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Introduction: Ferroptosis, induced by iron overload and an imbalance in redox
homeostasis, promotes the generation of reactive oxygen species (ROS), leading
to iron-dependent lipid peroxides (LPO) and oxidative stress. Lipid peroxidation
induced by reactive oxygen species is essential for the progression of
spermatogenesis. However, its imbalance can lead to reproductive system
damage and oligoasthenospermia, a critical cause of oligoasthenospermia.
Isatin (ISA) is a naturally occurring compound that is widely distributed in
lobsters, crustaceans, shellfish and various plants. It exhibits significant
antioxidant and anti-aging properties, suggesting its potential as a therapeutic
agent for the treatment of oligoasthenospermia. This study aimed to investigate
the effects and mechanisms of ISA on oligoasthenospermia and to elucidate the
underlying molecular pathways.

Methods: All mice were divided into normal group, model group and treatment
group. Both model group and treatment group received a single intraperitoneal
injection of 30 mg/kg BUS to create the model of oligoasthenospermia. After
2 weeks, the treatment group received different doses of 25, 50 and 100 mg/kg
ISA by gavage for 28 days, and then mice were sacrificed and tested.

Results: The results demonstrated that ISA effectively reversed busulfan-induced
reproductive system damage in mice. This included the restoration of testicular
histomorphology, improvement in sperm concentration and motility, regulation
of serum sex hormone levels, and normalization of various oxidative indices in
testicular tissue. Furthermore, ISA successfully reversed testicular ferroptosis by
restraining the translocation of nuclear factor erythroid 2-related factor 2 (NRF2)
into the nucleus and improved oligoasthenospermia through the glutathione
(GSH)/glutathione peroxidase 4 (GPX4) axis.

Discussion: ISA was found to effectively ameliorate oligoasthenospermia inmice,
presenting a potential therapeutic option for patients with this condition.
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1 Introduction

Currently, 13%–15% of childbearing couples worldwide suffer
from infertility, with approximately half of the cases attributed to
male factors (Zhao et al., 2022). Among male infertility causes,
approximately 40% are categorized as idiopathic male infertility,
meaning specific causes cannot be identified (Sengupta et al., 2022).
These cases include asthenospermia, azoospermia, and
oligoasthenospermia (Lu and Huang, 2012). Studies have
demonstrated that the incidence of oligoasthenospermia, a
common cause of male infertility, has gradually increased over
the past 50 years (Yang et al., 2022). Increased work-related
stress, environmental pollution and some chemotherapy, are
contributing factors to the gradual decline in both the quantity
and quality of male sperm (Rosa-Villagrán et al., 2021; Zhao Y. et al.,
2020). Althoughsome drugs are employed for clinical practice, their
efficacy remains limited (Yilmaz et al., 2018). Consequently, it is
necessary to explore new drugs for the treatment of male
oligospermia. Therefore, exploring noveltherapies for
oligoasthenospermia is important.

Isatin (2,3-Indolinedione, ISA) is a naturally occurring compound
found in mammalian body fluids and tissues, as well as in various
marine organisms like lobsters, crustaceans, shellfish, and certain
plants and microbial metabolites (Gil-Turnes et al., 1989; Hosoe
et al., 1999; Glover et al., 1988; Medvedev et al., 1996). ISA is
particularly abundant in lobsters, where it is crucial for their
survival (Hou et al., 2008). ISA and its derivatives are significant
in fields such as anti-tumor, antiviral, and neuroprotection (Laird
et al., 2000; Sriram et al., 2004; Ding et al., 2005). Research indicates
that ISA’s concentration in mammalian reproductive organs is
notably higher compared to other tissues (Glover et al., 1991).
Besides, ISA exhibits anti-inflammatory and antioxidant properties
and can inhibit liver cancer by upregulating the Nrf2 signaling
pathway (Tawfik et al., 2022). Additionally, research suggests that
ISA can improve spermatogenic function in male mice with gossypol
acetate-induced spermatogenesis impairment (Guo et al., 2018). This
effect may be attributed to its antioxidant properties and potential
anti-inflammatory properties. Based on this, we speculate that ISA
represents a promising avenue for treating oligoasthenospermia.

Ferroptosis, induced by iron overload and an imbalance in redox
homeostasis, promotes the generation of reactive oxygen species
(ROS), leading to iron-dependent lipid peroxides (LPO) and
oxidative stress (Camaschella, 2015). Oxidative stress caused by free
radicals is a significant contributor to male oligoasthenospermia,
which can inflict substantial damage on reproductive system cells
and disrupt spermatogenesis (Asadi et al., 2017). Studies have shown
that the morphological abnormalities observed in rat sperm due to
deficiencies in magnesium and zinc are associated with increased iron
content and the generation of oxygen free radicals (Merker et al.,
1996a; Merker and Günther, 1997; Merker et al., 1996b). Hence, the
maintenance of proper testicular cell function necessitates the
establishment of a balance between the production of free radicals
and their metabolism, testes cells and tissues suffer severe damage
(Romeo et al., 2004).

