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Background: Hepatocellular carcinoma (HCC) ranks among the most prevalent
and lethal malignancies worldwide. Histone modifications (HMs) play a pivotal
role in the initiation and progression of HCC. However, our understanding of HMs
in HCC remains limited due to the disease’s heterogeneity and the
complexity of HMs.

Methods: We integrated multi-omics data from multiple cohorts, including
single-cell RNA sequencing, bulk RNA sequencing, and clinical information.
Weighted gene co-expression network analysis (WGCNA) and consensus
clustering were employed to identify histone-related genes. We developed a
histone modification-related signature (HMRS) using 117 machine learning
methods. Comprehensive analyses of molecular characteristics, immune
landscape, and drug sensitivity associated with the HMRS were performed.

Results: Through integrative analysis, we defined 110 histone-related genes and
identified 45 HCC-HM-related genes (HCC-HMRgenes). The HMRS
demonstrated robust prognostic value across multiple cohorts. Patients with
high HMRS scores exhibited distinct genomic alterations, including higher tumor
heterogeneity and TP53 mutations. The high-risk group showed enrichment in
cell cycle, DNA repair, and metabolic pathways. Immune landscape analysis
revealed significant differences in immune cell infiltration and pathway
activities between high- and low-risk groups. Drug sensitivity prediction
suggested potential therapeutic strategies for different risk groups.
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Conclusion: Our study provides a comprehensive understanding of HMs in HCC
and establishes a robust prognostic signature. The HMRS not only stratifies patients
into distinct risk groups but also offers insights into underlying molecular
mechanisms, immune characteristics, and potential therapeutic strategies,
paving the way for personalized medicine in HCC.
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model, drug sensitivity

1 Introduction

Hepatocellular Carcinoma (HCC) ranks as one of the most
prevalent and lethal malignancies worldwide, being the third leading
cause of cancer-related deaths globally, with an average 5-year
survival rate below 15% (Xia et al., 2022; Llovet et al., 2024).
Alarmingly, the incidence of primary liver cancer is projected to
rise by 55% by 2040 (Rumgay et al., 2022). This grim outlook is
largely attributed to the complexity of its pathogenesis and limited
treatment efficacy. While early-stage HCC can be treated through
surgical resection, local ablation, or liver transplantation, the
majority of patients are diagnosed at advanced stages. Current
treatment modalities for advanced HCC primarily include local
interventional therapies and systemic pharmacological
interventions. Systemic drug therapies mainly comprise anti-
angiogenic targeted therapies and immunotherapies, with the
highest objective response rate (ORR) reaching only 36%
(NCT03006926) (Finn et al., 2020). Consequently, there is an
urgent need to elucidate the cellular mechanisms underlying
HCC development to identify novel and effective therapeutic targets.

Epigenetic mechanisms form the foundation of the liver’s
capacity to coordinate and regulate its regenerative abilities and
adapt to rapidly changing environments, a unique feature among
mammalian solid organs (Wilson et al., 2017; Michalopoulos and
Bhushan, 2021). In recent years, epigenetic regulation, particularly
histone modifications (HMs), has garnered increasing attention for
its pivotal role in HCC initiation, progression, and treatment
resistance. HMs primarily include acetylation, methylation,
phosphorylation, ubiquitination, SUMOylation, ADP-ribosylation,
and biotinylation. These modifications influence every aspect of
HCC by manipulating the expression of oncogenes and tumor
suppressor genes. Numerous studies have demonstrated that
histone acetylation (Xia et al., 2022), methylation (Charidemou
et al., 2023), and other modifications are associated with HCC
occurrence, metastasis, angiogenesis, metabolism, apoptosis,
immune homeostasis, and signaling pathways. For instance, Chen
et al.’s research elucidated one pathway through which histone
methylation affects HCC: the demethylase KDM4B may
indirectly mediate miR-615-5p CpG demethylation through
H3K9 (lysine nine on histone H3) demethylation. The absence of
KDM4B promotes CpG methylation in the miR-615-5p promoter
region, leading to decreased miR-615-5p expression. This, in turn,
relieves miR-615-5p′s suppression of the oncogene RAB24,
ultimately resulting in RAB24 overactivation and promoting
HCC cell growth, migration, invasion, and adhesion (Chen et al.,
2017). However, due to the heterogeneity of HCC and the
complexity of HMs, our understanding of their comprehensive

role and clinical significance in HCC remains limited and
fragmented.

With the rapid development of high-throughput sequencing
technologies and proteomics methods, we can now capture dynamic
changes in HMs at the genome-wide level. These technological
advancements provide unprecedented opportunities to systematically
study HMs patterns and their functional significance in HCC.
Meanwhile, the complexity and multidimensionality of these large-
scale datasets require advanced computational methods to mine
meaningful biological insights, and machine learning methods have
shown great potential in deciphering complex biological problems.

This study aims to utilize various machine learning
computational frameworks to systematically identify and analyze
histone modification-related multi-omics features in HCC. By
integrating genomics, transcriptomics, and proteomics data, we
have revealed all key molecules and pathways of HMs affecting
HCC occurrence and treatment response. This multi-omics
integration approach not only provides a comprehensive
understanding of epigenetic regulation in HCC but also identifies
new diagnostic biomarkers and therapeutic targets, potentially
transforming the challenging landscape of liver cancer treatment
through epigenetic-targeted therapies. Additionally, this study
combines patient follow-up data to construct an HCC risk
prediction model based on HMs features. This model improves
the accuracy of HCC prognosis assessment, supporting
individualized treatment decisions. In this way, we aim to
advance precision medicine for HCC, aligning with the current
trend of 3P (Predictive, Preventive, Personalized) medicine.

