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Ovarian cancer is the second most common malignant neoplasm of
gynecological origin and the leading cause of death from cancer in the
female reproductive system worldwide. This scenario is largely due to late
diagnoses, often in advanced stages, and the development of
chemoresistance by cancer cells. These challenges highlight the need for
alternative treatments, with immunotherapy being a promising option. Cancer
immunotherapy involves triggering an anti-tumor immune response and
developing immunological memory to eliminate malignant cells, prevent
recurrence, and inhibit metastasis. Some ongoing research investigate
potentially immunological advancements in the field of cancer vaccines,
immune checkpoint blockade, CAR-T cell, and other strategies.
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1 Introduction to ovarian cancer immunotherapy

Ovarian cancer (OC) ranks first among deaths caused by gynecological malignant
neoplasms around the world (American Cancer Society, 2024). OC’s dramatic
epidemiological scenario is related to diagnoses in advanced stages of the disease, due
to the absence of pathognomonic signs and symptoms for early diagnosis (Doubeni et al.,
2016), coupled with the first-choice therapeutic regimens chemoresistance acquisition by
OC cells (Ghoneum et al., 2021). These conditions require other ways to treat these patients,
other than surgeries and non-specific conventional chemotherapy. In consequence,
different immunotherapy approaches have arisen as relevant alternatives to overcome
this treatment obstacle (Bund et al., 2022).

OC immunotherapy involves the induction of an anti-tumor immune response and the
development of immunological memory. This process not only can eradicate malignant
cells within the primary tumor site, thereby averting recurrence, but also hampers the
metastatic spread to distant anatomical locations (Cha et al., 2020). Presently, the Food and
Drugs Administration (FDA) has sanctioned some distinct immunotherapeutic modalities
for OC or is actively investigating them in clinical trials (Cha et al., 2020). These approaches
can be categorized into active and passive immunotherapies.
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Active immunotherapy harnesses the immune system to identify
and target specific cancer antigens. It includes vaccines that
stimulate the patient’s immune response, or chimeric antigen
receptor (CAR) T-cell therapy, which involves the reintroduction
of genetically engineered T-cells in the patient (Rui et al., 2023). On
the other hand, passive immunotherapy modulates the activity of a
patient’s immune system response, as observed with immune
checkpoint inhibitors (ICIs) molecules (Rui et al., 2023). In this
review, we compile the latest findings concerning OC
immunotherapy strategies.

2 Therapeutic OC vaccines

To handle the adverse effects of common therapies for cancer,
immunotherapy strategies emerged as a cancer-specific alternative
capable of targeting the tumor and causing minimal impact on
normal tissues (Aly, 2012; Zhu and Yu, 2022). They are significant
considering the usual therapeutic approaches such as surgery,
chemotherapy, and radiotherapy which besides the adverse effects
show a lack of specificity for tumors (Kaczmarek et al., 2023).
Therapeutic cancer vaccination is a strategy of immunotherapy
developed to elicit or boost antitumor adaptive immune
responses to detect and eliminate them (Luo, et al., 2024;
Chambers, 2011). This response is specifically direct against
malignant cells leading to the inhibition of tumor growth and/or
recurrence (Siminiak et al., 2022). Cancer vaccines use diverse
mechanisms to provoke the immune system and develop a
specific anti-tumor response (Shafabakhsh et al., 2019; American
Cancer Society, 2020) and immunological memory that may prevent
recurrences (Janes et al., 2024).

OC, which is a challenging disease to diagnose and treat, usually
shows resistance to available chemotherapies and frequently relapses
with more aggressiveness (Acharya et al., 2024). The clinical
characteristics demonstrate the importance of developing novel
therapeutic strategies to treat and overcome chemoresistance in
OC. In this scenario, different cancer vaccines have been studied in
OC. The main mechanisms of cancer vaccines involve the induction

of dendritic cells (DCs) potent antigen-presenting cells (APCs),
these cells identify and present the antigen for other cells using
major histocompatibility complex (MHC) molecules (Lin M. et al.,
2022). Also secrete IL-10, IL-12, IL-23, and TNF-β to stimulate the
differentiation of immune system cells (Zhang X. et al., 2021). CD8+

cytotoxic T lymphocytes (CTLs) recognize the antigens presented on
MHC class I molecules, leading to their activation and proliferation,
consequently, attacking and destroying the tumor (Kaczmarek et al.,
2023). CD4+ helper T cells recognize peptides presented on MHC
class II molecules and provide support to other immune cells. B cells
can also be activated resulting in the production of antibodies
specific to the tumor-associated antigens (TAAs) (Janes et al.,
2024). These antibodies can directly bind to tumor cells, aiding
in their destruction. The vaccine also aims to induce a memory
response, which enhances immune protection and provides a more
robust response upon future encounters with tumor cells expressing
the same TAAs (Fan et al., 2023), see Figure 1.

DCs based vaccines depend on ex vivo modification of DCs
from the patient or cells created in the laboratory. Immune-
stimulating agents or tumor-specific antigens (TSAs) obtained
from tumor cells or genetic material are applied to mature and
activate these cells followed by reinfusion into the patient. Once
reinfused, these cells interact with T cells, B cells, and natural
killer (NK) cells (Lv et al., 2020; Fan et al., 2023). The activation
of immune system cells, as mentioned above, enhances the
immune response and destroys cancer cells (Laureano et al.,
2022). The use of this kind of vaccine has shown relevant
results, for example, a study using an autologous dendritic
cell-based vaccine with tumor lysate after systemic
chemotherapy resulted in a decrease in progression rate, as
well as improved overall survival in OC (Zhang X. et al.,
2021). A Th17-inducing folate receptor alpha (FRα)-loaded
DCs vaccine, resulted in the development of Th1, Th17, and
antibody responses to FRα in most patients. These processes are
associated with prolonged recurrence-free survival and induce
antigen-specific immunity (Block et al., 2020). Another approach
combined a whole tumor lysate-pulsed dendritic cell vaccine with
bevacizumab, cyclophosphamide, aspirin, and interleukin-2, this

FIGURE 1
Types of therapeutic cancer vaccines and the main mechanism induced. The immune system response is generated against the tumor leading to
cancer cell death and immunological memory.
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vaccine produced T-cell responses and was associated with
increased overall survival of patients (Tanyi et al., 2021).

