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Objective: This study investigates the effects of Paromomycin on SUMOylation-
related pathways in glioblastoma (GBM), specifically targeting HDAC1 inhibition.

Methods: Using TCGA and GTEx datasets, we identified SUMOylation-related
genes associated with GBM prognosis. Molecular docking analysis suggested
Paromomycin as a potential HDAC1 inhibitor. In vitro assays on U-251MG GBM
cells were performed to assess Paromomycin’s effects on cell viability,
SUMOylation gene expression, and IGF1R translocation using CCK8 assays,
qRT-PCR, and immunofluorescence.

Results: Paromomycin treatment led to a dose-dependent reduction in GBM cell
viability, colony formation, and migration. It modulated SUMO1 expression and
decreased IGF1R nuclear translocation, an effect reversible by the
HDAC1 inhibitor Trochostatin A (TSA), suggesting Paromomycin’s involvement
in SUMO1-regulated pathways.

Conclusion: This study highlights Paromomycin’s potential as a therapeutic agent
for GBM by targeting HDAC1-mediated SUMOylation pathways and influencing
IGF1R translocation, warranting further investigation for its clinical application.
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Introduction

Glioblastoma Multiforme (GBM) is the most aggressive and malignant type of brain
tumor in adults, predominantly originating in the central nervous system (Banu, 2019;
Grochans et al., 2022). This rapidly progressing tumor is characterized by its high
malignancy and resistance to conventional treatments, leading to substantial physical
and psychological burdens for patients and their families (Yalamarty et al., 2023; Tian
et al., 2024). Accounting for nearly 50% of all primary brain tumors, GBM is the most
prevalent malignant brain tumor in adults, with the majority of diagnoses occurring in
middle-aged and elderly individuals (Davis, 2016; Stylli, 2021). Accounting for nearly 50%
of all primary brain tumors, GBM is the most prevalent malignant brain tumor in adults,
with the majority of diagnoses occurring in middle-aged and elderly individuals (Grech
et al., 2020; Ostrom et al., 2018). Additionally, the incidence is slightly higher among males
and certain demographic groups, such as African Americans (Tosakoon et al., 2023). GBM
is associated with highmortality rates and requires extensive healthcare resources, including
surgery, radiation, chemotherapy, and long-term rehabilitation (Dasari et al., 2020; Aly
et al., 2019). GBM is associated with high mortality rates and requires extensive healthcare
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resources, including surgery, radiation, chemotherapy, and long-
term rehabilitation (Elsaid et al., 2020). This challenging clinical
landscape underscores the critical need for advancing our
understanding of GBM’s underlying biology and developing
novel therapeutic strategies.

The complexity and heterogeneity of GBM stem from various
genetic mutations, chromosomal aberrations, and downregulation
of tumor suppressor genes (Nakada et al., 2011; Kesari, 2011). These
genetic factors are pivotal in the initiation, progression, and
treatment resistance of GBM (Nguyen et al., 2021; Chen et al.,
2022). This challenging clinical landscape underscores the critical
need for advancing our understanding of GBM’s underlying biology
and developing novel therapeutic strategies (Nguyen et al., 2021;
Chen et al., 2022). Additionally, disruptions to the blood-brain
barrier (BBB) facilitate cellular infiltration that enhances tumor
invasiveness while impeding therapeutic agent delivery. Despite
the conventional approach of tumor resection followed by
adjuvant radiation and chemotherapy, most GBM tumors tend to
recur, often in multiple regions, complicating effective treatment.
Challenges in achieving complete surgical resection and the
development of resistance to radiotherapy and chemotherapy
further impede patient outcomes. The median survival for GBM
patients remains approximately 12–15 months post-diagnosis,
although survival can vary depending on individual patient
characteristics. Consequently, there is an urgent need to identify
and target novel therapeutic pathways to improve GBM treatment
outcomes. The manipulation of biomolecules, in combination with
environmental exposure, can provoke diverse biological responses,
and such interactions—documented across various experimental
contexts—highlight promising therapeutic targets (Du and Liu,
2024; McNerney and Styczynski, 2018; Cheng et al., 2013). The
synergy of pharmacotherapy and bioinformatics has further
amplified the potential of modern medical research, with large-
scale bioinformatics databases elucidating associations between
physiological markers and long-term health outcomes, offering
valuable data to inform clinical decision-making (Liao et al.,
2023; Tsuji et al., 2023; Wu W-T. et al., 2021; Asano, 2018;
Srivastava and Kumar, 2024; Li, 2015; Behl et al., 2021).
Additionally, animal models that replicate disease physiology are
essential for validating therapeutic efficacy and generating robust
supporting data (Pechanova, 2020; McGonigle and Ruggeri, 2014).
In clinical practice, shared decision-making tools and checklists have
proven effective in increasing patient engagement and satisfaction,
particularly in drug selection and treatment planning (Li et al., 2023;
Wieringa et al., 2019; Slyer, 2022). Furthermore, the rapid
development of artificial intelligence (AI) is advancing healthcare
by enhancing decision-making accuracy through sophisticated
algorithms and data-driven analysis, paving the way for more
personalized treatment recommendations (Shan et al., 2024; Hao
et al., 2024).

Gene-environment interaction studies, a subset of
bioinformatics methodologies, have proven effective in analyzing
survival data derived from large-scale genomic analyses. These
approaches have revealed molecular pathways potentially
responsible for a variety of complex conditions (Wang et al.,
2022). Recent advancements in bioinformatics and molecular
biology have significantly enriched our understanding of GBM,
revealing its intricate molecular basis through genomic,

proteomic, and metabolomic investigations. This progress has
facilitated the emergence of innovative therapeutic strategies
(Kumar et al., 2008; Kaynar et al., 2021). Ongoing research
focuses on personalized medicine, targeted therapies, and
immunotherapies aimed at overcoming resistance to radiation
and enhancing therapeutic efficacy while improving the overall
quality of life for patients (Yang and Cai, 2023; Wayteck et al.,
2014). A comprehensive understanding of GBM’s epidemiology,
biological characteristics, and treatment challenges is essential for
optimizing curative strategies (Aldoghachi et al., 2022; Kim and
Kim, 2020). Future investigations should prioritize the exploration
of molecular pathways that drive tumorigenesis and treatment
resistance, with the goal of translating these findings into
improved survival rates and quality of life for patients (Ou et al.,
2020; Wu W. et al., 2021).

Among promising therapeutic targets, post-translational
modifications (PTMs) such as SUMOylation (Small Ubiquitin-
like Modifier modification) have garnered significant attention
(Woo and Abe, 2010; Zhao et al., 2021). SUMOylation regulates
numerous cellular functions, including the cell cycle, DNA damage
response, and apoptosis (Han et al., 2018). Studies indicate that
elevated SUMOylation activity may promote GBM development
and progression by modulating these pathways, positioning
SUMOylation as a viable target for therapeutic intervention (Fox
et al., 2019). At the genomic level, extensive evidence supports the
link between genetic variations and the development and
progression of GBM (Backes et al., 2015; Pasche and Myers,
2009). Recent studies have identified specific biomarkers and
treatment strategies, which are generating new opportunities for
GBM management (Lynes et al., 2020). For instance, mutations in
the IDH1/IDH2 genes are prevalent in GBM and have been
associated with metabolic changes that impact tumor cell
proliferation and survival (Miller et al., 2017; Yan et al., 2009).
Furthermore, alterations or deletions in the TP53 gene lead to the
loss of p53 protein function, disrupting cell cycle control and
hindering DNA repair mechanisms (Monti et al., 2020;
Vaddavalli and Schumacher, 2022). These genetic alterations
serve as cellular markers for GBM diagnosis and classification
and may represent potential therapeutic targets (Szopa et al.,
2017). Recent advancements in bioinformatics have significantly
transformed disease research, enabling comprehensive multi-omics
analyses that provide critical insights into the molecular
mechanisms underlying disease progression (Glass, 2023; Sun
and Hu, 2016). Recent advancements in bioinformatics
have significantly transformed disease research, enabling
comprehensive multi-omics analyses that provide critical insights
into the molecular mechanisms underlying disease progression
(Yan et al., 2022; Chen et al., 2020; Cavill et al., 2016).
This integrated analysis has become indispensable in disease
diagnosis, prognosis assessment, and treatment evaluation,
thus reinforcing the foundations of precision medicine (Guo Z.
et al., 2023; Huang L. et al., 2022; Huang et al., 2013; Wang et al.,
2005; Huang et al., 2015; Yang et al., 2024). This study aims to
assess the effects of Paromomycin on SUMOylation-related
pathways in GBM. By combining bioinformatics analysis,
molecular docking, and in vitro validation, this research seeks
to contribute to the development of novel targeted
therapies for GBM.
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Materials and methods