2 Materials and methods

2.1 Data source

In this study, we primarily utilized data resources from three
databases. First, we extracted gene expression data and
corresponding survival information for 371 HCC samples from
The Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov/) (Tomczak et al., 2015). Second, we accessed HCC
datasets GSE112271 and GSE14520 from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
GSE112271 includes single-cell RNA sequencing data from
7 HCC samples, while GSE14520 contains tissue sequencing data
from 242 HCC samples with survival information. Additionally, we
incorporated tissue sequencing data from 445 HCC samples with
prognostic data from the International Cancer Genome Consortium
(ICGC) (https://dcc.icgc.org/) (Zhang et al., 2019).
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During data processing, we first extracted data in Transcripts
Per Million (TPM) format from STAR count data and clinical
information. Subsequently, to stabilize variance and improve data
normality, we normalized the data and applied a log2(TPM+1)
transformation. In the final stage of data preprocessing, we retained
only samples with both RNA sequencing data and complete clinical
information for subsequent analysis.

Furthermore, histone-related genes were sourced from two
origins: cancer-associated HMs reported by Füllgrabe et al.
(Oncogene, 2011) (Füllgrabe et al., 2011), and genes with HMs
relevance scores greater than 20 from the GeneCards database
(https://www.genecards.org/).

2.2 Single cell analysis

This study employed the Seurat package for comprehensive analysis
of single-cell RNA-seq data (Stuart et al., 2019). We initially read 10X
Genomics format data from the GSE112271 dataset and performed
quality control, including calculating the proportion of mitochondrial
and ribosomal RNA. After data filtering and normalization, we used
PCAandUMAP for dimensionality reduction and applied theHarmony
algorithm to integrate different samples (Cristian et al., 2024). We then
conducted clustering analysis and used the SingleR package for cell type
annotation. To construct histone scores, we calculated histone gene set
enrichment scores for each cell using the single-sample Gene Set
Enrichment Analysis (ssGSEA) method. Based on these scores, we
divided cells into high and low score groups and performed
differential expression analysis using Seurat’s FindAllMarkers
function. We also visualized the distribution of histone scores across
different cell types using FeaturePlots and violin plots. This series of
analyses not only revealed cellular heterogeneity in histone expression
but also provided a foundation for further exploration of histone-related
functions and regulatory mechanisms.

2.3 Weighted gene co-expression network
analysis (WGCNA)

This study employed Weighted Gene Co-expression Network
Analysis (WGCNA) to thoroughly investigate the association
between RNA-seq data and histone expression in the TCGA
database (Langfelder and Horvath, 2008). We first calculated histone
scores for each sample using the ssGSEAmethod as phenotype data for
subsequent analysis. During data preprocessing, we performed sample
clustering and outlier detection to ensure data quality. Subsequently,
through soft threshold selection and network construction, we
identified multiple gene co-expression modules. Further, we analyzed
the relationship betweenModuleMembership andGene Significance of
genes in these modules, providing a basis for identifying key
regulatory genes.

2.4 Construction of prognostic features
through integratedmachine learningmethods

This study employed various machine learning algorithms to
construct prognostic models, including Random Survival Forest

(RSF) (Ishwaran et al., 2008), Elastic Net (Enet) (Zou and Hastie,
2005; Cho et al., 2009), Stepwise Cox Regression (StepCox) (Liu
et al., 2023), CoxBoost (Binder and Binder, 2015), Partial Least
Squares Cox Regression (plsRcox) (Bertrand et al., 2022; Bertrand
et al., 2014), SuperPC (Bair et al., 2006), Gradient Boosting Machine
(GBM) (Ayyadevara and Ayyadevara, 2018), Survival Support
Vector Machine (survival-SVM) (Van Belle et al., 2011), Ridge
Regression (Arashi et al., 2021), and Lasso Regression (Ranstam
and Cook, 2018). The TCGA dataset was used as the training set,
with GSE14520 and ICGC datasets serving as validation sets. Data
was first standardized, then models were constructed using each
algorithm and evaluated on the validation sets. To enhance model
stability, we also experimented with up to 117 algorithm
combinations, such as RSF + CoxBoost and Lasso + GBM. The
C-index was used to assess model discriminatory ability across
datasets. Finally, C-index results for all models across different
datasets were compiled into a heatmap, visually demonstrating
each model’s predictive performance. By comparing the
performance of different algorithms and their combinations, we
aimed to identify the optimal prognostic prediction model.
Subsequently, results and features were visualized based on
model weights.

2.5 Survival analysis and nomogram
construction

This study conducted a comprehensive analysis of the TCGA
dataset, exploring relationships between risk scores, clinical features,
gene expression, and survival outcomes. We processed clinical data,
created pie charts comparing clinical features, compared risk scores
across different T stages using violin plots, and produced stacked bar
charts showing the proportion of clinical features in high- and low-
risk groups. We also analyzed gene expression data and created
heatmaps to display expression differences. Logistic regression was
used to predict M stage, with ROC curves assessing predictive
performance (Stoltzfus, 2011; Blanche and Blanche, 2019).
Subsequently, we plotted Kaplan-Meier survival curves based on
patient age and clinical stage, comparing survival differences
between high- and low-risk groups.