A similar mechanism is induced by the whole-cell
preparations or lysates derived from cancer cells reintroduced
into the patient (Chiang et al., 2011). Cells are sourced from the
patient’s tumor or established cancer cell lines, aiming to prevent
their growth and pathogenicity the cells are inactivated or
genetically modified (Kaczmarek et al., 2023; Pérez-Baños et al.,
2023). Another approach utilizes induced pluripotent stem cell
(iPSC)-based cancer vaccines. iPSCs are created from somatic cells
and then differentiated into tumor microenvironment (TME)-
specific cells, such as tumor-associated fibroblasts, endothelial
cells, or immune cells (Chehelgerdi et al., 2023). These iPSC-
derived cells express antigens characteristic of the TME, including
TSAs or molecules associated with immunosuppression. When
administered to the patient, these cells are recognized by immune
cells, triggering a robust immune response (Ouyang et al., 2019).
Zhang Z. et al. (2012) used human embryonic stem cells as a OC
prevention vaccine in rats, this vaccine caused anti-tumor
responses and enhanced tumor rejection in the animal models.

Peptide cancer vaccines are also an emerging treatment for OC,
using specific epitope peptides derived from TAAs or TSAs (Abd-
Aziz and Poh, 2022). This vaccine can stimulate the immune system
after being administered and taked up by APCs (Wada et al., 2016;
Liu et al., 2024a). Recent studies in phase I or II use mutated
p53 peptides (The cancer-testis antigen, named New York
esophageal squamous cell carcinoma-1, NY-ESO-1) and also
apply diverse technologies to treat OC in association with co-
therapies (Odunsi, 2017; Siminiak et al., 2022). Vaccines made
from a peptide or antigen may help the body build an effective
immune response to kill tumor cells, functioning as a booster for the
patient’s anti-tumor immune response and the combination with
chemotherapy may induce the death of more tumor cells (Bund
et al., 2022; Odunsi, 2017).

In a phase I/IIa trial (Brown et al., 2019) used E39 in patients
HLA-A2+, this is an immunogenic peptide derived from the
folate-binding protein, frequently found overexpressed in
multiple malignancies. When associated with granulocyte
macrophage-colony stimulating factor (GM-CSF) was able to
improve disease-free survival (DFS) of endometrial cancer and
OC patients (90.0% vs. Control Group: 42.9%). Targeting folate
receptor (FR) a vaccine was tested in patients with OC or breast
cancer. The vaccine stimulated or increased immunity in more
than 90% of patients and the FR T cell responses were detectable
for at least 12 months. The results demonstrate the benefits of
boosting immunity to tumors expressing FR antigen (Kalli et al.,
2018). O’Cearbhaill et al. (2019) combined a polyvalent vaccine
conjugate responsible for inducing antibody responses (Globo-H,
GM2, MUC1-TN, TF) with adjuvant OPT-821 in patients with
OC in remission after chemotherapy. Vaccine + OPT-821
compared to OPT-821 alone was modestly more immunogenic.

Cancer vaccines can also involve genetic material (DNA and
RNA) encoding TAAs. This DNA or RNA is taken up by cells, such
as DCs, and the TAAs are presented on the surface of APCs after
being processed. In this process, the activation and proliferation of
CD8+ CTLs are induced and CD4+ helper T cells provide support to
other immune cells (Pandya et al., 2023). Additionally, B cells can be
activated by presented TAAs and induce the production of

antibodies. These antibodies can bind directly to tumor cells,
aiding in their destruction (Barbier et al., 2022). The vaccine also
aims to induce a memory response, which enhances immune
protection and ensures a more effective response upon future
encounters with tumor cells expressing the same TAAs (Wang B.
et al., 2023a). Lu et al. (2023) using immuno-bioinformatics
developed a model of a multi-epitope mRNA self-adjuvant
vaccine targeting CA-125 neoantigen in breast and ovarian
cancers. This in silico analysis provided evidence of using this
neoantigen in a mRNA-based vaccine. Posity results were
observed using the SynCon FSHR DNA vaccine. In this study
synthetic consensus (SynCon) approach was capable of breaking
immune tolerance to follicle-stimulating hormone receptor (FSHR).
The treatment induced robust CD8+ and CD4+ cellular immune
responses and FSHR-redirected antibodies in mice, as well, delayed
the progression of aggressive OC model with peritoneal
carcinomatosis (Perales-Puchalt et al., 2019).

Neoantigen DNA vaccines were used by Bhojnagarwala et al.
(2021) to target ~40 neoantigens. These plasmid-based vaccines
were able to provoke long-term immune responses against lung and
ovarian cancer and protected animals from tumor growth for
89 days after the final vaccination. Another DNA vaccine
platform targeting tumor neoantigens was applied against lung
and ovarian cancers affecting the tumor progression and survival
in mouse models. In this pre-clinical study, the vaccine was able to
generate potent CD8+ T-cell antitumor–specific responses in vivo.
Interestingly, when neoantigen-specific T cells were expanded from
immunized mice they were also able to kill tumor cells ex vivo
(Duperret et al., 2019).

Bacteria-based cancer vaccines use engineered bacteria to
stimulate the immune system (Zhou et al., 2023). These
modified bacteria interact with immune cells, initiating an
inflammatory response and triggering the production of pro-
inflammatory cytokines, chemokines, and other signaling
molecules (Zalatan et al., 2024). Viral-based cancer vaccines
use engineered viruses to stimulate the immune response
directly. These modified viruses interact with immune cells
such as DCs, macrophages, and NK cells, triggering an
inflammatory response along with the release of pro-
inflammatory cytokines and chemokines (Xu et al., 2024).
Immune cells then phagocytose the virus particles, and TAAs
expressed by the virus or introduced into infected cells are
processed and presented to T cells (Muthukutty and Yoo,
2023). Cowpea mosaic virus co-delivered with irradiated OC
cells comprises an prophylactic vaccine against a model of OC in
mice. After two vaccinations most of the mice (72%) reject the
tumor challenges, and survived subsequent rechallenges,
indicating immunologic memory (Stump et al., 2021).