Expression profiling of SUMOylation-related
genes in pan-cancer analysis

In this research, we conducted a detailed evaluation of
SUMOylation-related gene expression across multiple cancer
types. To assess variations in gene expression between different
cancers and adjacent non-tumor tissues, we applied the Wilcoxon
Rank Sum Test. To further analyze expression differences within
each cancer type between malignant and adjacent non-tumor
tissues, we utilized the Wilcoxon Signed Rank Test, a non-
parametric method for dependent samples. Consistency was
maintained by merging TPM expression data from GTEx normal
samples with corresponding TCGA tumor data, using the
tcgasandbox_RSEM_gene_tpm and gtexsandbox_RSEM_gene_
tpm datasets from the UCSC Xena database. We standardized
the data by converting it to Z-scores, ensuring uniform
comparisons across tumor subtypes. For comparative analysis of
expression levels between tumor and non-tumor tissues in TCGA
and GTEx datasets, we focused on the GBM dataset, employing the
Wilcoxon Rank Sum Test. This statistical method, also known as the
Mann-Whitney U Test, is a reliable tool for assessing differences
between two independent samples, testing the hypothesis regarding
the median comparability of two populations at a significance level
of α = 0.05.

Promoter methylation analysis of
SUMOylation-related genes

This analysis focused on examining methylation levels in
specific genomic regions, including TSS1500 (spanning 200 to
1,500 bp upstream of the TSS), TSS200 (within 200 bp of the TSS),
the first exon, and the 5′untranslated region (5′UTR). Median
methylation levels across these regions were calculated for each
sample to assess cumulative methylation. A Spearman correlation
analysis was also conducted to determine potential associations
between methylation levels and gene expression. The non-
parametric Spearman rank correlation coefficient was employed
to analyze this association without assuming data normality,
treating methylation as the independent variable and gene
expression as the dependent variable. The Wilcoxon Rank Sum
Test was additionally used to compare methylation patterns
between tumor and non-tumor groups, allowing for
distributional comparisons across independent groups without
presuming normality.

ATAC-seq analysis of SUMOylation-
related genes

Using the ChIPseeker package in R, we examined ATAC-seq
data of SUMOylation-related genes. Peaks were annotated at gene
promoters around the transcription start site (TSS) with parameters
set to tssRegion = c (−3,000, 3,000) to capture areas extending
3,000 bp upstream of the TSS and covering up to +3 kb downstream.
This approach is a standard method to assess transcription factor

binding, histone modifications, and other genomic interactions
around the TSS. Chromosomal distributions of ATAC-seq peaks
were visualized using the covplot function, presenting peak locations
across chromosomes, along with relevant genomic distances and
tumor types.

Genomic characterization of SUMOylation-
related genes in pan-cancer studies

We retrieved copy number variation (CNV) and DNA
methylation data from TCGA across various cancers. Data
matrices were organized with rows representing samples and
columns as individual genes or genomic loci, undergoing quality
control to remove low-quality samples and normalize for technical
variation. In OSCC samples, CNV analysis was performed using
GISTIC and CNAnorm, categorizing genes into amplified or deleted
based on CNV levels. DNA methylation in promoter regions of
SUMOylation-related genes was assessed in both tumor and normal
tissues through the UALCAN platform. Methylation patterns across
different cancers were further analyzed using the MethSurv
database, aiming to establish any association between methylation
and cancer incidence. Mutation Annotation Files (MAF) were
downloaded from TCGA using the “TCGAbiolinks” R package.
Tumor mutation burden (TMB), indicating genomic instability
potentially related to immunotherapy response, was calculated
with the “maftool” package. We examined the relationship
between SUMOylation gene expression and CNV, DNA
methylation, and TMB, using statistical analyses, correlation
studies, survival plots, and other computational tools in R to
explore the impact of these genetic features on tumor
progression and patient outcomes.

GSEA enrichment analysis across
pan-cancer types

Expression data for several cancer types, including both tumor
and adjacent normal samples, were collected from The Cancer
Genome Atlas (TCGA) database, incorporating RNA-seq and
microarray sources. Following normalization, samples and probes
that did not meet predefined quality criteria were removed from
further analysis. Differential expression analysis was performed
using the R package “limma,” which provides methods for data
normalization, background correction, and statistical testing to
identify significantly altered genes. Key genes were determined
based on log2 fold change (log2FC) to represent expression
differences, alongside the P-value to assess statistical significance.
Gene Set Enrichment Analysis (GSEA) was carried out with the R
package “clusterProfiler,” allowing us to interpret biological
functions of differentially expressed genes through pathway
databases like KEGG, Gene Ontology (GO), and Reactome. The
Enrichment Score (ES), ranging from 0 to 1, was calculated to
quantify the association between gene expression and specific
biological processes, facilitating pathway relevance assessment.
Visualizations, including bar graphs, scatter plots, and heatmaps,
were generated using the “ggplot2” package in R, known for its
flexibility in data visualization.
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Tumor Prognosis analysis

The TCGA database provided RNA-seq and microarray data,
alongside clinical and survival information across various cancer
types. Using the “limma” package, we analyzed differential gene
expression to identify genes with significant up- or downregulation
in tumor samples compared to paired normal tissues. Our focus was
on SUMOylation-related genes with expression levels potentially
linked to overall survival (OS). To investigate these genes’ impact on
OS, we used a Cox proportional hazards model in R’s “survival”
package. Kaplan-Meier survival curves were generated and
compared using the log-rank test to illustrate survival differences
between low- and high-expression groups, with plots created using
the “survminer” package, which allows for clear visualization of
survival outcomes.

Developing a prognostic model for
SUMOylation-related genes in GBM

To evaluate the diagnostic performance of the ssGSEAscore in
differentiating tumor samples from normal samples, ROC analysis
was conducted using the “pROC” package, which calculated the area
under the curve (AUC) and plotted a smooth ROC curve along with a
95% confidence interval. The ssGSEAscore was determined using the
“gsva” package’s gsva function with the “ssgsea” method. Expression
data for this study were acquired from the TCGA dataset, specifically
the EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2 dataset,
accessible through PanCanAtlas in the geneExp.tsv file. This file was
generated via the Firehose pipeline using MapSplice and RSEM, with
standardization by setting the upper quartile value to 1,000. The
Wilcoxon Rank Sum Test was used to compare ssGSEAscore
expression between tumor and normal tissues in the GBM dataset,
while the Wilcoxon Signed Rank Test assessed ssGSEAscore in tumor
tissues relative to adjacent normal tissues. Calibration curves were also
constructed to show alignment between predicted and actual
outcomes in tumor classification, and goodness-of-fit tests were
applied to assess model accuracy. Furthermore, ssGSEAscore
variations in different GBM stages were examined using the
Wilcoxon Rank Sum Test, and the Kruskal-Wallis Rank Sum Test
compared ssGSEAscore expression among GBM progression phases.