To further enhance the model’s predictive accuracy and
prognostic capability, we developed a nomogram combining
histone and clinical features to quantify expected survival for
HCC patients (Park, 2018). After identifying independent
prognostic factors through univariate and multivariate Cox
regression analyses, we constructed a nomogram based on
multivariate Cox regression results, visually demonstrating each
factor’s contribution to prognosis. Calibration curves were used
to evaluate the model’s predictive accuracy. Decision curve analysis
(DCA) assessed the model’s clinical application value (Fitzgerald
et al., 2015). Additionally, we calculated the C-index to measure the
model’s discriminatory power and plotted time-dependent C-index
curves to compare long-term predictive capabilities of different
predictors. Finally, we validated the model’s internal stability
through Bootstrap resampling (Henderson, 2005). These methods
comprehensively evaluated the prognostic model’s predictive
accuracy, clinical utility, and stability, providing reliable evidence
for its clinical application.
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2.6 GSEA and GSVA functional
enrichment analysis

This study continued to employ various bioinformatics methods
to explore the relationship between gene expression patterns and
prognostic risk. We used the limma package for differential
expression analysis to identify differentially expressed genes
between high- and low-risk groups (Ritchie et al., 2015).
Subsequently, Gene Set Enrichment Analysis (GSEA) was used to
explore functional pathways of differentially expressed genes, and
Gene Set Variation Analysis (GSVA) was employed to quantitatively
score pathway activity for each sample (Hung et al., 2012;
Hänzelmann et al., 2013). We performed inter-group differential
analysis on GSVA scores and created volcano plots to display
significantly altered pathways. Additionally, we calculated
correlations between GSVA scores and risk scores, presenting
them visually through heatmaps. Finally, we conducted survival
analysis on key pathways to identify those significantly associated
with prognosis.

2.7 Mutation analysis

To further reveal the relationship between tumor mutation
characteristics and prognostic risk, and to understand the biological
basis of the risk score model, we employed various methods to analyze
the relationship between tumormutation characteristics and prognostic
risk. Firstly, we used the maftools package (Mayakonda et al., 2018) to
calculate the Mutant-Allele Tumor Heterogeneity (MATH) score for
each sample and compared differences between high- and low-risk
groups. Kaplan-Meier survival analysis was used to evaluate the
association between MATH scores and patient prognosis.
Subsequently, we performed stratified survival analysis combining
MATH scores and risk scores to explore their joint predictive effect.
Additionally, we conducted mutation landscape analysis for high- and
low-risk groups separately, creating oncoplots to display the top
20 mutated genes. We also used the somaticInteractions function to
analyze co-mutation and mutual exclusivity relationships between
genes, revealing patterns of gene mutation interactions in different
risk groups.

2.8 Immune characteristics analysis

In our study, to explore the relationship between immune cell
infiltration in the HCC tumor microenvironment (TME) and histone
modification-related signature (HMRS), we utilized the IOBR software
package (Zeng et al., 2021) to assess ESTIMATE, CIBERSORT, and the
infiltration of 28 immune cell types in HCC samples from TCGA. We
used the ESTIMATE algorithm to evaluate stromal, immune, and
comprehensive scores of tumor samples, comparing differences
between high- and low-risk groups. Subsequently, we employed the
ssGSEAmethod to score immune-related pathways and 28 immune cell
types, and used the CIBERSORT algorithm to estimate the proportions
of 22 immune cell types, thoroughly investigating differences in the
immune microenvironment between risk groups (Chen et al., 2018).
These analyses were visualized through box plots and heatmaps, clearly
demonstrating immune characteristic differences between high- and

low-risk groups. Furthermore, we conducted correlation analyses
between characteristic genes and immune cells, as well as between
risk scores and immune cells, presenting these complex relationships
through correlation heatmaps. These multi-level, multi-faceted analyses
not only revealed the complexity of the tumor immune
microenvironment but also provided important insights into the
immunological basis of the risk score model, laying a foundation for
further immunotherapy research.

2.9 Significance of the HMRS in drug
sensitivity

In this study, we utilized the Genomics of Drug Sensitivity in
Cancer (GDSC) database (https://www.cancerrxgene.org/) to predict
the sensitivity of high- and low-risk group samples to common
anticancer drugs. This is one of the largest public resources in the
field of pharmacogenomics, providing rich information on drug
sensitivity and related genomics, crucial for discovering potential
cancer treatment targets (Yang et al., 2013). To this end, we applied
the pRRophetic software package (Geeleher et al., 2014) to construct cell
line-based ridge regression models using drug information and gene
expression data from the CGP2016 dataset, and then conducted
predictive analysis for each possible drug. Using the
pRRopheticPredict function, we predicted the half-maximal
inhibitory concentration (IC50) values for each drug based on the
gene expression profiles of tumor samples (Sebaugh, 2011).
Subsequently, we combined the predicted drug sensitivities with our
previously established risk score model to compare drug sensitivity
differences between high- and low-risk groups. We used the Wilcoxon
rank-sum test to assess the statistical significance of these differences
and created box plots for drugs with significant differences using the
ggplot2 package.

2.10 Experiment validation

To validate the biological significance of our HMRS model, we
conducted further pathological verification on the top five genes
with the highest weights in the model. First, we utilized the Human
Protein Atlas (HPA) database (https://www.proteinatlas.org/) to
compare the protein expression levels of these genes in
pancreatic cancer tissues and adjacent normal pancreatic tissues
(Uhlén et al., 2015). For genes lacking data in the HPA database, we
performed laboratory validation.

We collected paired PDAC and adjacent pancreatic tissue samples
from PDAC patients who underwent surgical resection at our center.
Tissue samples were fixed in 4% paraformaldehyde and embedded in
paraffin to create 4 μm thick sections. Standard immunohistochemistry
(IHC) staining procedures were followed. Briefly, sections were
deparaffinized, rehydrated, and underwent antigen retrieval in citrate
buffer (pH 6.0). Endogenous peroxidase activity was blocked with 3%
H2O2, and non-specific binding was blocked with 10% goat serum.
Subsequently, sections were incubated overnight at 4°C with the
corresponding primary antibodies. ASF1A antibody (1:
1,000 dilution, Proteintech) was used. The next day, sections were
incubated with HRP-labeled secondary antibodies for 1 h at room
temperature. DAB was used for color development, followed by
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hematoxylin counterstaining. Staining results were independently
evaluated by two experienced pathologists who were blinded to the
clinical information.