These approaches highlight the diverse strategies being
employed to develop effective vaccines for OC, with ongoing
research focused on optimizing these therapies and evaluating
their clinical efficacy. The actual scenario for cancer vaccines is
due to years of research and discoveries. Nevertheless, the
heterogeneity of the immune system and the capacity of cancer
cells to evade immune system attacks, even when naturally
endogenous or when induced by vaccine makes this process a
challenge. This is why more in-depth studies must be completed
to enable the large use of these therapies.
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3 CAR-T cell therapy in OC

CAR-T cells are genetically engineered to recognize and attack
TSAs (June et al., 2018), bypassing the need of MHC molecules
presentation, and behaving as active drugs against tumors (Maus
and June, 2016). FDA approved CAR-T therapy in 2017 (reviewed
by Yi-Ju et al., 2023), with two treatments, Yescarta (axicabtagene
ciloleucel) and Kymriah (tisagenlecleucel), specifically for certain
lymphomas and leukemia (Food and Drug Administration, 2024).
Despite its clinical success in treating blood cancers, CAR-T therapy
can lead to serious complications (reviewed by Brudno and
Kochenderfer, 2024). These include cytokine release syndrome
(CRS), which can cause extreme symptoms like high fevers,
organ failure, and even death (Reagan and Neelapu, 2021).
Another risk is “on-target, off-tumor toxicity,” where CAR-T
cells attack healthy tissues, causing severe harm (Flugel et al.,
2023). Additionally, the required lymphodepleting chemotherapy
before CAR-T infusion is genotoxic, raising the risk of secondary
cancers and other diseases (Yeh et al., 2020). Since then, extensive
global research has been conducted on various hematologic and
solid tumors to evaluate the safety and efficacy of CAR-T therapy
and it has shown significant success in treating hematologic cancers,
with six other FDA approvals, and holds promise as a new treatment
option for OC (reviewed by Cappell and Kochenderfer, 2023).

Solid tumors present significant challenges for CAR-T cell
therapy due to their heterogeneity and the scarcity of known
tumor-specific epitopes (Labanieh and Mackall, 2023). Unlike
hematological malignancies, solid tumors often result in toxicity

when targeting overexpressed antigens (reviewed by Baker et al.,
2023). Additionally, the TME creates physical and immunological
barriers that limit CAR-T cell effectiveness (reviewed by Albelda,
2024). To overcome these obstacles, researchers are exploring
intratumoral injections (Tchou et al., 2017), peptide and
nanoparticle booster vaccines (MA et al., 2019; Reinhard et al.,
2020), engineered cytokine-driven expansion (Sockolosky et al.,
2018), and modifying the TME with oncolytic viruses and
genome editing techniques like CRISPR-Cas9 (reviewed by Baker
et al., 2023).

Emerging clinical data show promise for CAR-T cells targeting
solid tumors, including prostate cancer (prostate-specific membrane
antigen) (Narayan et al., 2022), gastrointestinal cancer (CLDN18.2)
(Qi et al., 2022), glioblastoma (IL13RA2 or EGFRv3) (Sampson
et al., 2020), and neuroblastoma (GD2) (Del Bufalo et al., 2023).
Despite these advances, challenges persist due to the scarcity of
unique, tumor-specific targets (Macpherson et al., 2020). In OC,
potential targets identified include mesothelin (MSLN) (Schuster
et al., 2017), Muc16 (Coelho et al., 2018), TAG72 (Murad et al.,
2018), FR (Rodriguez-Garcia et al., 2017), and FSHR (Perales-
Puchalt et al., 2017). Furthermore, recent studies have explored
the feasibility, safety, and anti-tumor activity of the first-in-human
approach of targeting CLDN6 with CAR-T therapy and combining
it with a CAR-amplifying vaccine (Mackensen et al., 2023), given the
frequent detection of high-level CLDN6 in epithelial OC,
endometrial carcinoma, and other solid tumors (Jaeger et al.,
2014). Hence, CAR technology using NK cells is being studied
for a range of solid tumors, as well as OC (reviewed by Dagher and

TABLE 1Ongoing studies evaluating CAR technology inOC and other tumors treatments. Clinical trials that have recently started using CAR cell technology
inOC are currently in “recruiting” status. SomeCAR cells have undergonemodifications to becomemore specific or to avoid some side effects, such as CRS.

CAR
technology

Modification Target Clinical study
phase

References

CAR T cell - iC9-
CAR.B7-H3

Presence of an inducible suicide gene, caspase 9
(iC9). CAR T cells are eliminated in a severe CRS
event

B7-H3
Immune checkpoint most expressed in tumors,
associated with poor prognosis

I NCT06305299
Miyamoto et al.
(2022)

CAR T cell - 27T51 Presence of an anti-MUC16 site MUC-16
Antigen commonly expressed in OC.
Increased efficacy in vivo

Ia/Ib NCT06469281
Chekmasova et al.
(2010)

CAR T cell CAR T cells specific for Cluster of differentiation
70 (CD70)

CD70
Glycoprotein related to chemoresistance in OC.

I NCT06215950
NCT06383507
NCT06010875
Aggarwal et al.
(2009)

CAR T cell Tmod™ Activation in presence of MSLN.
Addition of HLA-A*02 inhibitor

Tumors that express second-generation MSLN
and have lost HLA-A*02 expression. Associated
to poor prognosis

I and II NCT06051695
Andersson et al.
(2012)
Tokatlian et al.
(2022)

CAR-iNK cell (FT536) Affinity for MICA and MICB. IL-15 expression
(improves the complex performance)

MICA and MICB (overexpressed in OC) I NCT06342986
Li K. et al. (2009)
Lee D. et al. (2023)

CAR-iNK cell Umbilical cord blood-derived NK cells
transduced with IL-15 and engineered with CAR
TROP2

TROP2
Overexpressed protein and associated with
proliferation and invasion in OC.