Currently, recognized mechanisms of ferroptosis regulation
include the GSH/GPX4 axis, the NAD(P)H-FSP1-CoQ10 system,
and the GCH1-BH4-DHFR system (Zheng and Conrad, 2020). The
GSH/GPX4 axis regulation of ferroptosis is divided into three parts:

1. Regulate glutamate-cystine reverse transport system (System Xc-)
(Chen et al., 2021). 2. Regulate Fe2+ and polyunsaturated fatty acid
(PUFA) transport (Liu et al., 2022), 3. Affect Nrf2-HMOX1 axis
(Yang et al., 2024). Inhibition of the GSH/GPX4 axis can reduce
GPX4 production or accelerate GPX4 consumption through the
above three pathways, resulting in an increase in LPO and
ferroptosis. Busulfan (BUS), a critical chemotherapeutic agent,
can reduce the number and functionality of spermatogonia,
potentially leading to temporary or permanent male sterility
(Ganjalikhan Hakemi et al., 2019). It has been reported to induce
ferroptosis in spermatogonia by inhibiting the expression of GPX4
(Zhao X. et al., 2020; Xu et al., 2024). This study established a mouse
model of oligoasthenospermia using BUS and investigated the
potential of ISA treatment as a prospective clinical drug.

2 Materials and methods

2.1 Chemicals and reagents

ISA were purchased from Absin (Shanghai, China). BUS and
dimethyl sulfoxide (DMSO) were supplied by Sigma-Aldrich
(Shanghai, China). Hematoxylin-Eosin (HE) staining kit was
purchased from Biosharp (Anhui, China). T, LH, FSH,
malondialdehyde (MDA), superoxide dismutase (SOD), and
reactive oxygen species (ROS) enzyme-linked immunosorbent
assay (ELISA) kits was acquired from Herbal Source
Biotechnology (Nanjing, China). Total iron assay kits was
purchased from Yuanye Bio-Technology (Shanghai, China).
Glutathione ELISA kits was acquired from Meimian (Yancheng,
China). AceQ® Universal SYBR® qPCR Master Mix was obtained
from Vazyme Biotech (Nanjing, China). ACSL4, CD71/Transferrin,
SLC7A11/xCT, Ferritin Heavy Chain antibody was purchased from
ABclonal (Wuhan, China). HO-1/Heme Oxygenase 1,
KEAP1 antibody was obtained from Wanleibio (Shenyang,
China). GPX4 Polyclonal Antibody was purchased from
Invitrogen (Carlsbad, CA). Gapdh Antibody and Anti-Rabbit IgG
was obtained from Sigma-Aldrich (Shanghai, China). Actin-Tracker
Green-488, Alexa Fluor 488-conjugated Goat Anti-Rabbit IgG (H +
L) and Alexa Fluor 555-labeled donkey anti-mouse IgG (H + L) was
purchased from Beyotime Biotechnology (Shanghai, China).
Antifade mounting medium for fluorescence (with DAPI) was
acquired from Biosharp (Anhui, China).

2.2 Animals

Male ICR mice (n = 75, 8 weeks old, weighing 32 ± 2 g) were
obtained from the Experimental Animal Center of Nantong
University (Nantong, China). The mice were housed in standard
laboratory conditions, with a room temperature maintained at
22°C–24°C and a 12/12-h light/dark cycle. They were provided ad
libitum access to food and water. Our study protocol was reviewed
and approved by the Animal Experiment Ethics Committee of
Nantong University. All experimental procedures were conducted
in accordance with the guidelines provided by the Laboratory
Animal Center of Nantong University, with approval ID:
P20230213-005.
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2.3 Experimental design

BUS was dissolved in a 5% aqueous solution of dimethyl
sulfoxide (DMSO), while the ISA preparation was formulated
using 1% sodium carboxymethylcellulose solutions. Fifty mice
were randomly allocated into five groups: the normal group, BUS
group, BUS + 25 mg/kg ISA group, BUS + 50 mg/kg ISA group, and
BUS + 100 mg/kg ISA group, with 10 mice in each group. We
selected 50 mg/kg ISA based on previous pilot experiments
(Supplementary Figure S1). The group treated with BUS and
50 mg/kg of ISA was referred to as the ISA group, and this dose
was used in subsequent studies. Except for the normal group, the
mice received a single intraperitoneal injection of BUS at a dose of
30 mg/kg (Wang et al., 2010). After a 2-week interval, the mice were
administered different concentrations of ISA. Following a 4-week
treatment, The mice were anesthetized with 1% sodium
pentobarbital by intraperitoneal injection at a dose of 50 mg/kg.
Blood was collected by puncturing the retro-orbital sinus of the
mice, and the serum was then centrifuged at 3,000 g for 10 min at
4°C. The serum samples were stored at −80°C for further analysis.
Testes and epididymis samples were collected and weighed. The
mice were euthanized via cervical dislocation. ISA had no obvious
toxic and side effects on the internal organs of mice
(Supplementary Figure S2).

2.4 Analysis of sperm

After mice euthanasia, expeditiously transfer one epididymal tail
to a Tyrode’s solution preheated to 37°C. Thoroughly mince the
epididymal tail and continue incubation at 37°C for 15 min, allowing
sufficient time for sperm to emerge. The computer-assisted analysis
system was used to detect sperm concentration and sperm motility.
The Hamilton Thorne CEROS II system is designed for both human
and animal applications.