All patients provided written informed consent, and this research
protocol was approved by the Ethics Committee of the First Affiliated
Hospital of China Medical University (approval number: KT20241,196).

FIGURE 1
Study flowchart.

FIGURE 2
HMs characteristics in single-cell transcriptomics. (A) t-SNE plot showing the cell types identified by marker genes. (B)Dot plot showing the marker
genes in each cell cluster. (C) The activity score of HMs in each cell. (D) The distribution of the histone score in different cell types.
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3 Results

All analytical processes are illustrated in the flowchart (Figure 1).

3.1 Histone modification characteristics in
single-cell transcriptomics

To gain a deeper understanding of HMs characteristics across
different cell types, we conducted a comprehensive analysis of
single-cell transcriptome data. Utilizing t-SNE technology, we
successfully identified and annotated six major cell clusters:
endothelial cells, macrophages, hepatocytes, cancer cells,
fibroblasts, and NKT cells, revealing the complex distribution
pattern of multiple cell populations within the HCC
microenvironment (Figure 2A). To further validate the
accuracy of cell type annotations, we generated a dot plot
displaying the expression of marker genes for each cell
cluster (Figure 2B).

Subsequently, we calculated and visualized the HMs activity score
for each single cell using the 110 histone-related genes we had
constructed (Figure 2C). To more intuitively compare the differences
in HMs activity among different cell types, we employed violin plots to
illustrate the distribution of HMs scores across cell populations
(Figure 2D). We discovered that HMs activity is ubiquitous across
all cell types, albeit with a degree of heterogeneity.

Based on the overall cellular HMs activity, we categorized cells
into high HMs and low HMs groups. By comparing these two
groups, we identified 772 differentially expressed genes related to
HMs (single cell HM-related DEGs), all derived from HCC
single-cell data.

3.2 Identification of histone-related genes in
HCC bulk RNA sequencing

We employed the WGCNA method to construct a hierarchical
clustering dendrogram of TCGA-HCC samples (Figure 3A), illustrating
the clustering relationships among samples. Additionally, the heatmap
at the bottom of the figure visually presents the HMs scores for each
sample, reflecting the relative activity of HMs characteristics within the
samples. Further analysis of the sample clustering dendrogram
(Figure 3B) and the module-trait heatmap (Figure 3C) revealed that
the turquoise, grey, and bluemodules were closely associated withHMs.
These modules collectively encompass 726 genes, including 99 in blue,
493 in grey, and 134 in turquoise. To further narrow down the
candidate gene pool, we identified differentially expressed genes
(DEGs) between normal and HCC samples in the TCGA dataset,
yielding HCC DEGs (Figure 3D). Building upon this, we intersected
single-cell HM-related DEGs, HMs Module genes, and HCC DEGs,
ultimately obtaining 45 intersecting genes, designated as HCC and
histone-related genes (HCC-HMRgenes) (Figure 3E).

To explore the interactions among these 45 HCC-HMRgenes, we
constructed a protein-protein interaction (PPI) network (Figure 3F).
Subsequently, we performed GO and KEGG enrichment analyses
(Figure 3G) to investigate the distribution of these 45 genes in
biological processes (BP), cellular components (CC), and molecular
functions (MF), as well as their potential roles in various biological
pathways. Results indicated that in terms of BP, CC, and MF, the genes
were primarily enriched in ribosome structure and function, as well as
protein translation-related pathways. KEGG analysis revealed that the
ribosome pathway exhibited the most significant and unique
enrichment. This suggests that HMs may promote tumor
progression by influencing ribosomal function and, consequently,

FIGURE 3
Identification and functional analysis of HCC-HMRgenes. (A) Dendrogram showing hierarchical clustering of TCGA-HCC samples. The bottom
heatmap represents the HMs score for each sample. (B) Cluster dendrogram of the WGCNA analysis. (C) Module-trait heatmap showing the closely
related modules to the HMs trait. (D) Volcano plot displaying differential analysis results between TCGA-HCC and normal samples, highlighting the top
five up- and downregulated genes with the most significant expression changes. (E) Venn plot showing the intersecting genes between single-cell
HM-related DEGs, HMsModule genes, and HCCDEGs. (F) PPI Network of 45 HCC-HMRgenes. (G)GO and KEGG Analysis Results of 45 HCC-HMRgenes.
(H) PPI Network of updated HCC-HMRgenes related genes. (I) GO and KEGG Analysis Results of updated HCC-HMRgenes related genes.
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protein synthesis. Next, we combined the previously defined 110 genes
with these 45 HCC-HMRgenes and reanalyzed their interaction
networks and enrichment to further investigate HMs mechanisms in
HCC (Figures 3H, I). GO analysis results showed that chromatin
structure and nucleosome organization are closely related to HMs in
HCC, with histone deacetylation potentially playing the most crucial
role. KEGG pathway analysis revealed that viral infection might
promote HCC development by influencing HMs, while HMs also
plays a role in regulating cell death.

3.3 Construction of prognostic signature
based on integrated machine learning

Building upon the 45 HCC-HMRgenes, we incorporated
110 HM-related source genes, resulting in a total of
155 HMRgenes. To construct a robust prognostic model, we
utilized the TCGA dataset as the training set and ICGC and
GSE14520 as validation sets. We selected 69 HMRgenes common
to all three datasets as input features (training genes) for machine
learning. Using these 69 genes, we developed a consensus HMRS

through integrated machine learning methods. Within a 10-fold
cross-validation framework, we evaluated 117 different predictive
models, assessing model performance by calculating the accuracy of
each model across all datasets. Considering the comprehensive
performance on the validation sets, we selected the Lasso + RSF
model for HMRS construction (Figure 4A).