I and II NCT05922930
Wu et al. (2017)

CAR-iNK cell -
SynKIR-110

Presence of a killer cell immunoglobulin-like
receptor (KIR)

MSLN.
Glycoprotein commonly overexpressed in OC
and associated with tumor progression

I NCT 05568680
NCT06256055
Liang et al. (2021)
Hilliard (2018)
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Posey, 2023). Table 1 highlights some studies that evaluate CAR
technology use in OC and other cancer types.

4 Exosomes in OC treatment

Exosomes represent a promising tool and target for
immunotherapy in OC (Zhou W. et al., 2021). Although they are
physiological components, their role in cancer remains somewhat
ambiguous. In the context of immunotherapy, these lipophilic
vesicles are crucial for facilitating communication among
immune system cells, which can either elicit positive immune
responses or lead to immunosuppression (Kugeratski and Raghu,
2021). Taylor et al. (2003) demonstrated that membrane fragments,
which include exosomes and other lipid vesicles, derived from OC
cells can induce T cell apoptosis. The influence of exosomes and
similar membrane fragments on orchestrating immune system
responses has been explored in various cancer types, including
breast (Morrissey et al., 2021), lung (Alipoor et al., 2018),
pancreatic (Shen et al., 2020), glioma (Li M. et al., 2022), and
colorectal cancer (Zhao S. et al., 2020). Consequently, several key
aspects regarding the role of exosomes in immunotherapy will be
discussed below.

Exosomes are a category of extracellular vesicles with a lipid
bilayer, measuring approximately 30–150 nm, found in various body
fluids such as blood, urine, saliva, and cerebrospinal fluid (He et al.,
2018; Gong et al., 2023). They are believed to have a dual role in the
TME (Li X. and Wang, 2017). Exosomes can both promote and
inhibit tumors and carry many potential biomarkers for OC (Gong
et al., 2023). In normal cells, these small vesicles can interact with
membrane receptors or fuse with cells to release components such as
proteins, RNA, DNA, mRNA, miRNA, long non-coding RNA
(lncRNA), and lipids, aiding in cellular communication,
extracellular matrix maintenance, and immune system
modulation (Pegtel and Gould, 2019; Kaushik and Cuervo, 2015;
Ramirez and Marcilla, 2021; Zhu et al., 2024; Tian et al., 2022). In
cancer cells, exosomes perform similar functions but carry
components that promote proliferation, migration, invasion,
chemoresistance, and other processes that enhance malignancy,
complicating treatment, such as modulation of the TME
(Bhattacharya et al., 2024; Yim et al., 2020; Li X. et al., 2021b).

In OC, exosomes play a dual role in the acquisition of
chemoresistance, a process caused by the lack of cancer cells
response to chemotherapy, often resulting in treatment failure
(Tian et al., 2022; Liu H. et al., 2024b; Carmi et al., 2024). In this
context, their malignant role in OC was elucidated by Pan et al.
(2024). Their study found that exosomes derived fromOC stem cells
were responsible for increasing chemoresistance and proliferation
while inhibiting apoptosis in the cisplatin-resistant SKOV3 cell line.
Meanwhile, exosomes derived from ascites were observed to carry a
lncRNA that sensitized high-grade serous ovarian cancer (HGSOC)
cells to cisplatin chemotherapy, a standard drug for this OC subtype.
Additionally, it was demonstrated that exosomes carried a lncRNA
that reduced cell proliferation, migration, and invasion in both
in vitro and in vivo experiments (Liu H. et al., 2024b).

Another factor complicating chemotherapy treatment is the low
oxygenation within tumors, resulting from reduced blood perfusion.
Wang Q. et al. (2024) analyzed this process and observed that

tumor-derived exosomes contributed, in part, to the decreased
oxygenation through the previously mentioned mechanism, by
altering the tumor vascular network and thereby impeding
chemotherapy.

In addition to their ambiguous role, exosomes may serve as a
potential tool for OC therapy, as demonstrated in the study by
Shimizu et al. (2024). In this study, exosomes were extracted from a
cell culture of fibroblasts from OC patients and were loaded with
siRNAs targeting a proto-oncogene, the MET receptor. This
treatment inhibited OC cells proliferation, migration, and
invasion. Another study showed that it is possible to create
targeted exosomes for OC treatment (Mousaei Ghasroldasht
et al., 2024). Mousaei Ghasroldasht et al. (2024) developed what
they termed “enhanced exosomes” using a culture of human
umbilical cord-derived mesenchymal stem cells (hUC-MSCs),
observing that these exosomes contained proteins and miRNAs
capable of regulating and sensitizing OC. Another study, by Kim
et al. (2023), used a nanotechnology-modified exosome in glioma to
evaluate its effectiveness. The results indicate that there was
regulation of the TME and decreased tumor progression both
in vitro and in vivo. Furthermore, exosomes can be utilized as
biomarkers for an improved and earlier diagnosis, addressing the
delays often seen in most cases (Bhavsar et al., 2024; Zhu et al., 2024;
Xiao et al., 2022). There is also evidence that these vesicles carry
RNAs related to chemoresistance and, therefore, may serve as
biomarkers for this process, which precedes clinical interventions
(Asare-Werehene et al., 2020; Li T. et al., 2021a). These findings
suggest that exosomes have intriguing therapeutic potential
warranting further investigation. Therefore, deepening studies in
this area is crucial to better understand the contribution of these
components in OC immunotherapy and the underlying
mechanisms of different kinds of exosomes and how they
influence on tumor response to treatment (Figure 2).

5 Antibody-based therapies for
OC treatment

Therapeutic monoclonal antibodies have been successfully
developed for the treatment of various cancer types (Hafeez
et al., 2020).