2.5 Histology

The tissues were placed in paraformaldehyde after 12 h, followed
by dehydration using a sucrose gradient solution of 10%, 20%, and
30%, with tissue settling as the criterion for each dehydration step
(Wang et al., 2020). Frozen sections with a thickness of 10 μm were
prepared using a cryostat and stored at −20°C for later use.
Hematoxylin and eosin (Biosharp, Anhui, China) staining was
conducted following the instructions, and observations were
made under an inverted microscope.

2.6 Western blot

After homogenizing all tissues, RIPA lysis buffer was employed
to lyse the samples at 4°C for 20 min. Subsequently, the lysates
underwent centrifugation at 12,000 g for 20 min, and the resulting
supernatant was collected as tissue protein. After adding an
appropriate loading buffer, the protein samples were denatured
by heating at 95°C for 10 min. Following electrophoresis and
transfer, membranes were blocked with 5% skimmed milk at

room temperature for 1 h. Next, the membranes were subjected
to overnight incubation with the primary antibody at 4°C, followed
by incubation with the secondary antibody at room temperature for
1 h the next day (Wang et al., 2024). Enhanced chemiluminescence
reagent (BL523A, Biosharp, Anhui, China) was utilized for
visualization. Primary antibodies used include: GPX4 (PA5-
102521, Invitrogen, 1:1,000), KEAP1 (WL03285, Wanleibio, 1:
1,500), TFR1 (A21622, ABclonal, 1:100), FTH1 (A19544,
ABclonal, 1:100), NRF2 (12721S, Cell Signaling Technology, 1:
500), SLC7A11 (A2413, ABclonal, 1:750), HMOX1 (WL02400,
Wanleibio, 1:1,000), P53 (AG3444, Beyotime, 1:1,000) and
GAPDH (G9545-200ul, Sigma, 1:7,500).

2.7 Immunofluorescence analysis

After removing the frozen sections from −20°C, they were air-
dried at 37°C for half an hour to prevent detachment.
Permeabilization was achieved with 0.1% Triton for 40 min.
After a 1-h incubation at room temperature, Actin-Tracker
Green-488 (C2201S, Beyotime, 1:100) was ready for antibody
retrieval. For other fluorescence staining, after blocking with 1%
donkey serum at room temperature for 1 h, the primary antibodies
were appropriately diluted and incubated overnight at 4°C, followed
by PBS washing the next day. Subsequently, the sections were
incubated with the secondary antibodies at room temperature for
1 h using the appropriate dilution ratio. Finally, the sections were
washed three times with PBS, each time for 5 min. Subsequently, the
sections were mounted using a mounting medium containing DAPI
(BL739B, Biosharp, Anhui, China) for nuclear counterstaining
(Wang et al., 2024; Dong et al., 2024). Observations were made
using a confocal fluorescence microscope (TCSSP8, Leica). The
primary antibodies detected by Immunofluorescence were ZO-1
(21773-1-AP, Proteintech, 1:1,000), GPX4 (PA5-102521, Invitrogen,
1:200), TFR1 (A21622, ABclonal, 1:100), NRF2 (12721S, Cell
Signaling Technology, 1:500) and the secondary antibodies used
include Alexa Fluor 555-labeled IgG (A0453, Beyotime, 1:500) and
Alexa Fluor 488-labeled IgG (A0423, Beyotime, 1:500).

2.8 Enzyme linked immunosorbent assay for
T, LH, FSH, GSH and total iron

Remove the serum from the −80°C freezer and allow it to thaw
gradually. Levels of testosterone (T) (cby24183, Herbal Source
Biotechnology, Nanjing, China), follicle-stimulating hormone
(FSH) (cby24155, Herbal Source Biotechnology, Nanjing, China),
luteinizing hormone (LH) (cby24209, Herbal Source Biotechnology,
Nanjing, China), glutathione (GSH) (MM-0661M2, Meimian,
Yancheng, China) and Total iron concent (R22186, Yuanye Bio-
Technology, Shanghai, China) were measured by enzyme linked
immunosorbent assay kits according to the manufacturer’s
instructions. The minimum detectable dose of T, FSH, LH and
GSH typically less than 0.0375 nmol/L, 0.125 U/L, 17.5 pg/mL and
0.625 ng/mL, respectively. The sensitivites of Total iron is 0.625 ng/
mL and the detection range of it is above 0.1 μg/mL and below 40 μg/
mL. The intra- and inter-assay coefficient of variation were <10% for
all assays.
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2.9 Enzyme linked immunosorbent assay for
MDA, ROS and SOD

Testicular tissue was removed from the −80°C refrigerator,
weighed, and subsequently cut. Pre-frozen PBS (pH 7.4) was
added at a ratio of 1:9, and the mixture was thoroughly
homogenized on ice using a glass homogenizer. The resulting
liquid was centrifuged at 5,000 g for 10 min at 4°C, and the
supernatant was carefully collected. Levels of malondialdehyde
(MDA) (cby23821, Herbal Source Biotechnology, Nanjing,
China), ROS (cby18879, Herbal Source Biotechnology, Nanjing,
China), superoxide dismutase (SOD) (cby23823, Herbal Source
Biotechnology, Nanjing, China) were measured by enzyme linked
immunosorbent assay kits according to the manufacturer’s
instructions. The sensitivities of ROS, MDA and SOD assays
were 5 IU/mL, 0.075 nmol/L and 0.78 IU/mL, respectively. The
intra- and inter-assay coefficient of variation were less than 10%.