The Lasso regression coefficient path plot illustrated how the
coefficients of the 69 genes shrink to zero as the L1 regularization
penalty (λ value) increases, revealing the final selected model
variables (Figure 4B). In Lasso regression, the cross-validation
deviance plot determined the optimal λ value, which minimizes
cross-validation error and provides the best model complexity
(Figure 4C). Figure 4D displayed the risk score distribution of
high- and low-risk samples in the training set, calculating based
on the selected λ value. Kaplan-Meier survival curves demonstrated
significant prognostic differences between high- and low-risk groups
(p < 0.001), with median survival times of 3.0 and 6.6 years,
respectively (Figure 4E). The risk score distribution plot
illustrated the relationship between each sample’s score and
survival status in the training set, with high-risk scores positively
correlated with mortality events (Figure 4F). Subsequent ROC curve

FIGURE 4
Risk score model based on 69 training genes constructed using Lasso regression method. (A) C-index calculated for 117 prediction models through
10-fold cross-validation framework across all validation datasets. (B) Lasso regression coefficient path plot for genes. (C) Lasso regression cross-
validation deviance. X-axis represents log λ values, Y-axis represents deviance, red dots represent average deviance for each λ value, grey lines represent
standard error of deviance, and vertical lines on X-axis represent optimal λ value. (D) Risk profile in the training set. (E) KM survival curves for high-
and low-risk groups in the training set. (F) Distribution of Risk scores for each sample. (G) ROC curves for the training set.
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analysis evaluated the risk score model’s performance, yielding areas
under the curve (AUC) of 0.76, 0.72, and 0.70 for 1-year, 3-year, and
5-year survival, respectively, indicating good predictive performance
(Figure 4G). These results suggested that our constructed HMRS can
accurately distinguish between high- and low-risk HCC patients,
demonstrating strong prognostic predictive capability and robust
model performance.

3.4 Performance evaluation and clinical
relevance analysis of HMRS

To further enhance the applicability and generalizability of the
model, we expanded our analysis from the initial 69 training genes to
include all 155 HMRgenes for retraining (Figure 5A). This
expansion resulted in improved AUC values, with 1-year, 3-year,
and 5-year AUCs reaching 0.78, 0.73, and 0.70, respectively.

We then investigated the distribution and performance of HMRS
across different clinical feature subgroups. Figure 5B presents the

distribution of HMRS low- and high-risk patients in terms of overall
survival (OS), T stage, N stage, M stage, clinical stage, and gender.
Notably, there was a significant difference between the two groups in T
stage (p < 0.05). To further validate this finding, we used violin plots to
visually demonstrate the differences in risk scores among patients at
different T stages (Figure 5C). The results showed that patients at T3-4
stages had significantly higher risk scores than those at T1-2 stages (p =
0.0072). At the gene expression level, Figure 5D illustrates that the gene
variables ultimately selected for themodel were generally upregulated in
the high-risk group. This result provides important clues about the
biological basis of HMRS.

To assess the predictive stability of HMRS across different
clinical contexts, we conducted stratified analyses. Figures 5E, F
demonstrate that after age stratification, the survival rate of the high-
risk group remained significantly lower than that of the low-risk
group. Similarly, Figures 5G, H show that after stratification by
clinical stage, patients in the high-risk group still had poorer survival
prognoses. These results strongly support the potential of HMRS as
an independent prognostic factor.

FIGURE 5
Performance evaluation and clinical relevance analysis of HMRS. (A) Survival analysis and predictive performance assessment of the risk scoremodel
based on 156 HMRgenes. (B)Distribution of HMRS low- and high-risk patients across different clinical features. (C) Violin plot of HMRS scores for patients
at different T stages. (D) Heatmap analysis of model-selected gene expression and clinical features in high- and low-risk patient groups. (E,F) Kaplan-
Meier survival curves after age stratification. (G,H) Kaplan-Meier survival curves after clinical stage stratification. (I,J) Survival analysis of patients
stratified by age over 60 and under 60. (K,L) Survival analysis of patients stratified by early stage (I-II) and advanced stage (III-IV).
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To further evaluate the predictive efficacy of HMRS across
different age groups and disease stages, we conducted stratified
analyses. In terms of age stratification, both patients aged over 60
(Figure 5I) and under 60 (Figure 5J) in the high-risk group showed
significantly lower survival rates compared to the low-risk group
(HR = 1.90 and 2.36, respectively, p < 0.05). Similarly, in the disease
stage stratification analysis, patients in the high-risk group
demonstrated poorer survival prognosis in both early stages
(Stage I and II, Figure 5K) and advanced stages (Stage III and
IV, Figure 5L) (HR = 2.06 and 1.85, respectively, p < 0.05). These
results further confirm the potential of HMRS as an independent
prognostic factor and demonstrate that the model maintains good
predictive value across patient populations with different clinical
characteristics.

3.5 Establishment and validation of
nomogram integrating clinical features

To assess the potential of HMRS as an independent prognostic
factor for HCC, we conducted a comprehensive analysis of the
impact of age, gender, TNM staging, clinical staging, and HMRS
on overall survival (OS) in the TCGA-HCC cohort. Univariate
Cox regression analysis (Figure 6A) revealed that age, T stage, M
stage, and HMRS were significant prognostic factors for OS in the
TCGA-HCC cohort (p < 0.1). Subsequent multivariate Cox
regression analysis (Figure 6B) further confirmed the status of
T stage and HMRS as independent prognostic indicators
(p < 0.001).

Based on clinical experience and Cox regression analysis results, we
selected T stage and age as key clinical features and integrated themwith
HMRS to construct a comprehensive prognostic nomogram (Figure 6E).
In this nomogram, the point plot adjacent to each variable visually
demonstrates its contribution to the predictive model, reflecting the
strength of its association with survival prediction.