In this context, with the biotechnology advancement,
antibody-drug conjugates (ADCs) have been developed,
representing one of the newest classes of cancer medications,
with approvals for the treatment of solid tumors as well as
hematological malignancies. ADCs exhibit high selectivity for
tumors, thereby minimizing their systemic exposure, which
potentially leads to an improved therapeutic index, offering
greater efficacy and fewer side effects (Dean et al., 2021). To
minimize off-target toxicity, the target antigen should be
exclusively or preferentially expressed in cancer cells, with
minimal expression in healthy tissues (Hafeez et al., 2020).
Several monoclonal antibody-based immunotherapies have
already been approved by FDA (Zhou et al., 2023). However,
numerous clinical trials are still underway with promising
prospects for the treatment of OC, including ADCs such as
JNJ-78306358, ivonescimab, ipilimumab, durvalumab,
oregovomab, catumaxomab, abagovomab, daclizumab and
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mirvetuximab, which was approved by the FDA in 2022 but
remains under study for application in OC treatment (Dilawari
et al., 2023).

5.1 Immune checkpoint inhibitors (ICIs)

Cancer cells develop several complex mechanisms to evade the
immune system in the TME, among which the inhibition of T cell
activity by the PD-1/PD-L1 (Daud et al., 2016) and CTLA-4/
B7 pathways can be highlighted (Tang Q. et al., 2022a). PD-1 is
an immune receptor expressed on the surface of various immune
cells, and the interaction between PD-1 and PD-L1, which is highly
expressed on the surface of tumor cells and tumor-infiltrating cells,
results in the inhibition of T cell activity, rendering the anti-tumor
immune response ineffective and favoring immune evasion (Daud
et al., 2016; Naimi et al., 2022; Tang Q. et al., 2022a). Furthermore,
the binding of PD-1 to its ligand can inhibit T cell proliferation, B
lymphocyte differentiation, and the production of cytokines such as
Interferon-gamma (IFN-Y) (Tang S. et al., 2022b).

On the other hand, another immune checkpoint associated with
tumor cell evasion is CTLA-4, an inhibitory receptor belonging to
the immunoglobulin superfamily (Van Coillie et al., 2020). CTLA-4
is primarily expressed on activated T cells and, like PD-1, has an
immunomodulatory function (Tang S. et al., 2022b). The interaction
of CTLA-4 with its ligands, B7-1 (CD80) and B7-2 (CD86),
expressed on APCs and tumor cells, transmits a signal that
negatively regulates or interrupts T cell activity, thereby
decreasing the immune response against cancer cells (Naimi
et al., 2022; Tang S. et al., 2022b; Van Coillie et al., 2020).

From this perspective, ICIs represent a promising class of drugs
in immunotherapy against OC, targeting PD-1/PD-L1 and CTLA-4.
They have already demonstrated broad bioactivity and stable
response in the treatment of various types of tumors (Naimi
et al., 2022; Tang S. et al., 2022b), including OC (Disis et al., 2019).

5.1.1 PD-1/PD-L1 inhibitors
Recent studies conducted by Friedman et al. (2024) involving

35 patients demonstrated that the use of nivolumab, a PD-1
inhibitory monoclonal antibody, in the treatment of uterine
cancer and OC with DNA mismatch repair deficiency (dMMR)
showed clinical efficacy with an objective response rate (ORR) of
57%. Additionally, 64.7% of patients experienced progression-free
survival (PFS) at 24 weeks, and treatment toxicity was moderate.
However, while the results are promising, further studies with a
larger cohort representing the population of patients with OC-
dMMR are necessary, as well as the identification of additional
predictive biomarkers for treatment response and resistance.

On the other hand, another notable ICI is ivonescimab, also
known as AK112 and SMT112. It is a humanized bispecific antibody
whose single-chain variable fragments (ScFv) bind to the
C-terminus of each anti-VEGF antibody heavy chain (Wang L.
et al., 2023b), forming a complex with high affinity for PD-1 (Zhao
et al., 2023). Ivonescimab is currently being evaluated in clinical
studies for its anti-PD-1 and anti-VEGF-A activities, with the goal of
preventing tumor progression through the inhibition of
angiogenesis (Apte et al., 2019). The anticipated outcomes of this
inhibition include reduced immunosuppression and decreased
tumor angiogenesis (Dhillon, 2024). However, clinical trials have
encountered challenges in achieving satisfactory results.

FIGURE 2
The Role of Exosomes. Exosomes play a physiological role in cellular communication, immune system modulation, and maintenance of the
extracellular matrix. In OC, they are associated with tumor progression, proliferation, migration, invasion, and regulation of TME. Tumor cell-derived
exosomes can serve as biomarkers for diagnosis and early detection of chemoresistance. Additionally, modified exosomes, such as those derived from
hUC-MSCs or engineered using nanotechnology, may aid in treatment by reducing tumor progression and potentially modulating the TME.
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In the phase Ia study by Frentzas et al. (2024), the activity of
ivonescimab was evaluated in 19 patients with platinum-resistant
OC. Among these patients, 68.4% had received more than three lines
of prior therapy. Of the 19 patients, five achieved a partial response,
including 3 with high-grade serous pathology and 2 with clear cell
pathology, resulting in an ORR of 26.3%. Additionally, the study
observed that the disease remained stable for more than 12 months
in four patients who had previously been treated with bevacizumab.
However, further clinical studies are needed to determine more
appropriate dosages and to conduct additional analyses in
combination therapies.

5.1.2 CTLA-4 inhibitors
One of the promising antibody-drugs in this class is ipilimumab,

a monoclonal antibody targeting CTLA-4 (Saad and Kasi, 2023).
Knisely et al. (2024) conducted a phase Ib study evaluating
intraperitoneal ipilimumab and nivolumab in patients with
recurrent gynecological neoplasms with peritoneal
carcinomatosis. The study included 23 patients: 18 with OC,
2 with uterine cancer, and 3 with cervical cancer. In this study, a
partial response was observed in two patients (8.7%), one with OC
and one with uterine cancer, with a response duration of
14.8 months. Additionally, the treatment safety was assessed,
revealing that two patients (8.7%) experienced adverse effects
classified as grade 3 or higher. Despite these adverse effects, the
study found that treatment with ipilimumab and nivolumab can
produce lasting responses in the treatment of OC.