Survival prognosis analysis of SUMOylation-
related genes in GBM using ssGSEA

To assess overall survival (OS), disease-specific survival (DSS),
and progression-free interval (PFI) based on SUMOylation-related
genes, we conducted Kaplan-Meier survival analysis using the
“survival” package in R. The ssGSEAscore thresholds were
determined with the “survminer” package, ensuring that the ratio
between groups did not drop below 0.3. Each survival analysis was
executed using the survfit function, with high- and low-score groups
compared via a log-rank test. For Cox survival analysis, we conducted
a meta-analysis with inverse variance weighting, including data from
sixteen qualifying studies, and measured hazard ratios (HR) in
logarithmic form. HRs were divided into two categories: less than
1, indicating a tumor-suppressive effect, and greater than 1, suggesting

an oncogenic role. While this stratification helped differentiate tumor
impacts, it did not capture the full range of regulatory functions
associated with the targeted genes. Statistical analyses and visual
representations were generated using the Meta package in R
(version 4.3.2). Additionally, each gene underwent univariate Cox
survival analysis through the “survival” package, employing the Cox
proportional hazards model via the coxph () function. Forest plots
were created using the “forestplot” package to illustrate HRs and their
95% confidence intervals (CIs).

Core protein drug sensitivity screening

Virtual screening is an efficient technique in drug discovery,
enabling prediction of a compound’s biological activity by modeling
interactions with biological targets, thus reducing both time and costs
associated with drug research. In our study, we obtained 3D structures
of 321 FDA-approved drugs from the ZINC database. Core protein
domains were downloaded in PDB format from the Protein Data
Bank (PDB). Screening was performed with the Libdock tool in
Discovery Studio 2019 (DS 2019). Prior to screening, PDB
structures underwent preprocessing: water molecules were
removed, receptor protein structures were optimized, and energy
minimization was applied to both proteins and ligands. Key amino
acid residues were set to appropriate ionization states, tautomers were
generated, and non-polar hydrogen atoms were removed. Important
atomic charges were assigned using the Gasteiger-Marsili approach.
Molecular docking was employed to explore potential interactions
between candidate drugs and the binding sites of target proteins,
assessing compatibility with the protein binding regions. These
findings provide a foundation for drug design refinement and
subsequent experimental validation.

CCK8 proliferation activity assay

For cell proliferation assays, U-251MG cells were seeded at a
density of 5 × 10³ cells per well in 96-well plates. Different
concentrations of Paromomycin were introduced to each well,
and cells were incubated for 48 h. Following this, 10 μL of CCK-
8 solution was added to each well, with an additional 2-h incubation
period. Absorbance was measured at 450 nm using a microplate
reader. For TSA treatment, cells were incubated for 24 h in fresh
culture medium containing 100 nM of TSA. Control wells received
fresh medium with 0.1% DMSO under the same conditions. The
experiment was repeated three times to ensure reproducibility.

qRT-PCR

To extract total RNA, 1 mL of Trizol reagent was added per well,
and the solution was transferred to 1.5-mL tubes for 10 min of lysis.
After sonication, 200 μL of chloroform was added, followed by
centrifugation at 12,000 rpm for 15 min at 4°C. The supernatant was
collected, mixed with 400 μL of isopropanol, and centrifuged to
isolate the RNA pellet, which was then dissolved in 20 μL of DEPC
water. RNA was reverse-transcribed into cDNA under specific
temperature conditions for qRT-PCR.
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Immunofluorescence

Cell slides were prepared and incubated with a bovine serum
albumin (BSA) solution for 1 h to block non-specific binding. After
blocking, the slides were rinsed and incubated overnight at 4°C with
either a 1:250 dilution of anti-CAS3 or a 1:100 dilution of anti-
SUMO1 antibody. The following day, slides were washed in PBS and
then incubated with a fluorescein-labeled secondary antibody for 2 h
at room temperature. Cell nuclei were stained with DAPI, and after a
final rinse, the slides were fixed for imaging. Fluorescence
microscopy was used to visualize the expression levels of
CAS3 and SUMO1 proteins across different cell clusters.

Colony formation assay for U-251MG cells

The colony-forming ability of U-251MG glioblastoma cells after
Paromomycin treatment was evaluated. Cells were maintained in
Dulbecco’s Modified Eagle Medium (DMEM) (Gibco BRL, MD,
United States) with 10% fetal bovine serum (FBS) (HyClone). U-
251MG cells were seeded at 500 cells per well in six-well plates and
allowed to adhere overnight. The following day, cells were treated with
the appropriate concentration of Paromomycin or vehicle control
(DMSO), with fresh treatment medium replaced every 3–4 days.
After 10–14 days, during which colonies became visible, the medium
was removed, and cells were gently rinsed twice with PBS. The cells were
then fixed with 4% paraformaldehyde for 15 min at room temperature.
After fixation, colonies were stained with 0.5% crystal violet solution for
20 min, rinsed with distilled water to remove excess stain, and air-dried.

Statistical analyses

The statistical analyses were performed using GraphPad Prism
version 8.0 (GraphPad Software, La Jolla, CA, United States). In
order to guarantee the dependability of the outcomes, all trials were
conducted three times. The data are reported as the average value
plus or minus the standard deviation (SD). A two-tailed Student’s
t-test was employed to compare two samples. The data distribution
was analyzed for normality using the Shapiro-Wilk test, and the
equality of variances was verified using Levene’s test. In order to
compare more than two groups, we used one-way analysis of
variance (ANOVA) followed by Tukey’s post hoc test to discover
particular differences between the groups. A p-value less than or
equal to 0.05 was deemed to be statistically significant.

Results

Relationship between the expression of
SUMOylation-related genes and
tumor prognosis

This study investigates the correlation between the expression
levels of ten genes associated with SUMOylation (HDAC1, HDAC4,
HDAC9, PIAS1, PIAS2, RAN, RANBP2, SUMO1, RANGAP1,
SUMO1) and overall survival (OS) across various cancer types, as
illustrated in Figure 1. The forest plots display hazard ratios (HR) and

95% confidence intervals (CI) for each gene in different malignancies.
Figure 1A shows a strong association between elevated
HDAC1 expression and increased risk, alongside unfavorable
outcomes in several cancer types. Similarly, Figure 1B highlights
that high HDAC4 expression is a significant prognostic indicator.
Consistent findings across multiple datasets, including Figures 1C, D,
reveal a robust association between highHDAC6 expression and poor
OS. PIAS1 (Figure 1E) and PIAS2 (Figure 1F) show mixed outcomes,
suggesting that their prognostic roles vary by cancer type. Increased
expression of RAN (Figure 1G) is linked to reduced OS, while
RANBP2 (Figure 1H) and RANGAP1 (Figure 1I) demonstrate
protective effects, with higher expression associated with improved
survival. SUMO1 (Figure 1J) appears to function as both a risk factor
and a protective factor, contingent on the specific cancer type. These
findings underscore the prognostic significance of SUMOylation-
related genes, highlighting their potential as therapeutic targets and
prognostic indicators in cancer.

Relationship between the expression of
SUMOylation-Related genes and
Tumor Prognosis

Our study aimed to characterize the expression patterns and
promoter methylation levels of SUMOylation-related genes across
diverse cancer types. The findings reveal extensive disruption and
complex epigenetic regulation of these genes. Comparative analyses of
gene expression in unpaired samples (Figure 2A) and paired cancer
samples (Figure 2B) indicated substantial overexpression and
downregulation of SUMOylation-related genes. These observations
were further corroborated by an analysis using TCGA-GTEx datasets
(Figure 2C), which identified significant gene expression changes
across multiple datasets, reflecting widespread alterations.
Promoter methylation analysis (Figure 2D) identified specific genes
with marked differences in methylation levels between tumor and
normal tissues, suggesting the presence of epigenetic regulatory
mechanisms. Additionally, an examination of promoter
methylation and gene expression (Figure 2E) revealed both positive
and negative correlations, highlighting the intricate relationship
between epigenetic modifications and gene expression. The
identified promoter methylation variations (Figure 2F) point to
genes with abnormal delta values, which could represent potential
therapeutic targets. This study contributes to a deeper understanding
of the molecular pathways involved in cancer progression and
identifies promising biomarkers and targets for further investigation.