To validate the predictive accuracy of the nomogram, we plotted
calibration curves (Figure 6C). The results showed that the
nomogram-predicted 1-year, 3-year, and 5-year OS closely
aligned with actual observed values, confirming the model’s
reliability. Furthermore, decision curve analysis (Figure 6D)
indicated that within a specific high-risk threshold range, the
decision-making strategy based on the nomogram could achieve
higher standardized net benefits compared to using other clinical
features alone. This finding highlights the potential advantages of
our constructed comprehensive prognostic model in clinical
decision-making.

3.6 Transcriptomic characteristics analysis
of different HMRS patient groups

To further investigate the molecular mechanisms underlying the
correlation between HMRS and HCC prognosis, we conducted
GSEA and GSVA analyses. These analyses revealed differences in
biological processes and pathway activities associated with high and
low HMRS score patient groups.

Figure 7A’s GSEA analysis uncovered GO pathways enriched in
different HMRS groups. Figure 7B provides GSVA scores for KEGG

FIGURE 6
Construction and validation of a prognostic nomogram model integrating HMRS and clinical features. (A) Univariate analysis of the clinical
characteristics and HMRS for OS. (B) Multivariate analysis. (C) Calibration curve of the nomogram for 1, 3, and 5-year OS. (D) Decision curve analysis
showing the standardized net benefit by applying the nomogram and other clinical characteristics. (E)Construction of the nomogrambased on theHMRS
and clinical characteristics.
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pathways, further enhancing our understanding of pathway
activities related to HMRS scores. Results showed that compared
to the low-risk group, the high-risk group significantly enriched
multiple gene sets associated with cell cycle, DNA repair, and
metabolism. Notably, DNA repair, E2F target genes, MYC target
genes, PI3K/AKT/mTOR signaling pathway, and reactive oxygen
species pathway were significantly upregulated in the high-
risk group.

The heatmap based on GSVA scores further confirmed
significant differences between high- and low-risk groups. The
heatmap displayed differential expression patterns of multiple
signaling pathways and biological processes between the two
groups, consistent with GSEA results. We selected several
pathways that showed significance in both GSEA and GSVA
analyses for survival analysis based on expression levels. Patients
with high expression of reactive oxygen species pathway, mitotic
spindle, DNA repair, G2M checkpoint, E2F target genes, glycolysis,
and PI3K/AKT/mTOR signaling pathway showed significantly
reduced survival rates (Figure 7C).

3.7 Mutation spectrum analysis of HM genes

We conducted a comprehensive analysis of mutation patterns in
histone modification genes among HCC patients, revealing significant
differences between high- and low-risk groups. The MATH score was
significantly higher in the high-risk group compared to the low-risk
group (p = 0.0017), indicating greater tumor heterogeneity in the high-

risk group (Figure 8A). Kaplan-Meier survival analysis based onMATH
scores showed that patients with high MATH scores had worse
prognoses (p = 0.043, Figure 8B), further confirming the association
between tumor heterogeneity and prognosis.

We observed distinct gene mutation spectra between high- and low-
risk groups (Figures 8C, D). In the high-risk group, TP53 had the highest
mutation frequency (47%), followed by TTN (25%) andCTNNB1 (22%).
In contrast, CTNNB1 had the highest mutation frequency in the low-risk
group (27%), followed by TTN (24%) and MUC16 (15%). Notably,
TP53 mutation frequency was significantly lower in the low-risk group
(12%). In the high-risk group, we observed significant co-occurrence of
TP53 mutations with several genes, including TTN, CTNNB1, and
MUC16 (Figure 8E). In the low-risk group, CTNNB1 mutations
appeared more independent from other gene mutations (Figure 8F).

3.8 HMRS-related immune landscape
in HCC

We conducted a comprehensive analysis of the immune
microenvironment in high- and low-risk HCC groups, including
stromal scores, immune scores, immune cell infiltration, and related
pathway analyses. Although differences in stromal scores
(Figure 9A, p = 0.074) and immune scores (Figure 9B, p = 0.053)
between high- and low-risk groups did not reach statistical
significance, the high-risk group showed a trend towards lower
scores in both metrics, suggesting that high-risk HCC may have
weaker immune responses and stromal components.

FIGURE 7
Transcriptomic characteristics of various HMRS patients. (A) GO terms enriched by GSEA analysis. (B) Differences in KEGG analysis between the
high- and low-risk groups scored by GSVA. (C)Correlation between the risk score and hallmark pathway activities scored by GSVA. Kaplan-Meier survival
curves respectively show survival differences between high and low expression groups for reactive oxygen species pathway, mitotic spindle, DNA repair,
G2M checkpoint, E2F target genes, glycolysis, and PI3K/AKT/mTOR signaling pathway.
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To further analyze differences in specific immune cell
infiltration between high- and low-risk groups, we used the
CIBERSORT algorithm to calculate the abundance of each TME
infiltrating cell type in both groups (Figure 9C). We found that
memory B cells, follicular helper T cells, regulatory T cells, gamma
delta T cells, M0macrophages, and neutrophils were more abundant
in the high-risk group, while naive B cells, resting NK cells,
monocytes, M2 macrophages, and resting mast cells were more
abundant in the low-risk group.

Subsequently, we quantified scores for 28 immune cell phenotypes
(Figure 9D). Most immune cells showing significant differences had
higher expression levels in the high-risk group, with only eosinophils
showing higher expression in the low-risk group. Furthermore, using
the ssGSEA algorithm, differences in immune-related pathway activities
between high- and low-risk groups were demonstrated (Figure 9E).
Several immune-related pathways, including complement and
coagulation cascades, Fc-γ receptor-mediated phagocytosis,
chemokine signaling pathway, and T cell receptor signaling pathway,
were significantly activated in the high-risk group.