5.1.3 Combined therapies
Hinchcliff et al. (2024) conducted a phase II randomized clinical

trial comparing durvalumab (PD-L1 inhibitory monoclonal
antibody) and tremelimumab (anti-CTLA-4 antibody)
administered either as a combination therapy or sequentially in
patients with platinum-resistant OC. Among the patients,
38 received sequential therapy (tremelimumab followed by
durvalumab), while 23 received combination therapy
(tremelimumab and durvalumab together, followed by
durvalumab alone). There was no significant difference in PFS
between the combination therapy group (1.84 months) and the
sequential therapy group (1.87 months) (p = 0.402). Partial
responses were observed in two patients (8.7%) and stable disease
in 1 patient (4.4%), with all responses occurring in the combination
therapy group.

Landry et al. (2023) reported promising results from a phase Ib
study investigating the combination of durvalumab with eribulin, a
microtubule inhibitor with established benefits in metastatic breast
cancer (MBC). The study included four patients with recurrent OC
and five patients with HER2-negative MBC, all of whom received
escalating doses of eribulin along with durvalumab. The results
indicated an ORR of 55%, with four patients experiencing stable
disease, and a PFS of 6.2 months.

On the other hand, Konstantinopoulos et al. (2019)
demonstrated that the combination of niraparib, a PARP
inhibitor (PARPi), with pembrolizumab (anti-PD-1 antibody)
showed promising activity in the treatment of platinum-resistant
recurrent OC patients. This combination resulted in reduced tumor
size and observed disease stabilization. Furthermore, the study
indicated that the combination enhanced treatment efficacy,

achieving an ORR of 19%, compared to monotherapy with each
agent. No new signs of toxicity were reported in this study. Hence,
those studies suggest that the combination between ICIs with other
drug classes may offer a viable alternative for improved
treatment outcomes.

5.2 Antibody therapies using ADCs

5.2.1 JNJ-78306358
It is well established that human leukocyte antigen G (HLA-G) is

minimally expressed in healthy cells but highly expressed in various
types of human cancer cells (Lin A. and Yan, 2018), including OC.
HLA-G functions as an immune checkpoint and interacts with
inhibitory receptors (Geva et al., 2024).

In this context, the phase I study by Geva et al. (2024) found that
JNJ-78306358, an ADC that binds simultaneously to the α3 domain of
HLA-G isoforms on tumor cells and the CD3 receptor complex on
T cells, facilitated the formation of immune synapses and the killing of
tumor cells by CTLs in renal cell carcinoma, OC, and colorectal cancer
in 39 patients. Conversely, no interaction of this ADC was found with
cells that do not expressHLA-G, demonstrating its specificity for certain
types of tumor cells. In this study, all 39 patients (100%) discontinued
treatment. The most frequent reasons for discontinuation were disease
progression (82.1%) and death (5.1%), with none attributed to the ADC
JNJ-78306358.

5.2.2 Mirvetuximab
Among the highly important and promising ADCs for OC

treatment, mirvetuximab was approved by FDA in 2022, based
on the results from the SORAYA study (Matulonis et al., 2023). This
ADC consists of an IgG1 monoclonal antibody targeting the folate
receptor alpha (FRα) conjugated to the cytotoxic maytansinoid
DM4, which has demonstrated significant clinical activity in
patients with FRα-positive OC (González-Ochoa et al., 2023).

Richardson et al. (2024) presented results from a phase Ib study
combining mirvetuximab soravtansine with carboplatin and
bevacizumab in patients with platinum-sensitive OC. In this
study, 41 patients were enrolled, of whom 34 exhibited an anti-
tumor response, resulting in an ORR of 83%. Most adverse effects
were graded as two or lower, indicating an acceptable safety profile.

Another study involving mirvetuximab was conducted by
Moore et al. (2023), who reported results from a global, phase
III, confirmatory, open-label, randomized, and controlled trial for
the treatment of platinum-resistant FRα-positive HGSOC. Among
the patients, 227 were assigned to the mirvetuximab group and
226 to the chemotherapy group (paclitaxel, pegylated liposomal
doxorubicin, or topotecan). The results showed a median PFS of
5.62 months and an ORR of 42.3% in the mirvetuximab
group. During treatment, fewer grade 3 or higher adverse events
occurred with mirvetuximab (41.7%) compared to chemotherapy
(54.1%), as well as fewer serious adverse events of any grade (23.9%
vs. 32.9%) and events leading to discontinuation (9.2% vs. 15.9%),
demonstrating greater safety with the ADC treatment.

5.2.3 Oregovomab
The ADC oregovomab is a murine monoclonal antibody that

binds to cancer antigen-125 (CA-125) in blood and local tissues
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(Battaglia et al., 2020). It is administered to induce targeted
therapeutic immunity against cancer. The oregovomab-CA125
complex has enhanced efficacy in antigen capture and cross-
presentation, which activates cellular immune response (Brewer
et al., 2020).

In this context, Brewer et al. (2020) conducted a phase II,
international, randomized, multicenter study to evaluate the
results of chemoimmunotherapy in OC using carboplatin-
paclitaxel and indirect immunization with oregovomab. The
study involved 94 patients who were randomly assigned to
receive either carboplatin-paclitaxel alone or carboplatin-
paclitaxel with oregovomab addition. Results showed that all
patients achieved cytoreduction to less than 1 cm of residual
disease or no macroscopic residual disease. Furthermore, the
median PFS was 41.8 months in patients receiving additional
oregovomab compared to 12.2 months in the control group,
demonstrating a significant difference between the two groups
(p = 0.0027).

Additionally, a multicenter phase II study by Park et al. (2024)
examined the efficacy of non-platinum-based chemotherapy with
the use of oregovomab in patients with recurrent OC. This study
demonstrated promising efficacy, achieving a PFS of 11 weeks and a
median overall survival of 70.4 weeks.

5.2.4 Catumaxomab (Removab)
Catumaxomab is a trifunctional bispecific ADC and targets

epithelial cell adhesion molecule (EpCAM) and CD3 T-cell
antigen (Ruf et al., 2021). Its anti-tumor effect results from a
complex immune reaction at the tumor site involving T cell-
mediated lysis, which includes T cell-mediated destruction of
tumor cells, antibody-dependent cellular cytotoxicity, and
phagocytosis (Knödler et al., 2018).