SUMOylation-related gene promoter
methylation analysis

This study conducted a comprehensive analysis of methylation
patterns in the promoters of SUMOylation-related genes, utilizing
various data types, with findings summarized in Supplementary
Figure 1. The examination of the HDAC1 promoter region
(Supplementary Figure 1A) shows variation in the distribution of
methylated versus unmethylated sites across samples. A pie chart
illustrates higher methylation levels in certain sample types, while a
circular plot highlights regions of high methylation density. In the
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FIGURE 1
Correlation Between SUMOylation-Related Gene Expression and Tumor Prognosis. (A) The forest plot presents hazard ratios (HR) and 95%
confidence intervals (CI) for HDAC1 expression and its association with overall survival (OS) across various cancer types. Each line represents a
specific cancer, with red indicating a negative (risk) factor and blue indicating a positive (protective) factor. (B) Similar analysis for HDAC4,
displaying its relevance to OS across multiple cancers, where HR and CI indicate the impact of HDAC4 expression on patient outcomes. (C)
Depicts the influence of HDAC6 expression on OS, with corresponding HR and CI values highlighting its role in cancer prognosis. (D) A validation
analysis utilizing an independent dataset to confirm or compare the effects of HDAC6 expression on OS. (E) Shows the relationship between
PIAS1 expression and OS across various malignancies, demonstrating its potential role in cancer progression. (F) Displays the impact of
PIAS2 expression on OS, with HR and CI values reflecting its prognostic significance in different cancers. (G) This forest plot illustrates the
association between RAN expression and OS across all analyses. (H) Shows the influence of RANBP2 expression on OS, with HR and CI values
indicating its predictive power for tumor outcomes. (I) Analyzes the relationship between RANGAP1 expression and OS, highlighting its potential

(Continued )
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HDAC4 promoter (Supplementary Figure 1B), methylation patterns
vary significantly across datasets. A bar chart presents methylation
frequency, and a pie chart indicates the proportion of methylated
sites. The HDAC6 promoter (Supplementary Figure 1C) analysis
investigates methylation changes according to sample type,
providing a detailed view of epigenetic modifications. In contrast,
the HDAC9 promoter (Supplementary Figure 1D) displays
distinctive methylation hotspots, which may have regulatory
effects. For the MDM2 promoter (Supplementary Figure 1E),
methylation levels and patterns vary depending on environmental

conditions. The PIAS1 promoter (Supplementary Figure 1F) shows
differential methylation across experimental groups, whereas the
PIAS2 promoter (Supplementary Figure 1G) exhibits more uniform
methylation patterns. The RAN promoter (Supplementary
Figure 1H) indicates the percentage of methylated sites and
potential regulatory impacts, with additional graphs illustrating
chromatin accessibility. The RANBP2 promoter (Supplementary
Figure 1I) displays some variability in methylation, which may
influence gene expression. Similarly, the RANGAP1 promoter
(Supplementary Figure 1J) shows notable methylation differences

FIGURE 1 (Continued)

role in enhancing survival benefits in cancer patients. (J) Presents HR and CI values for SUMO1 expression, showcasing its correlation with patient
prognosis and impact on OS across various cancer types.

FIGURE 2
Expression Landscape of SUMOylation-Related Genes in Pan-Cancer. (A) Using unpaired methods, we analyzed differential gene expression driven
by SUMOylation across various pan-cancer samples. Each row represents a unique SUMOylation-related gene, while each column corresponds to a
specific cancer type. (B) This panel displays the correlation between SUMOylation-related gene expression in paired cancer samples. The heatmap,
consistent with (A), uses log2FC values to depict the contrast in gene expression between tumor and normal tissues within the same patients. (C)We
explored differential expression of SUMOylation-associated genes across several datasets from TCGA-GTEx. The dot plot shows log2FC values, with dot
size corresponding to the -log10 of corrected p-values. Downregulation is shown by blue dots, while upregulation is represented by red dots. (D) Analysis
of promoter methylation in SUMOylation-related genes. The heatmap shows differences in promoter methylation levels between tumor and normal
tissues, with a gradient from white to dark blue signifying increasing methylation levels. (E) This panel examines the correlation between promoter
methylation levels and expression of SUMOylation-related genes. The heatmap displays Pearson correlation coefficients, where dark blue represents
strong negative correlations, and dark red represents strong positive correlations. (F)Delta values showing the differences in promoter methylation levels
of SUMOylation-related genes between tumor and normal tissues in pan-cancer. The bubble plot depicts delta values, with bubble size corresponding to
the negative log10 of p-values, and color indicating the direction of change (red for increased methylation, blue for reduced methylation).
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across samples. Finally, the SUMO1 promoter (Supplementary
Figure 1K) demonstrates potential regulatory capacity over gene
expression, with bar graphs displaying methylation distribution by
sample type and pie charts indicating the ratio of methylated to
unmethylated sites. An additional circular plot offers a
comprehensive overview of the methylation landscape, displaying
ATAC-seq peaks across chromosomes and providing insights into
chromatin accessibility in relation to promoter methylation.

Analysis of SUMOylation-related genes in
pan-cancer: copy number variation,
methylation, and tumor mutation burden

This study conducted a comprehensive analysis of SUMOylation-
related genes across various cancers, focusing on genetic, epigenetic, and

expression alterations. Figure 3A displays the Copy Number Variation
(CNV) rates of SUMOylation-related genes across 20 cancer types, with
each bar color-coded by cancer type. Figure 3B presents a bubble plot
illustrating the relationship between CNV and gene expression; bubble
size and color (red for positive correlation, blue for negative) indicate
the strength and direction of these associations. Figures 3C, D depict
similar patterns for Tumor Mutation Burden (TMB) and promoter
methylation, respectively, suggesting that CNVs and hypermethylation
are major drivers of abnormal gene expression in cancer. Lastly,
Figure 3E showcases a heatmap representing the expression levels of
SUMOylation-related genes across various tumor microenvironments,
where rows correspond to genes and columns to cancer types, with a
color gradient indicating expression levels (pink for lower, blue for
higher). This study underscores the intricate regulatory roles of
SUMOylation-related genes in cancer, offering valuable insights for
developing targeted therapeutic strategies.

FIGURE 3
Analysis of SUMOylation-Related Genes in Pan-Cancer: Copy Number Variation, Methylation, and Tumor Mutation Burden. (A) The bar plot shows
the rates of copy number variation (CNV) in SUMOylation-related genes across 20 different types of cancer. Each bar represents a cancer type, with colors
as per the legend. Data points show variation rates, with the vertical axis displaying the percentage of samples with CNV, and the horizontal axis listing the
cancer types. (B) Correlation of Copy Number Variation (CNV) and Gene Expression. This bubble plot illustrates the correlation between CNV and
expression levels of SUMOylation-related genes across cancer types. Bubble color denotes the direction and magnitude of the correlation
coefficient—red for positive correlations and blue for negative—with bubble size reflecting correlation strength. (C) Relationship between Tumor
Mutation Burden (TMB) and Gene Expression. This bubble plot presents the association between TMB and expression of SUMOylation-related genes
across various cancers. Bubble size indicates correlation significance, with color intensity showing relationship strength, similar to (B). (D) Relationship
between Promoter Methylation and Gene Expression. This bubble plot illustrates the correlation between promoter methylation and expression levels of
SUMOylation-related genes across multiple cancers. Bubble size signifies correlation significance, while color indicates the direction of the
relationship. (E) Gene Expression in Different Tumor Microenvironments. The heatmap presents expression levels of SUMOylation-related genes across
various tumor microenvironments. Each row represents a gene, and each column a specific tumor type. The color gradient indicates expression levels,
with pink for lower expression and blue for higher expression.
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Application of molecular docking and
pathway enrichment analyses in low-grade
glioma (LGG) and glioblastoma (GBM)