We then investigated the associations between infiltrating cells
in the TME and the eight genes used to construct the HMRS
(Figure 9F), revealing correlations between specific immune cell
subgroups and gene expression patterns in the HMRS. For example,
EZH2 showed positive correlations with various T cell subsets but
negative correlations with B cells. These results suggest that HMs
genes may participate in HCC progression by regulating immune
cell infiltration.

Figure 9G displays the correlations between risk scores and
22 immune cell subgroups. The results indicate that risk scores are

significantly positively correlated with Macrophages M0, memory
B cells, and regulatory T cells, while negatively correlated with other
cells (such as resting mast cells and resting NK cells). These findings
collectively point to HMRS as an effective tool for quantifying the
immune status of HCC patients, suggesting significant differences in
immune landscape characteristics among patients with different
risk levels.

3.9 Drug sensitivity prediction and HPA
validation

In Figure 10, through analysis of the GDSC database, we
calculated IC50 values for commonly used drugs in HCC
treatment across different cancer cell lines. Specifically,
significant differences in IC50 values were observed between
different risk groups for many drugs including Trametinib,
Sunitinib, Foretinib, Axitinib, Doxorubicin, Lenalidomide,
Erlotinib, Cyclopamine, Gefitinib, and Temsirolimus (Figures
10A-J). This emphasizes the potential value of these gene
expression levels in predicting HCC patients’ responses to
specific drugs.

3.10 Experiment validation

We performed IHC analysis to examine the expression of the
five genes with the highest weights in our model (ASF1A, EZH2,
PRDM9, SARS1, and SUV39H2). The results demonstrated that all

FIGURE 8
(A)MATH scores of high- and low-risk HCC patient groups. (B) Kaplan-Meier survival curves based onMATH scores. (C)Oncoplot of genemutations
in high-risk HCC patient group. (D)Oncoplot of genemutations in low-risk HCC patient group. (E,F)Co-occurrence andmutual exclusivity analysis of the
top 20 most mutated genes in high- and low-risk groups. Heatmap colors indicate relationships between gene pairs, asterisks denote statistical
significance levels.
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five genes exhibited significantly upregulated expression patterns in
HCC tissues compared to adjacent normal tissues (Figure 11). This
validation supports the hypothesis that their increased expression
may be associated with the initiation, progression, or
maintenance of HCC.

4 Discussion

This study systematically explored the role and clinical
significance of HMs in HCC by integrating multi-omics data and

advanced computational methods. We first used single-cell RNA
sequencing technology to reveal cellular heterogeneity in the HCC
microenvironment, identifying six major cell clusters and analyzing
differences in histone modification activity across different cell
types. Subsequently, through WGCNA, we identified gene
modules closely related to HMs. By summarizing and processing
the corresponding differentially expressed genes, module genes, and
single-cell characteristic genes, we visualized the HCC-related
regulatory network of HMs. Based on these findings, we
continued to construct a novel prognostic prediction model
based on histone modification features using these genes. This

FIGURE 9
Correlations between immune microenvironment, immune characteristics, and HMRS. (A, B) The StromalScore and immune score were applied to
quantify the different immune statuses between the high- and low-risk groups. (C) Abundance of each TME infiltrating cell type in high- and low-risk
groups calculated using the CIBERSORT algorithm. (D) Infiltrating cell abundance calculated using quantitative scoring schemes for 28 immune
phenotypes. (E) Immune-related pathways’ activity showing significant differences between high- and low-risk groups. (F) Heatmap showing
correlations between key HMs genes and 22 immune cell subgroups. (G) Dot plot showing correlations between risk scores and 22 immune
cell subgroups.
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model demonstrated good predictive ability in both the TCGA
dataset and external independent datasets (GSE14520 and ICGC),
providing strong evidence for risk stratification of HCC patients.
Through further functional enrichment analysis, including GSEA
and GSVA, we further elucidated key biological pathways associated
with HMs. Additionally, we explored associations between HMs and
gene mutations, immune microenvironment, and drug sensitivity,
revealing the comprehensive and multifaceted role of HMs in HCC
occurrence, development, and treatment response.

HMRS, as a novel prognostic marker, demonstrated significant
potential as an independent prognostic factor in this study.
Multivariate Cox regression analysis results showed that even
when considering traditional clinical factors such as age, gender,
and TNM staging, HMRS maintained significant prognostic
predictive ability (p < 0.001). This finding highlights that HMRS
captures important biological information not fully reflected by
existing clinical indicators. The nomogram model integrating
HMRS with key clinical features further improved the accuracy
and clinical utility of prognostic prediction. Calibration curves

showed high concordance between predicted 1-year, 3-year, and
5-year survival rates and actual observed values, while decision curve
analysis confirmed that decision strategies based on the nomogram
could achieve higher standardized net benefits within specific high-
risk threshold ranges. This integrated approach not only improved
prediction accuracy but also provided clinicians with an intuitive,
user-friendly decision-making tool, facilitating individualized
management of HCC patients. Compared to existing clinical
staging systems, HMRS has distinct advantages in reflecting the
molecular heterogeneity of HCC. Traditional TNM staging is mainly
based on anatomical features of tumors and struggles to fully reflect
tumor biological behavior and molecular characteristics. In contrast,
HMRS, based on gene expression patterns related to HMs, can better
capture the molecular biological properties of tumors. This
molecular-level stratification not only more accurately predicts
patient prognosis but may also provide guidance for targeted
therapy and immunotherapy selection. For example, our study
found that high-risk HMRS patients may be more sensitive to
certain targeted drugs (such as Trametinib and Sunitinib),

FIGURE 10
Distribution of IC50 scores for drugs in high- and low-risk groups defined by HMRS.