2.10 RNA sequencing and data analysis

Total RNA of testes was extracted with Trizol reagent (R411,
Vazyme, Nanjing, China). RNA concentrations were ascertained via
a NanoDrop spectrophotometer (Thermo Fisher Scientific), and
integrity was confirmed using a 2,100 Bioanalyzer (Agilent
Technologies, San Diego, CA, United States). The PCR products
were used to generate cDNA library, and then the BGISEQ-
500MGISEQ-2000 system of BGI Shenzhen Branch was used for
sequencing. Quality control and cleaning of the original data were
performed using Fastp STAR comparison with reference genome
GRCm38. Gene counts were obtained through Feature counts and
the cluster Profiler software package was used for gene ontology
(GO) analysis of differentially expressed genes.

2.11 Molecular docking

The molecular docking of ISA with proteins preformed
using AutoDockTools-1.5.7 (https://ccsb.scripps.edu/mgltools/
downloads/). Molecular Operating Environment software (https://
www.chemcomp.com/Products.htm) was used to determine
interactions between ligand and target proteins. The crystal
structure of Nrf2 (Protein Data Bank [PDB] entry 3WN7),
required for the docking studies, was obtained from the PDB
(http://www.rcsb.org/structure/3WN7). The online website -
PubChem – offers the structure of ISA, while utilizing the
UniProt database for gene correction and identification.

2.12 Quantitative real-time PCR

The expression of related genes was further analyzed using real-time
fluorescence quantitative PCR. Trizol reagent (R411, Vazyme, Nanjing,
China) has been used to extract the total RNA of the mice testes. After
confirming RNA concentrations and integrity, cDNA was synthesized
using an RNA reverse transcription kit, and its concentration was
measured with a NanoDrop 2000 spectrophotometer. The β-actin
gene served as the internal reference. Three PCR reactions were

conducted using ChamQ Universal SYBR qPCR Master Mix (Q711,
Vazyme, Nanjing, China) on the CFX Connect system (Bio-RAD,
United States). The sequences of Real-Time quantitative PCR primers
can be found in Supplementary Table S1. Data analysis was performed
based on the fold changes in mRNA expression (Ct).

2.13 Statistical analysis

All data are presented as mean ± SEM and were analyzed using
GraphPad Prism 8.0. Student’s t-tests were employed to assess
differences between two experimental groups, while one-way
analysis of variance was utilized for comparing multiple
experimental groups. A significance level of P < 0.05 was
considered statistically significant.

3 Results

3.1 ISA reversed the BUS-induced
oligoasthenospermia

As illustrated in Figure 1,mice in the BUS group displayed testicular
atrophy, reduced testicular weight, and a significantly decreased testis
index compared to the normal group. Furthermore, there was a notable
reduction in the proportion of rapidly progressive motility, sperm
vitality and sperm concentration, indicating the successful
establishment of the oligoasthenospermia model. Following ISA
treatment, testicular weight increased in all three treatment groups
(25 mg/kg, 50 mg/kg, and 100 mg/kg) (Supplementary Figure S1A).
Additionally, sperm concentration, sperm vitality, and the proportion of
rapidly progressive motility were all restored. However, there was no
significant difference in sperm concentration between the BUS +
20 mg/kg ISA group and the BUS group (Supplementary Figures
S1B–D). ISA administration at 50 and 100 mg/kg significantly
reversed testicular injury in mice, therefore, we selected the
50 mg/kg dose of ISA based on prior pilot experiments and this
dose was used in subsequent studies. The therapeutic efficacy of ISA
in treating oligoasthenospermia was noteworthy.

3.2 ISA promoted the recovery of testis and
epididymis histomorphology in
oligoasthenospermia mice

Our analysis revealed that BUS administration significantly
depleted germ cells within the testes of mice and caused
vacuolization, indicating a disrupted cellular arrangement and severe
impairment of spermatogenesis and blood-testis barrier integrity,
resulting in a Johnson score of 1–2. However, subsequent treatment
with indigo carmine resulted in the reappearance of germ cells at
various developmental stages from spermatogonium and spermatocyte
to mature sperm, disappearance of vacuolization, and an increase in the
diameter of seminiferous tubules, indicating the restoration of
spermatogenesis, leading to a Johnson score of 7–8 (Figure 2A). The
epididymis is the principal site for sperm maturation and vitality
acquisition and serves as the primary sperm reservoir outside the
seminal vesicle. As depicted in Figure 2B, BUS administration led to
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the absence of sperm in the caput, corpus, and cauda of the epididymis,
along with detachment and shedding of the circular muscle
surrounding the epididymis. Following ISA treatment, abundant
sperm appeared in different segments of the epididymis,
underscoring the significant therapeutic efficacy of ISA.