This research also performed a detailed analysis to identify
critical proteins associated with LGG prognosis. Results indicate
that HDAC1, PIAS1, PIAS2, RAN, and RANBP2 are significant
markers of poor prognosis in LGG. These proteins were
subsequently analyzed through molecular docking to identify
potential therapeutic candidates. Three-dimensional structures of
these proteins were retrieved from the PDB database, and 321 small
chemical ligands were sourced from the NCBI PubChem database
for screening. Results indicated that Dfo, Paromomycin, and 5-
Methyltetrahydrofolate exhibited strong binding affinities to
HDAC1, PIAS1, PIAS2, RAN, and RANBP2, suggesting their
potential as therapeutic candidates targeting ubiquitin-like
modifications in LGG (Figure 4B). Gene set enrichment analysis

(GSEA) was performed across multiple cancer types to identify
critical pathways involved in cancer progression (Figure 4B). In
Figure 4B, a dot plot presents the normalized enrichment scores
(NES) for multiple gene sets, with dot size reflecting the enrichment
significance of each gene set. Key pathways such as xenobiotic
metabolism, epithelial-mesenchymal transition (EMT), and fatty
acid metabolism were prominently enhanced in cancer groups.
Additionally, GSEA was applied to examine molecular processes
in GBM, focusing on SUMOylation-related gene sets. Figure 4C
shows an enrichment score curve, ranking genes by expression levels
in GBM versus control groups. The histogram above the curve
illustrates gene positions in the ranked list, indicating their
association with SUMOylation-related functions in GBM.
Findings revealed higher enrichment of SUMOylation-related
gene sets in GBM than in normal tissues, emphasizing
SUMOylation’s role in GBM tumorigenesis. The comprehensive
analyses presented here provide new insights into the molecular

FIGURE 4
Utilizing molecular docking and pathway enrichment analyses to study Low-Grade Glioma (LGG) and GBM. (A) Heatmap for core protein drug
sensitivity screening andmolecular docking. This heatmap depicts the relationship between important proteins (HDAC1, PIAS1, PIAS2, RAN, and RANBP2)
and the prognosis of low-grade glioma (LGG) patients, as determined by a pan-cancer investigation. These proteins have been identified as important
predictors of poor prognosis in LGG. A simulatedmolecular docking research was performed to discover possible therapeutic medicines that target
these proteins. Thesemajor proteins’ three-dimensional structures were acquired from the PDB database, and 321 small molecule ligands were identified
from the NCBI PubChem database. These ligands were then molecular docked with the target proteins to determine their binding affinities, which were
calculated using LibDockScore. The data show that Dfo, Paromomycin, and 5-Methyltetrahydrofolate have strong binding affinities to HDAC1, PIAS1,
PIAS2, RAN, and RANBP2, implying that they might be used as therapeutic candidates to target ubiquitin-like modification pathways in LGG. (B) Pan-
cancer. GSEA enrichment analysis: The dot plot depicts the enrichment analysis of gene sets connected to distinct signaling pathways across cancer
types using the GSEA approach. The normalized enrichment score (NES) is shown by color gradients, with red indicating a positive NES (enriched in the
cancer group) and blue indicating a negative NES (enriched in the control group). The dots’ sizes show the enrichment’s significance level (-log10(FDR
q-value)) for each gene set. Significant processes that have been enhanced include xenobiotic metabolism, epithelial-mesenchymal transition, and fatty
acid metabolism. (C)GSEA enrichment analysis of the sumoylation-related gene sets in GBM: The figure depicts the enrichment analysis of sumoylation-
related gene sets in GBM versus normal tissues, which was performed using the clusterProfiler software. The enrichment score curve shows the ranking
of genes according on their expression levels in the GBM and control groups. The bar plot under the curve shows the position of genes in the ranked list,
demonstrating the degree of enrichment for sumoylation-related activities in GBM.
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mechanisms and potential therapeutic pathways for LGG and GBM,
mediated through cancer-specific protein interactions and
reconfiguration of signaling networks.

Assessing the prognostic relevance of
SUMOylation-related genes in glioblastoma
via single-sample gene set enrichment
analysis (ssGSEA)

Kaplan-Meier survival analyses were conducted to assess
the prognostic significance of SUMOylation-related genes in

glioblastoma (GBM). Scores derived from Single-Sample Gene Set
Enrichment Analysis (ssGSEA) were used to evaluate three survival
outcomes: Overall Survival (OS), Progression-Free Interval (PFI),
and Disease-Specific Survival (DSS). Kaplan-Meier curves revealed
significant differences in survival rates between the high and low
ssGSEA score groups. Specifically, higher ssGSEA scores correlated
with worse overall survival (Figure 5A, p = 0.022), shorter
progression-free intervals (Figure 5B, p < 0.001), and reduced
disease-specific survival (Figure 5C, p = 0.038). Further analysis
of OS confirmed these findings (Figure 5D, p = 0.015). To strengthen
these observations, a combined analysis of multiple GBM datasets
(CGGA301, CGGA325, CGGA693, Rembrandt, and TCGA) was

FIGURE 5
Prognostic analysis of genes related to SUMOylation in glioblastoma (GBM) using single-sample gene set enrichment analysis (ssGSEA). (A–D)
Kaplan-Meier survival analysis was performed for three distinct survival outcomes in GBM:Overall Survival (OS) (A), Progression-Free Interval (PFI) (B), and
Disease-Specific Survival (DSS) (C). The study contrasts high and low ssGSEA scores for SUMOylation-related gene expression, with p-values indicating
statistical significance. The datasets utilized include publicly accessible GBM patient data. (E) Meta-analysis of univariate Cox proportional hazards
regression across several datasets for overall survival (OS) in GBM. The analysis incorporates papers from CGGA301, CGGA325, CGGA693, Rembrandt,
and TCGA. The forest plot displays logHR, SE (logHR), Hazard Ratio (HR), 95% Confidence Interval (CI), and weight for each research. The random-effects
model calculates the combined hazard ratio using heterogeneity statistics. (F–H) Forest plots of the hazard ratios for individual SUMOylation-related
genes across various GBM datasets for OS (F), PFI (G), and DSS (H). Each figure displays the p-value, hazard ratio, and confidence intervals for the genes
studied, providing information on their prognostic relevance.
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performed using univariate Cox proportional hazards regression.
This analysis indicated that higher ssGSEA scores were associated
with decreased survival, with a combined hazard ratio (HR) of 0.71
(95% CI: 0.47–1.06), reflecting a reduced risk of death. There was no
significant variability in results across the datasets (Figure 5E).
Additionally, analysis of individual genes provided further
insights into the prognostic significance of SUMOylation-related
genes for OS (Figure 5F), PFI (Figure 5G), and DSS (Figure 5H).
These findings collectively suggest that elevated ssGSEA scores of
SUMOylation-related genes are associated with poorer prognostic
outcomes in GBM patients, highlighting their potential as valuable
prognostic biomarkers.

Prognostic model of SUMOylation-related
genes in GBM

The primary objective of this study was to develop and validate a
predictive model based on the expression of SUMOylation-related
genes in GBM. Supplementary Figure 2A displays the calibration
curve and goodness-of-fit test for the ssGSEA score in distinguishing
between tumor and normal groups. The red line represents the
observed findings, while the dashed blue line signifies the ideal
prediction. The Hosmer-Lemeshow test indicated satisfactory
concordance between observed and predicted probabilities. In
Supplementary Figure 2B, a comparison of ssGSEA scores
between tumor and normal groups reveals no significant
distinction, indicating that ssGSEA scores do not substantially
differ between tumor and normal tissues in GBM. The diagnostic
performance of the ssGSEA score for differentiating between tumor
and normal groups was evaluated using a ROC curve
(Supplementary Figure 2C), which suggested limited diagnostic
capability. These findings indicate that while the ssGSEA score
model is well-calibrated, its ability to distinguish between tumor
and normal tissues in GBM is limited, as evidenced by the minimal
difference in ssGSEA scores and the modest AUC value. Further
research is warranted to enhance the model’s accuracy and improve
its diagnostic utility for GBM.