FIGURE 11
IHC staining of ASF1A, EZH2, PRDM9, SARS1, and SUV39H2 in HCC tissues and adjacent normal liver tissues. The upper row displays the expression
of each gene in HCC tissues, while the lower row shows the corresponding adjacent normal tissues.
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providing possibilities for HMRS-based individualized treatment
decisions. However, it is worth noting that although HMRS shows
superior predictive performance, it cannot completely replace
existing clinical staging systems. Instead, HMRS should be
viewed as a powerful complement to existing systems, and the
combination of the two may provide more comprehensive and
precise guidance for the comprehensive assessment and
management of HCC patients.

Besides, HMRS, as a prognostic marker based on histone-
related genes, not only reflects the molecular characteristics of
HCC but also reveals the complex interactions between tumor
evolution and the immune microenvironment. Our GSEA and
GSVA analyses show that the activation of pathways such as DNA
repair, cell cycle, and PI3K/AKT/mTOR in the high-risk HMRS
group forms a seemingly contradictory but highly synergistic
biological process with the activation of immune cell infiltration
and immune-related pathways.

This apparent contradiction may reflect a concept: “epigenetic-
mediated immune evasion” (Cacan, 2017). Specifically, the
abnormal activation of DNA repair pathways in the high-risk
group may not just be a mechanism to maintain genomic
stability, but more likely a strategy for tumor cells to actively
regulate their antigen expression profile. Through frequent DNA
repair processes, tumor cells may dynamically adjust their
neoantigen load, thereby evading immune surveillance. This
hypothesis can explain why the high-risk group simultaneously
exhibits higher immune cell infiltration and poorer prognosis
(Germano et al., 2017; He et al., 2022).

The high tumor heterogeneity revealed by the mutation
spectrum analysis of HMs genes may be a direct result of this
“epigenetic-mediated immune evasion”. More frequent
TP53 mutations in the high-risk group not only affect cell cycle
regulation but may also influence the immunogenicity of tumor cells
by altering global chromatin states (Wang et al., 2023; Nel et al.,
2024). This links epigenetic regulation, genomic instability, and
immune evasion, providing a new framework for understanding
HCC progression.

The activation patterns of different signaling pathways in
high- and low-risk HMRS groups, especially metabolism-related
pathways (such as oxidative stress response), may play a key role
in shaping the immune microenvironment. With the
advancement of current technologies, numerous integrated
studies on metabolism-immune-genetics have emerged (Ding
et al., 2024; Fok et al., 2019). In this regard, we propose a new
concept: the “metabolism-immune-epigenetic axis”. In this
model, the metabolic reprogramming of tumor cells (as
observed in the high-risk group) not only supports rapid
proliferation but may also directly regulate the function and
epigenetic state of local immune cells by producing specific
metabolites (such as lactate, 2-hydroxyglutarate, etc.). This
regulation may be bidirectional: changes in the metabolic state
of immune cells may in turn affect the epigenetic profile of tumor
cells, forming a complex feedback loop (Phan et al., 2017).

The differences in immune cell infiltration between high- and
low-risk HMRS groups may reflect the dynamic balance of this
“metabolism-immune-epigenetic axis”. For example, the higher
infiltration of memory B cells and regulatory T cells observed in
the high-risk group may be the result of tumor cells selectively

recruiting and maintaining these immune cell subsets that favor
tumor growth through specific epigenetic modification patterns.
This selectivity may be achieved by regulating the expression of
specific chemokines or cytokines, whose genes may be key epigenetic
regulatory targets captured by HMRS (Cao and Yan, 2020; Hogg
et al., 2020).

Based on these observations, we propose that HMRS may have
unique value in predicting immune therapy response. Traditional
immune therapy prediction markers (such as PD-L1 expression or
tumor mutation burden) may not capture this complex “epigenetic-
mediated immune evasion” mechanism. HMRS, as a marker
integrating information from multiple levels, may more
accurately reflect the tumor’s “immune evasion potential”. For
example, high-risk HMRS patients may require a combined
treatment strategy targeting epigenetic regulation (such as DNA
methylation inhibitors or histone deacetylase inhibitors) and
immune checkpoint inhibitors to reshape the tumor immune
microenvironment and enhance the effects of immunotherapy
(Prasanna et al., 2018).

Although this study has made significant progress in
revealing the importance of histone-related genes in HCC,
there are still some limitations. Firstly, our analysis is mainly
based on public datasets, which may not fully represent the
heterogeneity of all HCC patients. Secondly, although our
HMRS model has shown good predictive ability in multiple
independent cohorts, it lacks prospective clinical validation.
Additionally, despite our extensive bioinformatics analysis, we
lack laboratory validation to confirm the observed molecular
mechanisms (Wu et al., 2023). Finally, our drug sensitivity
analysis is based on in vitro cell line data, which may not fully
reflect the complex microenvironment of tumors in vivo.

This study successfully constructed a prognostic model (HMRS)
based on histone-related genes through multi-omics integrated
analysis, providing a new perspective for precision diagnosis and
treatment of HCC. Our findings not only reveal the importance of
HMs in HCC but also provide a basis for potential therapeutic
targets and individualized treatment strategies. Future research
directions should include: 1) Validating the predictive value of
HMRS in larger-scale prospective clinical trials; 2) Conducting
in-depth functional experiments to elucidate the specific
mechanisms of key HMs genes in HCC progression; 3)
Developing new treatment strategies targeting HMs (e.g., histone
deacetylase inhibitors) or subsequent pathways (e.g., targeted
therapies for upregulated pathways like PI3K/AKT/mTOR in
high-risk groups) based on our findings, and evaluating their
effects in preclinical models; 4) Exploring the combined
application of HMRS with existing treatment methods (e.g.,
immunotherapy targeting regulatory T cells) to improve the
overall efficacy of HCC treatment. Through these efforts, we
hope to further advance individualized treatment for HCC and
ultimately improve patient prognosis.
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