3.3 ISA remodels the cytoskeleton of
seminiferous tubules and sperms

To further validate the resuscitative effect of ISA on the testes of
mice with oligoasthenospermia, we used immunofluorescence to
observe the expression of microfilament and microtubule structures

in seminiferous tubules and sperm (Figures 3A, B). In the BUS
group, the overall organization of the testicular skeleton appeared
disrupted, deviating from the typical “track-like” arrangement
observed in healthy testes, suggesting exacerbated disruption of
the cellular skeleton in mice with oligoasthenospermia and
impeded reconstruction. However, following ISA treatment, a
regular distribution of microfilaments and microtubules was
evident, indicating a significant enhancement in the
reconstruction of the testicular tubule cytoskeleton (Figure 3A).
Furthermore, we found that morphology and cytoskeletal structure
of sperm in BUS group were damaged, including head deformity or
headlessness and detached necks. These issues were significantly
improved after ISA treatment (Figure 3B).

FIGURE 1
Effects on testicular organ index and sperm parameters. (A): Morphology of the testes from 8-week-old mice after treatment with saline, BUS
30 mg/kg, BUS + ISA 50 mg/kg, (B): Testicular weight, (C): Ratio of testis weight to body weight, (D): Spermmotility, (E): Sperm concentration, (F): Rapid
progressive motility, (G): Graph of sperm count, scale bar: 200 μm *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n ≥ 8.
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3.4 ISA facilitates the restoration of
compromised the integrity of blood-
testis barrier

The Blood-Testis Barrier (BTB), a physical barrier between the
blood vessels and seminiferous tubules in the testes, creates a stable
microenvironment for spermatogenesis. To assess BTB integrity, we
evaluated the expression of Zona Occludens 1 (ZO-1) protein in the
testes. Immunofluorescence showed that ZO-1 protein expression
was decreased and BTB integrity was destroyed in BUS
group. Following ISA treatment, however, there was a restorative
effect on the downregulation of the protein signal, thereby
promoting the reconstitution of BTB integrity (Figure 4).

3.5 ISA raised testosterone levels in
oligoasthenospermia mice

T, FSH and LH are key gonadal hormones that regulate the
development and function of reproductive organs in living
organisms. They also serve as crucial indicators of the
reproductive system’s status. Consistent with previous studies,

our comparison revealed that BUS-induced damage resulted in
decreased serum testosterone levels in mice with
oligoasthenospermia (Figure 5A). In response, negative feedback
regulation in the hypothalamus and pituitary gland led to increased
levels of FSH and LH (Figures 5B, C). However, following ISA
treatment, we observed an increase in serum testosterone levels and
a normalization of FSH and LH levels in the mice.

3.6 ISA improved oxidative indices in
oligoasthenospermia mice

Oxidative stress is one of the important characteristics of
oligoasthenospermia. As shown in Figure 6, we observed an increase
in MDA and ROS levels, along with a decrease in SOD activity in
testicular tissues of mice with oligoasthenospermia, indicating a decline
in the antioxidant capacity and occurrence of oxidative stress to some
extent. However, following ISA treatment, the levels of MDA and ROS
in the testes ofmice with oligoasthenospermia were reduced, while SOD
activity increased. This suggests that ISA treatment suppressed the
oxidative stress induced by BUS and restored antioxidant capacity in
mice with oligoasthenospermia.

FIGURE 2
Histological examination ofmice testes and epididymis. (A): Morphology of testis. Blue arrow: vacuolization. (B): Morphology of epididymis tail. Scale
bars, 50 μm.
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FIGURE 3
(A): Changes of the cytoskeleton in different groups by immunofluorescence, scale bar: 100 μm. (B): Changes of the cytoskeleton in sperm of
different groups by immunofluorescence, scale bar: 50 μm.

FIGURE 4
Immunofluorescent staining of ZO-1 protein in the testes of different groups. Green: ZO-1, Blue: DAPI, scale bar: 100 μm.
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3.7 High-throughput sequencing and RT-
qPCR validation

After the completion of ISA treatment, high-throughput
sequencing analysis revealed that ISA treatment resulted in the
upregulation of 486 genes compared to the BUS group (Figures
7A, B). Subsequent analysis revealed that these genes were mainly
involved in “sperm DNA condensation”, “sperm motility”, and
“spermatid development and differentiation” (Figure 7C). We
validated these sequencing results through RT-qPCR, which
demonstrated that ISA treatment promoted spermatogenesis and
sperm activation, thereby confirming the improvement of
symptoms in mice with oligoasthenospermia. As shown in

Figure 7D, based on the results of Gene Ontology (GO) analysis,
we selected the most relevant pathways, “sperm DNA
condensation,” and “sperm motility,” and validated the related
genes identified by sequencing using RT-qPCR. The ISA group
showed statistically significant upregulation compared to the BUS
group, which was consistent with the sequencing results.

3.8 ISA inhibited ferroptosis by activating
system Xc-

We initially observed a decrease in glutathione (GSH) content
and the expression of glutathione peroxidase 4 (GPX4) in

FIGURE 5
Effect of ISA on hormone levels. (A): T concentration, (B): FSH concentration. (C): LH concentration. *P < 0.05, **P < 0.01, ***P < 0.001, n ≥ 3.