Paromomycin suppresses the activity of
genes involved in SUMOylation modification
and decreases the viability of GBM cells

Paromomycin suppresses the activity of SUMOylation-related
genes and decreases the viability of GBM cells. Our study explored
the effects of Paromomycin on GBM cell survival and SUMOylation
gene expression. Figure 6A illustrates that Paromomycin treatment
led to a dose-dependent reduction in cell viability. Additionally,
qRT-PCR analysis revealed significant reductions in the mRNA
levels of HDAC1, PIAS1, PIAS2, and RANBP2 in Paromomycin-
treated GBM cells as the dosage increased (Figures 6B–E).
Immunofluorescence labeling of caspase-3 and SUMO1 further
demonstrated that higher doses of Paromomycin enhanced
caspase-3 fluorescence intensity while decreasing
SUMO1 expression (Figures 6F, G). A colony formation assay
also indicated that Paromomycin reduced glioma cell
proliferation (Supplementary Figures 2D, E). In U-251MG

glioblastoma cells, Paromomycin treatment significantly
decreased cell viability, as shown in Figure 7A. The CCK8 cell
proliferation assay demonstrated a dose-dependent reduction in the
OD450 value in Paromomycin-treated cells compared to the
negative control (NC), with a greater reduction observed when
Paromomycin was combined with TSA. This finding suggests
that Paromomycin has a potent antiproliferative effect,
particularly in combination with TSA. The colony formation
assay further validated the inhibitory effect of Paromomycin on
cell proliferation (Figures 7B, C). Quantitative analysis showed a
marked reduction in colony formation in the Paromomycin group
relative to the NC, while the addition of the HDAC1 inhibitor TSA
increased colony formation. In a transwell migration assay
(Figure 7D), Paromomycin was found to impair U-251MG cell
migration in addition to reducing cell viability and proliferation. The
images showed a substantial reduction in migrating cells following
Paromomycin treatment, an effect that was reversed with TSA co-
treatment. Immunofluorescence analysis provided insight into
Paromomycin’s molecular action, particularly its influence on
SUMO1 modification and IGF1R nuclear translocation
(Figure 7E). Paromomycin treatment decreased IGF1R nuclear
translocation, possibly due to alterations in SUMO1 modification,
an effect reversed by TSA treatment. These results imply that
SUMO1 modification might contribute to Paromomycin’s
antitumor effects, potentially involving HDAC1 regulation.
Collectively, these findings suggest that Paromomycin not only
diminishes GBM cell survival but also modulates the expression
of critical SUMOylation-related genes, highlighting its potential as a
therapeutic agent for GBM treatment (Figure 8).

Discussion

GBM is a very aggressive and fatal brain tumor with a poor
prognosis and a significant recurrence risk. Despite breakthroughs
in research and treatment, the five-year survival rate for GBM
patients remains less than 5%, emphasizing the critical need for
new therapeutic techniques (Aldoghachi et al., 2022; Stylli, 2020).
Our findings show that Paromomycin, an aminoglycoside antibiotic,
has the ability to target and regulate HDAC1 and hence prevent
GBM growth. Recent advancements in technology and molecular
research have significantly enhanced our understanding of diseases,
thereby supporting therapeutic methodologies (Liu and Ren, 2023;
Candelli and Franceschi, 2023; Ciurea et al., 2023). Intensive
investigations into gene expression and regulatory mechanisms
within biological contexts have provided valuable insights into
gene functionality (Qin et al., 2024; Ren et al., 2023; Zhao et al.,
2024). Researchers have frequently highlighted the critical roles of
protein-protein interaction networks and their regulatory variations
in biological systems, emphasizing their significance in cell signal
transduction and functional control (Tian et al., 2023; Liu et al.,
2023; Zhong et al., 2019). These studies not only deepen our
comprehension of disease processes but also offer robust
theoretical and experimental support for future treatment
modalities (Du and Liu, 2024; Chen Y-C. et al., 2024; Zeng et al.,
2024; Kong et al., 2024; Di Bonito et al., 2024; Fareed et al., 2024).

The integration of biomarkers utilizing big data and
bioinformatics is increasingly pivotal for disease diagnosis and
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predicting future health conditions (Liang et al., 2024; Yao et al.,
2024; Gao et al., 2024; Zhang et al., 2024). The recognition of cell
death mechanisms and metabolic control advances has introduced
new therapeutic targets and perspectives in drug research (Wan
et al., 2024; Yang et al., 2023; Dong et al., 2024; Ahmed et al., 2024).
Understanding cytokine functions in immune responses has yielded

valuable insights for developing effective treatment strategies for
numerous diseases (Sheng et al., 2024). Furthermore, exercise-
related studies on monocyte gene expression regulation in
Alzheimer’s patients may unveil potential therapeutic pathways
(Huang J. et al., 2022; Wang et al., 2020; Sun et al., 2022). Our
findings reveal a relationship between elevated HDAC1 expression

FIGURE 6
Effects of Paromomycin on Cell Viability, Gene Expression, Apoptosis, SUMOylation, and Colony Formation in U-251MG Glioblastoma Cells. (A)Cell
viability was assessed using the CCK8 assay. U-251MG cells were treatedwith varying concentrations of Paromomycin (20mg/L, 50mg/L, 100mg/L), and
the optical density (OD450) wasmeasured. The results show a dose-dependent decrease in cell viability, indicating that Paromomycin effectively reduces
the proliferation of U-251MG cells. (B–E) qRT-PCR analysis of relative mRNA expression levels of HDAC1, PIAS1, PIAS2, and RANBP2 after treatment
with Paromomycin at different concentrations. The data show a significant downregulation of these genes in a dose-dependentmanner, with the highest
inhibition observed at 100 mg/L. Statistical significance was indicated as follows: **p < 0.01, ***p < 0.001 compared to the untreated control group. (F)
Immunofluorescence staining for caspase-3 (red), a key marker of apoptosis, in U-251MG cells treated with increasing concentrations of Paromomycin.
The results showed increased caspase-3 expression, indicating that apoptosis was induced by Paromomycin in U-251MG cells. (G) Immunofluorescence
staining was performed to assess the levels of the SUMOylation protein (SUMO1, shown in red). Nuclei are stained with DAPI (blue). The results indicate
that Paromomycin actively inhibits protein SUMOylation, as evidenced by a significant reduction in SUMO1 expression across various drug
concentrations.
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and poor prognoses across multiple cancer types, suggesting that
HDAC1 could serve as both a prognostic marker and a therapeutic
target. This study explores the role of Paromomycin in selectively
targeting and modulating HDAC1 to inhibit GBM growth, utilizing
bioinformatics analysis to validate experimental results. Analysis of
genes associated with SUMO modification across diverse
malignancies revealed significant variations in gene expression
and distinct methylation patterns.

HDAC1 is a crucial enzyme involved in chromatin remodeling,
leading to the repression of genetic information through the removal
of acetyl groups from histone proteins (Seto and Yoshida, 2014).
Additionally, HDAC1 belongs to a broader family of histone
deacetylases, known for their critical roles in cell cycle
progression, differentiation, and apoptosis regulation (Meunier
et al., 2006). Dysregulation or dysfunction of HDAC1 is
associated with the development of various malignancies,
including GBM. High levels of HDAC1 in GBM significantly
contribute to aggressive tumor behavior, enhancing cell
proliferation, migration, and resistance to apoptosis. The
overexpression of HDAC1 correlates with the inhibition of tumor

suppressor genes and activation of oncogenic pathways, thereby
promoting tumor growth and survival. Moreover, HDAC1’s role in
maintaining the self-renewal potential of GBM cancer stem cells
complicates treatment efforts, as these cells exhibit resistance to
standard therapies (Lo et al., 2021). Given HDAC1’s substantial
involvement in GBM progression, it presents a promising
therapeutic target. Our study demonstrates that Paromomycin
acts as an HDAC1 inhibitor, reversing detrimental epigenetic
modifications that fuel tumor growth and survival. Such drugs
can activate genes that restrict tumor proliferation or enhance
apoptotic pathways, thereby increasing the efficacy of
conventional therapies.