Studies with this ADC have demonstrated its success as an
immunotherapy (Fossati et al., 2015), leading to its approval by the
European Medicines Agency (EMA) in 2009 for the intraperitoneal
treatment of malignant ascites. However, the approval of this ADC
was withdrawn in 2017 due to commercial reasons (Ruf et al., 2021).

5.2.5 Abagovomab
The murine anti-idiotypic monoclonal antibody abagovomab

was developed to functionally mimic the three-dimensional
structure of CA-125 and induce a specific immune response
directed against the original antigen (Battaglia et al., 2017). In
this context, a phase III placebo-controlled study known as
MIMOSA was conducted, but it showed that the survival rate of
patients with OC was not increased by abagovomab (Battaglia et al.,
2017). However, a study by Battaglia et al. (2017) aimed to
demonstrate that a healthy immune system conditions the
response to this ADC. In their research, 80 patients received
abagovomab, and 31 patients received placebo. Patients treated
with abagovomab who had a percentage of CD8+ T cells
producing IFN-γ above the cutoff point showed better
recurrence-free survival (p = 0.042) than those with a percentage
of CD8+ T cells producing IFN-γ below the cutoff point.
Additionally, this study demonstrated that the recurrence-free
survival of patients treated with abagovomab with both a
percentage of CD8+ T cells producing IFN-γ and absolute cell
counts below the respective cutoff points was identical to that of

patients in the placebo group. In this regard, it is concluded that
further studies are needed to clarify the effects of abagovomab in
OC patients.

5.2.6 Daclizumab (Zenapax)
Daclizumab (Zenapax) is a humanized IgG1 monoclonal

antibody specific to IL-2 receptor-α subunit (CD25) (Tse et al.,
2014). It irreversibly blocks CD25, thereby preventing signaling
through the high-affinity IL-2R while increasing the bioavailability
of IL-2 to bind to the low-affinity receptor (Ranganath et al., 2020).
As a result, ADC induces various immunological changes, including
inhibition of T cell activation, reduction in the frequency and
survival of regulatory T cells, and expansion of CD56bright NK
cells (Ranganath et al., 2020).

Within this scenario, an interventional phase I clinical trial was
conducted with patients with recurrent ovarian, fallopian tube, or
primary peritoneal cancer using this ADC. However, the study was
terminated in 2018, and the results were not published. Additionally,
this drug was suspended by EMA in 2018 due to 12 reported
worldwide cases of severe brain inflammation, three of which
were fatal (European Medicines Agency, 2018). Table 2 highlights
some studies that evaluate ICIs and ADCs technologies in
OC treatment.

5.3 T- and NK-cell engaging bispecific
antibodies (BsAbs)

Bispecific antibodies (BsAbs) are engineered molecules designed
to bind simultaneously to two distinct epitopes or antigens. This
dual targeting mechanism allows them to interact with tumor
antigens on cancer cells while activating receptors on immune
cells, offering a novel approach to immunotherapy (Wang Q.
et al., 2019). Recent studies have focused on the roles of T and
NK cells in this context, as BsAbs can effectively bring these immune
cells into proximity with tumor cells (Wu Z. and Cheung, 2018). By
simultaneously binding to tumor antigens on cancer cells and
activating receptors such as CD3 on T cells or CD16 on NK
cells, BsAbs enhance the capacity of these immune cells to
recognize and eliminate malignant cells. This strategy positions
engaging BsAbs as a promising approach for cancer
immunotherapy (Tapia-Galisteo et al., 2023).

In the context of hematological tumors, numerous clinical trials
have demonstrated favorable outcomes with T cell-engaging
bispecific antibodies (BsAbs). Notable examples include
epcoritamab (Thieblemont et al., 2022), odronextamab (Bannerji
et al., 2022), mosunetuzumab (Budde et al., 2022), and glofitamab
(Hutchings et al., 2021). These CD3xCD20 T cell-engaging BsAbs
bind to T cells via CD3 receptors, effectively directing them to
eliminate malignant CD20+ B cells in patients with heavily
pretreated B-cell non-Hodgkin lymphoma (van de Donk and
Zweegman, 2023). Additionally, Reusing et al. (2021) reported
that CD16xCD33 NK cell-engaging BsAbs activated Killer
immunoglobulin-like receptor (KIR) signaling, thereby enhancing
NK cell-mediated lysis of acute myeloid leukemia (AML) blasts.

Regarding solid tumors, particularly OC, Crawford and
colleagues (2019) reported on the BsAb REGN4018, which
targets both MUC16, a highly expressed marker in OC cells, and
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CD3, a receptor on T cells. Overall, their findings indicated that
REGN4018 exhibited robust antitumor activity and favorable
tolerability, warranting its clinical evaluation in patients with
MUC16-expressing advanced OC (Crawford et al., 2019).
Oladapo et al. (2021) similarly investigated T cell-engaging BsAbs
targeting MUC16. Their findings indicate that these antibodies
demonstrate efficacy against OC, both as a monotherapy and in
combination with other agents such as PD-1 and VEGF inhibitors
(Oladapo et al., 2021). In the other hand, Lee E. and colleagues
(2021) examined a BsAb targeting LYPD1, an antigen associated
with high-grade serous OC, and their data suggested its compelling
efficacy and safety profiles, supporting its potential use as a
treatment for high-grade serous OC (Lee E. et al., 2021).

Furthermore, Avanzino and colleagues (2022) studied TNB-
928B, a T-cell engaging BsAb that binds to FRα to selectively target
FRα overexpressing tumor cells. It was shown that TNB-928B
induced preferential effector T-cell activation, proliferation, and
selective cytotoxic activity on high FRα expressing OC cells, and
also promoted T-cell infiltration and antitumor activity in OC
mouse models (Avanzino et al., 2022). Additionally, Vallera et al.
(2020) evaluated cam1615B7H3, a tri-specific killer engager that has
a camelid CD16 antibody fragment, a wild-type IL-15 moiety, and

an anti-B7-H3 single-chain variable fragment, in various types of
solid tumors. Their findings suggest that cam1615B7H3 improves
NK cell function, expansion, targeted cytotoxicity against various
types of B7-H3-positive human cancer cell lines, and delivers an
anti-cancer effect in vivo in a solid tumor setting, including in OC
(Vallera et al., 2020).