FIGURE 6
Effects of ISA on oxidative indices. (A): MDA concentration, (B): ROS concentration. (C): SOD concentration. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001, n ≥ 3.
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busulfan-treated mice. This suggests that the GSH/GPX4 axis is
inhibited in mice with oligoasthenospermia, leading to ferroptosis. It
has been reported that p53 can inhibit SLC7A11 expression via
transcription (Jiang et al., 2015) Further examination revealed that

in busulfan-treated mice, p53 expression was upregulated,
SLC7A11 expression was decreased, System Xc-was inhibited,
and glutamate transport into cells was reduced. This resulted in
diminished GSH synthesis, inhibition of GPX4 expression, and

FIGURE 7
High-throughput sequencing. (A): The number of differentially expressed genes (B): Volcano map of differentially expressed genes between
oligoasthenospermia and ISA treatments. (C): GO enrichment analysis. (D) Verification of sequencing results by RT-qPCR. **P < 0.01, ***P <0.001, ****P <
0.0001, n = 3.
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ferroptosis. Following ISA administration, P53 expression was inhibited,
SLC7A11 was upregulated, System Xc-was promoted, GSH synthesis
was enhanced, GPX4 expression was upregulated, and ferroptosis was
inhibited. Immunofluorescence also showed low GPX4 expression in
the busulfan group, whereas expression was restored after ISA
treatment, further confirming these finding (Figure 8).

3.9 ISA inhibited ferroptosis by affecting Fe2+

and PUFA transport

Compared to the control group, the testicular total iron
content significantly increased in the busulfan group,
accompanied by elevated expression of acyl-CoA synthetase
long-chain family 4 (ACSL4) and transferrin receptor 1

(TFR1). While ferritin heavy chain 1 (FTH1) expression
remained unchanged. Immunofluorescence reveals that
TFR1 was expressed at all levels of spermatogenic cells in both
the normal and ISA groups, with relatively low expression levels.
However, in the BUS group, TFR1 was expressed in both
seminiferous tubules and interstitial cells, with significantly
higher expression. This suggests that BUS induces ferroptosis
by facilitating the influx of polyunsaturated fatty acids (PUFA)
and Fe3+ into cells, leading to ferroptosis (Figure 9). Following
ISA administration, ACSL4 and TFR1 expression decreased,
effectively inhibiting the transport of Fe3+ and PUFA.
Concurrently, FTH1 expression increased, facilitating the
binding of excess intracellular Fe2+ to inhibit ferroptosis.
However, the total iron content did not exhibit a statistically
significant decrease.

FIGURE 8
Effect of ISA on System Xc-. (A): GSH activity. (B): Immunofluorescence of GPX4. (C, D): Western blot of System Xc-relative proteins. **P < 0.01,
****P < 0.0001, n = 3, scale bar: 200 μm.
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3.10 ISA inhibited ferroptosis by affecting
Nrf2-HMOX1 pathway

Western blot analysis demonstrates that, compared to the
normal group, the BUS group shown a significant increase in
KEAP1 expression, a marked reduction in cytoplasmic
Nrf2 expression and an elevation in nuclear Nrf2 expression.
This suggests that BUS prompt the translocation of Nrf2 into the
nucleus to exert antioxidant effects (Figures 10A, B).
Immunofluorescence analysis confirms that Nrf2 is expressed in
the cytoplasm of interstitial and Sertoli cells in normal testes,

whereas in the BUS group, Nrf2 is localized in the nuclei of
interstitial cells, further corroborating the Western blot results
(Figure 10C). Concurrently, excessive heme oxygenase activity led
to a substantial release of ferrous ions, generating numerous free
radicals and resulting in extensive accumulation of lipid peroxides
(LPO), culminating in ferroptosis. However, this damage was
attenuated after ISA treatment. Molecular docking results showed
that the grid score between ISA and Nrf2 is −8.6349. There is a
hydrogen bond binding site between ISA and Nrf2 at Val465 site,
and inter-residue contacts between Tyr520 site and cysteine Cys513
site in Nrf2 molecule occur (Figures 10D–F).

FIGURE 9
Effect of ISA on transport of Fe2+ and PUFA. (A): Total iron concent. (B): Immunofluorescence of TFR1. (C, D): Western blot of Fe2+ and PUFA
transport relative proteins. Ns: no significance, ***P < 0.001, ****P < 0.0001, n = 3, scale bar: 100 μm.
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4 Discussion

In recent years, more and more couples have been troubled by
infertility problems, and fertility problems caused by male infertility

are becoming more and more common. Consequently, effective
prevention and solutions for male infertility have garnered
significant research attention. Oligoasthenospermia is one of the
main factors affecting male fertility. Its etiology is complex, the

FIGURE 10
Effect of ISA on Nrf2-HMOX1 pathway. (A, B): Western blot of Nrf2-HMOX1 pathway relative proteins. (C): Immunofluorescence of Nrf2. (D):
Molecular docking of ISA with Nrf2. Grid score is −8.6349. (E): Interaction plot between ISA and Nrf2. (F): Interactive visualization of ISA binding to
Nrf2 Val465, Tyr520, and Cys513 sites via hydrogen bonding. **P < 0.01, ****P < 0.0001, n = 3, scale bar: 100 μm.
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mechanisms are not well understood, and there are no targeted
treatments or drugs available in clinical practice. Therefore, this field
presents substantial research opportunities.