The development of innovative targeted therapies has the
potential to improve treatment effectiveness while minimizing
adverse side effects (Vargas-Sierra et al., 2024; Wahi et al., 2024;
Ma et al., 2024), thereby advancing precision medicine.
Paromomycin, an aminoglycoside antibiotic, has been minimally
investigated for its anticancer potential (Hirukawa et al., 2005).
Through molecular docking studies, we identified Paromomycin
from an FDA-approved drug library as a promising

FIGURE 7
Effects of Paromomycin on Cell Viability, Colony Formation, Migration, and SUMOylation in U-251MG Glioblastoma Cells. (A) U-251MG
glioblastoma cells were treated with Paromomycin and Paromomycin + TSA, and cell viability was assessed using the CCK8 assay. Optical density
(OD450) values indicate a significant reduction in cell viability in the Paromomycin-treated group compared to the NC (negative control), with further
reduction observed when combined with TSA. Statistical significance levels are indicated (*p < 0.001). (B)Quantitative analysis of colony formation
assay, presented as relative colony formation percentages. Paromomycin treatment alone and in combination with TSA significantly decreased colony
formation compared to the NC group. Statistical significance levels are indicated (*p < 0.001, **p = 0.002). (C) Representative images from the colony
formation assay in U-251MG cells. Paromomycin treatment reduced both colony number and size, with an enhanced effect in combination with TSA. (D)
Representative images from the transwell migration assay for U-251MG cells under the NC, Paromomycin, and Paromomycin + TSA conditions. (E)
Immunofluorescence staining in U-251MG cells to assess the effect of Paromomycin on SUMO1 and IGF1R nuclear translocation. Red indicates
SUMO1 staining, green indicates IGF1R, and blue represents DAPI-stained nuclei. The images suggest that Paromomycin reduces IGF1R nuclear
translocation, possibly associated with SUMO1 modification.
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HDAC1 inhibitor. Its strong binding affinity to HDAC1 indicates
that Paromomycin can regulate HDAC1 activity and influence the
SUMOylation pathway, representing a novel approach to specifically
target this pathway in GBM and potentially yield new treatment
options. Our research suggests that Paromomycin may effectively
inhibit GBM by targeting HDAC1 to regulate IGF1R SUMOylation,
potentially opening new avenues for GBM treatment and inspiring
exploration of similar mechanisms in other cancer types (Kunadis
et al., 2021). HDAC1 (histone deacetylase 1) is known to promote
tumor growth in various cancers by regulating chromatin structure
through deacetylation, thus influencing gene expression (Olzscha
et al., 2015). In GBM, abnormal HDAC1 activity is closely associated
with increased cell proliferation, invasiveness, and poor prognosis.
Therefore, inhibiting HDAC1 with Paromomycin may disrupt key
signaling pathways controlled by HDAC1, potentially reducing
tumor cell proliferation and invasiveness. In laboratory assays, we
confirmed that Paromomycin interacts specifically with and
modulates SUMOylated HDAC1 protein, resulting in a
significant reduction in GBM cell growth, motility, and
invasiveness (Fox et al., 2019; Cheng et al., 2023; Guo et al.,
2022). In vitro experiments demonstrated that Paromomycin
effectively inhibits the proliferation of U-251MG, a widely used
GBM cell line, with the CCK-8 proliferation assay indicating a clear
decrease in cell viability in relation to Paromomycin concentration.
Additionally, qRT-PCR analyses revealed decreased expression of
HDAC1 and other SUMO-related genes, such as PIAS1, PIAS2, and
RANBP2, in the presence of Paromomycin. Immunofluorescence

staining corroborated these findings, showing increased levels of
caspase-3 and decreased levels of SUMO1, indicative of enhanced
apoptotic activity and reduced protein SUMOylation.

In recent years, the development of novel targeted therapies has
not only enhanced treatment efficacy and reduced adverse effects
but also promoted advancements in precision medicine (Vargas-
Sierra et al., 2024). Systematic reviews and meta-analyses have been
widely applied in biomedical research, covering various
methodological studies such as drug development and
bioinformatics, significantly advancing both basic research and
translational medicine (Wu Z. et al., 2024). Additionally, the
pivotal role of cell death and metabolic regulation in disease
progression has gained increasing attention, providing new
targets for drug research (Lin et al., 2023). New drugs targeting
specific proteins or gene pathways have notably improved the
specificity and effectiveness of treatments (Hong et al., 2024). For
instance, research has shown that kiwi root extract exerts therapeutic
effects on gastric cancer (Chu et al., 2023). The integration of
modern technology with traditional Chinese medicine also
provides new perspectives and potential in drug development
(Wang et al., 2023). Advances in materials science have led to
the development and application of various novel composite
materials, showing broad potential in biomedical and engineering
fields (Wu H. et al., 2024). Paromomycin, an aminoglycoside
antibiotic, is commonly used to treat intestinal infections and
amebiasis (Botero, 1970). Recent studies have begun exploring its
potential in cancer therapy, particularly its impact on histone

FIGURE 8
Integrated bioinformatics and experimental analysis of Paromomycin targeting HDAC1 in GBM.
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deacetylase 1 (HDAC1). Research suggests that Paromomycin may
inhibit HDAC1 activity, altering the epigenetic state of tumor cells
and thereby reducing their proliferation and invasiveness. The
insulin-like growth factor 1 receptor (IGF1R) plays a crucial role
in cell proliferation and survival, with its nuclear localization closely
associated with the regulation of specific gene expression. Given
Paromomycin’s established use, known safety profile, and
pharmacokinetics, repurposing it as an HDAC1-targeted
anticancer drug could potentially lower the costs and risks
associated with new drug development.

In tumors and neurological disorders, SUMOylation regulation
of specific receptors or proteins can significantly impact key
processes such as cell proliferation, differentiation, and apoptosis
(Liu et al., 2017). IGF1R, a transmembrane receptor tyrosine kinase,
is heavily involved in cell proliferation, differentiation, survival, and
metabolic regulation (Romano, 2003). Additionally, IGF1R plays a
crucial role in nervous system development, neuron survival, and
synaptic plasticity, making its functional regulation closely tied to
the progression of various diseases (Dyer et al., 2016). SUMOylation
of IGF1R can alter downstream signal transmission efficiency, thus
inhibiting tumor cell proliferation and migration (Zhang et al.,
2015). By specifically modulating IGF1R SUMOylation, targeted
therapeutic strategies could be designed that differ from traditional
IGF1R inhibitors, potentially reducing side effects and enhancing
therapeutic efficacy (Zhang et al., 2015; Chen et al., 2024b). Research
indicates that HDAC1 is involved not only in acetylation regulation
but also interacts with other post-translational modifications, such
as SUMOylation. HDAC1 activity may influence the expression or
function of SUMO-related enzymes, affecting the SUMOylation
status of key proteins like IGF1R. Thus, HDAC1 inhibitors, such
as Paromomycin, could regulate IGF1R’s signaling function and
mechanisms in tumors by altering its SUMOylation level. This
regulatory approach may aid in understanding the complex
interactions between HDAC1 and SUMOylation in tumorigenesis
and tumor progression. Targeting HDAC1 to modulate IGF1R
SUMOylation holds significant implications for cancer research
and therapy. This study not only helps to deepen the
understanding of the molecular mechanisms of tumorigenesis
but may also open new therapeutic avenues, offering more
effective treatment options and solutions to overcome cancer
drug resistance. These findings may have profound impacts on
multiple tumor types, including GBM, in the future. Our findings
suggest that HDAC1 activity may affect IGF1R nuclear
translocation. Specifically, inhibition of HDAC1 could lead to a
reduction in IGF1R SUMO1 modification, altering its nuclear
localization and, consequently, downstream signaling and gene
expression.

