal carcinoma cells
via the IL-8/NF-κB pathway following radiotherapy (Huang W.-
C. et al., 2021).

5.4.2 Tranilast suppresses the TGF-β
signaling pathway

In lung cancer, Tranilast inhibits TGF-β1-induced EMT and cell
invasion by suppressing Smad4 expression, leading to reduced
pleural dissemination of cancer cells (Takahashi et al., 2020). In
breast cancer, Tranilast modulates the TGF-β signaling pathway by
increasing AKT1 phosphorylation and reducing ERK1/
2 phosphorylation, causing cell cycle arrest after the G1/S phase.
Additionally, Tranilast upregulates p53, induces PARP cleavage,
promotes tumor cell apoptosis, and modulates cell migration and
invasion by inhibiting TGF-β (Subramaniam et al., 2010).

5.4.3 Tranilast enhances the TME
Tranilast combined with Doxil treatment normalizes the TNBC

TME by significantly reducing ECM components, increasing tumor
blood vessel diameter and pericyte coverage, and improving tumor
perfusion and oxygenation. These changes enhanced the antitumor
immune response and improved therapeutic efficacy. Additionally,
Tranilast restored T cell infiltration and reduced the migration of
T cells away from immunosuppressive CAFs. The combination of
Tranilast and Doxil also significantly increased the levels of
immunostimulatory M1 macrophages in tumor tissue, enhancing
the efficacy of immune checkpoint inhibitors (such as anti-PD-1/
anti-CTLA-4) (Panagi et al., 2020).

6 Conclusion and outlook

In conclusion, as research deepens, the interaction between
fibrosis and malignant tumors has received increasing attention.
Fibrosis is not merely a consequence of tumor development but
plays a crucial role in tumor progression, resistance to therapy, and
immune evasion. Fibrosis facilitates tumor cell proliferation,
migration, and invasion by altering the composition and
structure of the extracellular matrix, while also offering a
protective niche for tumor cells to evade immune surveillance.
Additionally, fibrosis is closely linked to the activation of tumor-
associated fibroblasts, which secrete various cytokines and growth
factors, further exacerbating the malignancy of tumors.

Strategies targeting fibrosis in tumor treatment exhibit broad
prospects, as fibrosis plays a key role in tumor progression and drug
resistance. Inhibiting fibrosis-related signaling pathways, such as
TGF-β, can not only suppress tumor cell proliferation and
metastasis but also enhance the effects of chemotherapy, targeted
therapy, and immunotherapy. For instance, TGF-β inhibitors can

decrease fibrosis, improve drug permeability, and increase treatment
effectiveness. Moreover, drugs targeting CAFs in the tumor
microenvironment have demonstrated potential in preclinical
research (Conte, 2022).

In the future, anti-fibrosis therapies are likely to become a crucial
part of cancer treatment, especially when combined with current
therapies, providing new options for patients with difficult-to-treat
tumors. Through ongoing research, anti-fibrosis strategies will offer
crucial support in enhancing treatment outcomes and improving
patients’ quality of life.
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