Isatin, a naturally occurring compound with antioxidant
properties, is widely found in both plants and animals. In the last
century, studies have indicated that indigo is highly expressed in the
reproductive system, however, no research has reported its
therapeutic effects on male infertility (Glover et al., 1991). Our
study demonstrated that treatment with 50 mg/kg of isatin
effectively improves oligoasthenospermia in mice, evidenced by
testicular size recovery, increased testicular weight, enhanced
sperm motility and concentration, as well as improved tissue
morphology and spermatogenesis (Figures 1–3). The blood-testis
barrier (BTB) plays a critical role in maintaining spermatogenesis by
creating a highly selective environment in the seminiferous tubules.
It facilitates the selective passage of nutrients, ions, and hormones
necessary for sperm maturation while blocking harmful substances,
including immune cells and antibodies, from entering the adluminal
compartment. Research indicates that impairments in the BTB can
lead to the accumulation of immature germ cells, resulting in
conditions such as oligospermia and oligoasthenospermia (Zhou
and Wang, 2022). Our study demonstrates that ISA can restore the
blood-testis barrier in the testes of oligoasthenospermia mice,
potentially contributing to the recovery of testicular damage in
these animals (Figure 4).

Furthermore, our study demonstrates that ISA treatment
effectively relieves oxidative stress in oligoasthenospermia mice
(Figure 6). Oligoasthenospermia is closely associated with
oxidative stress (OS), which results from an excess of ROS.
Elevated ROS levels can damage sperm cell membranes, proteins,
and DNA, leading to sperm dysfunction and negatively impacting

male fertility (Alvarez and Storey, 1995; Storey, 1997). Reductions in
ROS and MDA levels, alongside increases in superoxide dismutase
(SOD) levels in vivo, can effectively improve sperm parameters and
alleviate sperm DNA fragmentation. A study conducted in
2011 demonstrated that supplementation with selenium and
vitamin E significantly improved semen parameters, including
sperm motility and morphology, in men with infertility
(Alahmar, 2023). A more recent clinical trial conducted in
2023 investigated the effects of a multi-antioxidant formula
containing L-carnitine, selenium, coenzyme Q10, and other
micronutrients on men with oligoasthenoteratozoospermia. The
treatment resulted in a significant reduction in sperm DNA
fragmentation and improved clinical outcomes in assisted
reproduction techniques, such as intracytoplasmic sperm
injection, highlighting the importance of antioxidants in
enhancing fertility (Lahimer et al., 2023; Rochdi et al., 2024). In
our study, MDA content and ROS levels in the testes of mice in the
ISA group were significantly reduced, while SOD content was
significantly increased compared to mice in the BUS group
(Figure 6). Malondialdehyde is a natural byproduct of LPO and
is positively correlated with ferroptosis, serving as one of its
biomarkers (Del Rio et al., 2005). These findings suggest that ISA
significantly inhibited oxidative stress induced by BUS and
facilitated the recovery of the antioxidant system in mice with
oligoasthenospermia.

Increasing research indicates that male reproductive damage is
closely associated with ferroptosis. Ferroptosis, a mode of cell death
caused by excessive accumulation of iron-dependent lipid peroxides
(LPO) (Tang et al., 2021), primarily results from three factors: an
imbalance in System Xc-, disturbances in iron metabolism and
abnormalities in the metabolism of polyunsaturated fatty acids

FIGURE 11
Possible mechanism of ISA on oligoasthenospermia mice induced by BUS.
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(PUFAs). During development, male germ cells must undergo
continuous division, with iron being essential for DNA synthesis
(Tvrda et al., 2015). However, iron overload can lead to the
expression of ferroptosis-related genes expression and the
inactivation of associated enzymes, resulting in dysfunction of
the male reproductive system (Kocpinar et al., 2020). In
spermatogenesis, ferroptosis can lead to a significant reduction in
the number of round spermatids, cells that lack cytoplasmic
antioxidants and are highly sensitive to LPO, resulting in
extensive cell apoptosis (Bromfield et al., 2019). Our research
offers a potential pharmacological approach for the clinical
treatment of oligoasthenospermia from the perspective of
ferroptosis. Testicular iron overload, inactivation of the
antioxidant enzyme GPX4, and lipid metabolism disorders
contribute to the death of a significant number of cells associated
with the male reproductive system, leading to
reproductive disorders.