Given the studies conducted, further research is necessary to
ensure the safety of these ADCs in OC treatment.

6 Discussion

Overall, immunotherapy for OC faces significant challenges, yet
the field holds substantial potential for advancement. Ongoing
efforts aim to overcome immune suppression and improve the
efficacy of OC immunotherapy. These strategies include
combining immunotherapy with other drugs, utilizing targeted
and precision-guided particles, developing innovative antigen
vaccine delivery systems, and implementing prolonged low-dose
immunotherapy regimens. Consequently, recent progress in both
active and passive immunotherapy approaches has introduced new
perspectives and insights, thereby enhancing the effectiveness of

TABLE 2 Ongoing studies evaluating ICIs and ADCs technologies in OC.

Agents Targets Clinical study
phase

Results References

Nivolumab PD-1 II 64.7% of patients experienced PFS at 24 weeks, and treatment
toxicity was moderate

Friedman et al. (2024)

Ivonescimab (AKT112/
SMT112)

PD-1/VEGF-A Ia Among 19 patients, 5 achieved a partial response, including 3 with
high-grade serous pathology, resulting in an ORR of 26.3%.
Furthermore, was observed that the disease remained stable for
more than 12 months in 4 patients who had previously been
treated with bevacizumab

Frentzas et al. (2024)

Ipilimumab + Nivolumab CTLA-4 and PD-1 Ib and II A partial response was observed in 2 patients, with a response
duration of 14.8 months. In addition, 2 of 23 patients
demonstrated adverse effects classified as grade 3 or higher

Knisely et al. (2024)

Durvalumab +
Tremelimumab

PD-L1 and CTLA-4 II There was no significant difference in PFS between the
combination therapy group and the sequential therapy group
In addition, partial responses were observed in 2 patients and
stable disease in 1 patient, with all responses occurring in the
combination therapy group

Hinchcliff et al. (2024)

Durvalumab + Eribulin PD-L1 and
microtubules

Ib ORR of 55%, with 4 patients experiencing stable disease, and a PFS
of 6.2 months

Landry et al. (2023)

Niraparib + Pembrolizumab PARP and PD-1 I and II ORR of 19%, compared to monotherapy with each agent, with no
signs of toxicity

Konstantinopoulos et al.
(2019)

JNJ-78306358 ⍺3 domain of HLA-G
and CD3

I The therapy facilitated the formation of immune synapses and the
killing of tumor cells by CTLs. Furthermore, no interaction of this
ADC was found with cells that do not express HLA-G,
demonstrating its specificity for certain types of tumor cells

Geva et al. (2024)

Mirvetuximab FR⍺ III Patients showed median PFS of 5.62 months and ORR of 42.3%
During treatment, was demonstrating greater safety in relation to
the group with the another treatment

Moore et al. (2023)

Mirvetuximab + Carboplatin
+ Bevacizumab

FR⍺ and VEGF Ib Patients showed an ORR of 83%. Most adverse effects were graded
as 2 or lower

Richardson et al. (2024)

Oregovomab CA-125 II All patients achieved cytoreduction and the PFS demonstrating a
significant difference between the control group and the treated
group

Brewer et al. (2020)
Junsik et al., 2024

Abagovomab EpCAM and CD3 III Patients showed better recurrence-free survival Battaglia et al., 2017
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immune-based treatments for OC. Indeed, to handle the adverse
effects of common therapies for cancer, immunotherapy strategies
emerged as a cancer-specific alternative capable of targeting the
tumor and causing minimal impact on normal tissues (Aly, 2012;
Zhu and Yu, 2022). They are significant considering the usual
therapeutic approaches such as surgery, chemotherapy, and
radiotherapy which besides the adverse effects show a lack of
specificity for tumors (Kaczmarek et al., 2023). Therapeutic
cancer vaccination is a strategy of immunotherapy developed to
elicit or boost antitumor adaptive immune responses to detect and
eliminate them (Luo et al., 2024; Chambers, 2011). Moreover, CAR-
T cells are genetically engineered to recognize and attack tumor-
specific antigens (June et al., 2018), bypassing the need of MHC
molecules presentation, and behaving as active drugs against tumors
(Maus and June, 2016). In turn, exosomes are a category of
extracellular vesicles with a lipid bilayer, measuring
approximately 30–150 nm, found in various body fluids such as
blood, urine, saliva, and cerebrospinal fluid (He et al., 2018; Gong
et al., 2023). In addition to their ambiguous role, exosomes may
serve as a potential tool for OC therapy (Shimizu et al., 2024). Also of
clinical relevance, therapeutic monoclonal antibodies have been
successfully developed for the treatment of various cancer types
(Hafeez et al., 2020). Numerous clinical trials are still underway with
promising prospects for the treatment of OC, including ADCs such
as JNJ-78306358, ivonescimab, ipilimumab, durvalumab,
oregovomab, catumaxomab, abagovomab, daclizumab and
mirvetuximab, which was approved by the FDA in 2022 but
remains under study for application in OC treatment (Dilawari
et al., 2023). Yet, ICIs represent a promising class of drugs in
immunotherapy against OC, targeting PD-1/PD-L1 and CTLA-4.
They have already demonstrated broad bioactivity and stable
response in the treatment of various types of tumors (Naimi
et al., 2022; Tang S. et al., 2022b), including OC (Disis et al.,
2019). Therefore, OC immunotherapy involves the induction of
an anti-tumor immune response and the development of
immunological memory. This process not only can eradicate
malignant cells within the primary tumor site, thereby averting
recurrence, but also hampers the metastatic spread to distant
anatomical locations (Cha et al., 2020).
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