Furthermore, although results indicate no significant correlation
between HDAC1 levels and overall survival in GBM, nor substantial
differences in methylation levels, this does not directly negate the
role of SUMOylation in GBM. SUMOylation is a complex post-
translational modification that can influence tumor growth and
progression through various mechanisms. While the direct
association between HDAC1 and other SUMO-related genes with
GBMwas not prominent in the current data, this may be due to their
indirect or context-specific roles in tumor biology. For instance, the
regulation of HDAC1 activity may alter IGF1R SUMOylation levels,
subsequently impacting cellular signaling, proliferation, and

invasive capabilities. This effect may emerge under specific
experimental conditions but could be diluted by heterogeneity in
large clinical datasets. SUMOylation involves multiple genes and
proteins, which may display heterogeneous effects across different
cell types or tumor stages. Although statistical significance for
SUMO-related genes in GBM is not strong in this study, this
does not exclude the potential impact of unexamined SUMO
genes or subgroups. SUMOylation can modulate tumor-
suppressing and tumor-promoting genes, such as the enhanced
function of the oncogenic protein MDM2 upon SUMOylation,
which promotes cell proliferation and survival, driving tumor
progression (Chen et al., 2025). This mechanism is especially
relevant in glioma and other tumors, where SUMOylation
regulation could influence treatment outcomes. SUMOylation
also plays a crucial role in protein nuclear translocation (Chen
et al., 2024b; Chen et al., 2024c). Therefore, deeper exploration of
specific SUMO-related gene functions or differential effects across
tumor subtypes may reveal new insights.

The impact of exercise on nuclear translocation has been studied
across various biological pathways, particularly in metabolic
regulation and cell signaling (McGee et al., 2003). Exercise is
believed to slow tumor progression through various mechanisms,
including immune modulation, reducing pro-inflammatory factors,
and improving metabolic status. The exercise-regulated nuclear
translocation mechanism is essential for cell repair, adaptation,
and antioxidant responses. If Paromomycin can influence specific
nuclear translocation pathways through HDAC1, it may enhance
exercise’s biological effects. This could be particularly beneficial for
older adults or patients with chronic illnesses, where exercise-
induced metabolic adaptation is limited, providing extra
metabolic support to improve exercise outcomes. As an
HDAC1 inhibitor, Paromomycin may impact gene expression,
metabolic responses, and anti-tumor activity related to exercise
adaptation. However, experimental validation is needed to
confirm its specific effects on nuclear translocation and its
biological impact.

In summary, personalized medicine, targeted therapy, and
immunotherapy are actively under investigation to enhance
patient quality of life and treatment efficacy (Yang and Cai, 2023;
Jackson and Chester, 2015). Scientists are continuously investigating
and developing new therapeutic strategies by combining several
research approaches including machine learning and bioinformatics
technologies, including small molecule compound screening, multi-
omics analysis, deep learning, and bioinformatics techniques, so
offering new possibilities for precision medicine and personalized
treatment (Wahi et al., 2024; Li et al., 2024; Lan et al., 2024; Yin et al.,
2024). It is recommended to use shared decision-making
components and checklists in clinical practice to improve patient
involvement and satisfaction, especially when it comes to choosing
drugs and planning therapy (Li et al., 2023; Shan et al., 2024).
Advancements in drug delivery systems and the application of
nanotechnology have the potential to greatly improve medication
targeting and boost therapeutic effectiveness. Co-administration of
Paromomycin with other therapeutic agents is also proposed to
enhance its effectiveness, contributing to a comprehensive strategy
against GBM. This work lays the groundwork for future exploration
and drug development aimed at translating these findings into
clinically effective therapies for GBM (Vargas-Sierra et al., 2024;
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Wu et al., 2023; Abuaisheh and Aboud, 2023; Cui et al., 2023; Guo Q.
et al., 2023). Further studies are necessary to elucidate the specific
molecular mechanisms through which Paromomycin affects
HDAC1 and the SUMOylation pathway. It is essential to assess
the gene expression levels and methylation status of SUMOylation-
related genes in humanGBM samples, ensuring that our findings are
applicable to clinical scenarios.

Conclusion

This study highlights the critical role of SUMOylation-related
genes in cancer prognosis. Paromomycin shows potential for
treating GBM by reducing cell viability and migration and
impacting SUMO1 modification and IGF1R nuclear
translocation. These findings suggest that targeting
SUMOylation-related pathways with Paromomycin may offer a
promising strategy for GBM treatment, paving the way for new
targeted therapies in cancer.
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SUPPLEMENTARY FIGURE 1
Promoter Methylation Analysis of SUMOylation-Related Genes. This diagram
illustrates the methylation levels of the promoters for various SUMOylation-
related genes across multiple datasets. (A) HDAC1 Promoter Methylation
Analysis: This panel depicts the methylation status of the HDAC1 promoter
region, including both the methylation rate and the unmethylated rate in
different samples. (B) HDAC4 Promoter Methylation Analysis: This section
presents the frequency of HDAC4 promoter methylation as reported in other
studies involving infarcted hearts. (C) HDAC6 Promoter Methylation
Analysis: A heatmap representation shows the methylation levels of the
HDAC6 promoter categorized by sample type and degree of methylation. (D)
HDAC9 Promoter Methylation Analysis: This summary highlights the overall
structure of the HDAC9 promoter, indicating the MAX binding hotspot and
potential regulatory methylated regions. (E) MDM2 Promoter Methylation
Analysis: This panel displays the methylation status of the MDM2 promoter,
which varies depending on cell state or treatment conditions. (F)
PIAS1 Promoter Methylation Analysis: Plots show the methylation status
profile of the PIAS1 promoter and variations in methylation levels among
different experimental groups. (G) PIAS2 Promoter Methylation Analysis:
This section illustrates the methylation change points in the PIAS2 promoter.
(H) RAN Promoter Methylation Analysis: This analysis presents the
methylation status of the RAN promoter, including fractions of methylated
sites and predicted regulatory effects. (I) RANBP2 Promoter Methylation
Analysis: An overview of the methylation patterns in the RANBP2 promoter,
identifying alterations that may negatively impact gene expression. (J)
RANGAP1 Promoter Methylation Analysis: This panel highlights key intra-
sample differences in DNA methylation for the RANGAP1 promoter. (K)
SUMO1 Promoter Methylation Analysis: This section shows the distribution
and extent of methylation in the SUMO1 promoter, which may play a role in
gene regulation. The distribution of methylation across all sample types is
visualized using bar graphs, with each wedge representing the proportion
of sample types (Nb, CD34, and iPSC) containing CpG sites at low, medium,
or high levels of methylation based on two different qMethylPlex assays. The
rightmost column in each image displays the genome-wide distribution of
ATAC peaks (rows), indicating chromatin accessibility relative to promoter
methylation.

SUPPLEMENTARY FIGURE 2
Prognostic Model of SUMOylation-Related Genes for Glioblastoma (GBM)
Prognosis. (A) To evaluate the diagnostic accuracy of ssGSEA score
expressions in distinguishing tumor from normal groups, calibration curves
were generated, accompanied by goodness-of-fit tests. The x-axis
represents predicted probabilities, while the y-axis displays the actual rates.
The red line indicates actual findings, and the blue dashed line reflects
optimal predictions. According to the Hosmer-Lemeshow test, the P-value
of 0.141 suggests inconclusive evidence, indicating that the model fits the
data well. (B) A comparison of ssGSEA score expressions between tumor
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and normal groups is presented. A violin plot illustrates the distribution
of ssGSEA scores (y-axis) for a selection of input gene sets, with the
normal group shown in blue and the tumor group in red. No significant
difference was observed between the two groups, as indicated by a p-value
of 0.715. (C) The Receiver Operating Characteristic (ROC) curve evaluates

the diagnostic accuracy of the ssGSEA score in differentiating between
tumor and normal groups. The AUC is 0.540 with a 95% CI of 0.298–0.701,
confirming the model’s diagnostic competence. (D, E) The colony
formation assay indicates that Paromomycin affects the proliferation of
glioma cells.
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