We have demonstrated that the System Xc-is activated by ISA,
which inhibits ferroptosis in the mouse testes, thereby treating
oligoasthenospermia (Figure 8). System Xc- is a transmembrane
amino acid transport system that primarily imports L-cysteine into
the cell while exporting glutamate to maintain cellular redox balance
(Dixon et al., 2012). It is composed of two subunits: SLC7A11, which
facilitates amino acid transport, and SLC3A2, an auxiliary subunit
(Blahna and Hata, 2013). System Xc- plays a crucial role in cellular
antioxidant defense by promoting the synthesis of glutathione
(GSH) through the uptake of L-cysteine (Stockwell et al., 2017).
In System Xc-, Glutathione is one of the most important
antioxidants within the cell, and its presence is essential for
inhibiting lipid peroxidation, particularly in the context of iron-
dependent cell death known as ferroptosis (Dixon et al., 2012).
Moreover, GSH is the main antioxidant in mammalian cells and the
preferred substrate of GPX4. The consumption of GSH directly
affects the activity and stability of GPX4, thus making cells more
susceptible to ferroptosis. In our study, GSH expression was
significantly reduced in the BUS group, indicating that GSH
depletion occurred in oligospermic mice, increasing their
susceptibility to ferroptosis. However, ISA treatment was able to
reverse this effect (Figure 8). In System Xc-, SLC7A11 mediates
cellular uptake of cysteine, a precursor for GSH synthesis, and
inhibition of SLC7A11 protein expression disrupts intracellular
redox balance, triggering ferroptosis (Shen et al., 2022). Besides,
P53 antagonizes SLC7A11 (Jiang et al., 2015). Our experiments
demonstrated that BUS administration resulted in increased
expression of P53, decreased GSH, and suppression of
SLC7A11 and GPX4, and that these changes were reversed by
ISA administration, which reversed ferroptosis in
oligoasthenospermia mice testis through activation of System
Xc- (Figure 8).

Some studies have shown that iron overload can promote the
production of free radicals, leading to LPO of cell membranes and
ultimately to ferroptosis of cells (Chen et al., 2023). TFR1 is a
functional protein that transports iron from the outside to the inside
of the cell and is considered to be one of the specific ferroptosis
markers (Feng et al., 2020). In this experiment, TFR1 was
upregulated in testes of BUS group mice, which caused iron
overload and ferroptosis. The increase of total iron level in testes
of BUS group mice compared with normal group also verified this

result (Figure 9). However, the expression of TFR1 was suppressed
after ISA treatment, but the total iron level did not decrease
significantly. Therefore, we think that the level of Fe2+ may be a
more appropriate indicator of ferroptosis. ACSL4 is an enzyme
involved in fatty acid metabolism, and upregulation of
ACSL4 increases the content of PUFA in phospholipids, which
are susceptible to oxidation and lead to ferroptosis (Gan, 2022). In
this experiment, ACSL4 increased in BUS group compared with
normal group, and decreased after ISA administration (Figure 9).
ISA can inhibit ferroptosis by inhibiting the transport of
Fe2+ and PUFA.

Nrf2, a key transcription factor involved in regulating
antioxidant responses, can bind to the promoters of multiple
antioxidant genes and antioxidant response elements (AREs),
thereby inducing the expression of downstream genes
(Metzendorf and Lind, 2010). KEAP1 normally binds to Nrf2 in
the cytoplasm, but when mouse testes are stimulated by high ROS
induced by BUS, Nrf2 dissociates from KEAP1 and is transferred
into the nucleus for activation. This is consistent with our
experimental results, and after ISA administration, ROS levels in
tissues are reversed, and Nrf2 is re-associated with KEAP1 in the
cytoplasm and highly expressed in the cytoplasm (Figure 10).
HMOX1 is a rate-limiting enzyme in the heme catabolism of
iron porphyrin compounds, which can decompose heme into
carbon monoxide, biliverdin and ferrous ions (Fang et al., 2019).
High expression of HMOX1 in BUS group leads to high
concentration of ferrous ion-mediated ferroptosis, while the
expression of HMOX1 is also significantly inhibited after ISA
administration, i.e. ferroptosis is inhibited by regulating Nrf2-
HMOX1 axis (Figure 10). However, whether ISA can regulate
ferroptosis through NAD(P)H-FSP1-CoQ10 system or GCH1-
BH4-DHFR system remains unclear and needs further study.

In addition to ferroptosis, apoptosis is also a significant
contributor to male infertility. Several factors may contribute to
male infertility, including oxidative stress, endocrine disorders,
DNA damage, inflammatory responses, and mitochondrial
dysfunction (Xu et al., 2023; Dai et al., 2018). Among these,
studies have shown that oxidative stress, DNA damage and
mitochondrial respiration defects may be the trigger of apoptosis,
leading to oligoasthenospermia (Nakada et al., 2006; Zhao et al.,
2021). Mitochondrial respiration defects caused by the
accumulation of DeltamtDNA can arrest mouse spermatocytes at
the zygotene stage and trigger apoptosis, which leads to
oligoasthenospermia (Nakada et al., 2006). Thus, oxidative stress,
a known trigger of ferroptosis, also contributes to apoptosis. Our
study shows that ISA may inhibit the oxidative stress in
oligoasthenospermia mice and primarily confirms that ISA may
contribute to the recovery of oligoasthenospermia through
ferroptosis but did not further study the mechanism of apoptosis.
ISA has great potential to treat oligoasthenospermia by reversing
apoptosis, which is a very promising research direction in the future.

5 Conclusion

In conclusion, ISA was found to be effective in ameliorating
oligoasthenospermia induced by busulfan in mice. After ISA
administration, sperm concentration and motility were
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significantly increased, serum sex hormone levels were regulated,
and oxidative damage in tissues was significantly improved. It was
clear that ISA could effectively inhibit ferroptosis and improve
oligoasthenospermia through three different ways of GSH/GPX4
axis (Figure 11).
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