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Thanatin is a β-hairpin antimicrobial peptide cyclised by a single disulfide bond
that has shown potent broad-spectrum activity towards bacterial and fungal
pathogens. Towards Gram-negative species, thanatin acts both by forming trans-
membranal pores and inhibiting outer membrane biogenesis by binding to LptA
and blocking lipopolysaccharide (LPS) transport. Inspired by previous
modifications of thanatin, an analogue was prepared which demonstrated
potent but selective activity towards E. coli. Furthermore, this compound was
shown to act in synergy with the highly potent FDA-approved lipopeptide
antibiotic polymyxin B, which engages LPS at the cytoplasmic membrane.
Four analogues of thanatin in which the disulfide was substituted for vinyl
sulfide bridge mimetics were prepared, all of which retained similar secondary
structures. Two of these retained substantial potency and selectivity towards
E. coli. Importantly, synergy with polymyxin B was also maintained for the lead
analogue. The vinyl sulfide potentially offers a facile replacement strategy for
labile disulfide bonds and the selective activity and drug synergy of the reported
thanatin analogues is promising for the development of narrow spectrum
antimicrobials with reduced likelihood of resistance emerging in clinical settings.
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Introduction

Antimicrobial resistance (AMR) represents a significant global health threat,
characterised by the ability of microorganisms (e.g. bacteria, viruses, fungi, and
parasites) to withstand the effects of medications traditionally used to eradicate them or
inhibit their proliferation (Centers for Disease Control and Prevention, 2019; Murray et al.,
2022). This resistance compromises the efficacy of standard treatments, leading to
prolonged infections, increased medical expenses, and heightened mortality rates. The
escalation of AMR is fuelled by factors including the overuse and misuse of antibiotics,
insufficient infection control measures, and a stagnation in the development of novel
antibiotics. Antimicrobial peptides (AMPs) have gained increasing attention as potential
alternatives or adjuncts to conventional antibiotics in addressing AMR (Malik and
Bhattacharyya, 2019).
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AMPs are short (<50 AAs), naturally occurring peptides, that
form a crucial part of the innate immune system across a wide
range of organisms (Hancock et al., 2016). These peptides most
commonly exhibit broad-spectrum antimicrobial activity,
primarily through mechanisms that involve the disruption of
microbial membranes, leading to cell lysis and death (Fjell et al.,
2012; Mahlapuu et al., 2016). This membrane-targeting action is
less prone to inducing resistance when compared to traditional
antibiotics that often target proteins with specific cellular
functions (Li et al., 2018; Yu et al., 2020). Furthermore, some

classes of AMPs (e.g. β-hairpins) have been shown to exhibit
multimodal mechanisms of action, alongside cell lysis, further
rendering them less susceptible to resistance development
(Krieger et al., 2022).

To enhance therapeutic outcomes and mitigate the risk of
resistance, the use of combination antimicrobial therapies is
being increasingly explored (Mhlongo et al., 2023). This strategy
typically involves the use of two or more therapeutic agents, which
can act synergistically to increase antimicrobial efficacy, reduce
required dosages, and potentially lower toxicity. There are two

FIGURE 1
Example of the two types of combination therapies aimed to target antimicrobials and overcome resistance mechanisms (Shang et al., 2019; van
Groesen et al., 2021).
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primary approaches for combining different treatments; 1)
combination therapies, 2) covalent conjugates.

1) The administration of two separate antimicrobial agents, that
ultimately work together, via complementary mechanisms,
resulting in the concentrations/dose co-administered being
below that of which they would normally be required to
elicit the same antimicrobial effect (Figure 1) (Kalan and
Wright, 2011). A great example of this is the co-
administration of Trp rich membrane disrupting peptides
alongside commonly used antibiotics (e.g. Penicillin’s)
(Shang et al., 2019). Through membrane lysis by the Trp
rich peptides, the conventional antibiotics can more effectively
reach their target, boosting their activity.

2) The administration of a single antimicrobial agent, composed
of two agents/chemical portions of agents covalently bound to
one another. Each portion of the conjugate acts cooperatively
to elicit a greater antimicrobial effect than either of the agents
do alone. An example of this approach is the covalent bonding
of AMPs to form hybrid molecules (van Groesen et al., 2021;
Wood et al., 2021). These covalently bound combination
AMPs can integrate the properties of individual peptides,
potentially enhancing potency, stability, and specificity in
targeting resistant pathogens. By leveraging such molecular
combinations, researchers have aimed to develop innovative
treatments that offer robust efficacy against a broad spectrum
of resistant organisms, while also curtailing the emergence of
resistance (Figure 1) (Luther et al., 2019). Examples of such
strategies include not only chimeric or hybrid AMPs, but also
cell-penetrating peptide (CPP) conjugates with AMPs (Lee
et al., 2019), small molecules antibiotics (Hadjicharalambous
et al., 2022) and peptide nucleic acids (PNAs) (Yamamoto
et al., 2022). Gene silencing with CPP-PNA conjugates has
recently been shown as a strategy to enhance permeability of
antibiotics to Gram-negative species (Yamamoto et al., 2022).

Thanatin was initially discovered following the immune
challenge of the insect, Podisus maculiventris (spined soldier bug)
(Fehlbaum et al., 1996). Thanatin (1) is comprised of 21-residues
and maintains a β-hairpin secondary structure via an intramolecular
disulfide bond between residues Cys11 and Cys18 (Figure 2). It
showed a broad spectrum of activity towards Gram-negative and
Gram-positive bacteria as well as fungi (Fehlbaum et al., 1996).
Interestingly, thanatin exhibited no antimicrobial activity towards S.

aureus, despite showing activity against a variety of other Gram-
positive pathogens (e.g., A. viridians and M. luteus). A few of these
key aspects identified during initial structure-activity relationship
(SAR) studies of thanatin were, the determination that C-terminal
amidation enhanced the spectrum of activity, the d enantiomer was
dramatically less active toward gram negative pathogens, and that
four regions of thanatin are required for full antimicrobial potency.
These four regions identified were as follows; the C-terminal loop,
the C-terminal three-residue extension, a stretch of seven
N-terminal mostly hydrophobic residues. Notably, the three final
N-terminal residues are required for antifungal but not antibacterial
activity (Fehlbaum et al., 1996).

In Gram-negative bacteria, the antimicrobial activity of thanatin
(1) results from a dual mechanism. In addition to forming trans-
membranal pores leading to cell lysis, thanatin (1) acts as an
inhibitor of the lipopolysaccharide transport (Lpt) system,
binding to LptA (Vetterli et al., 2018). During membrane
assembly in Gram-negative bacteria, liposaccharides (LPS) are
transported to the outer membrane by a series of seven
lipopolysaccharide transporter proteins (LptA-G). Inhibition of
any of these transporters leads to an inability for the bacteria to
transport LPS, inhibiting bacterial outer membrane biogenesis
(Okuda et al., 2012; Okuda et al., 2016). LptA was found to form
head to tail dimers resulting in protein bridges across the periplasm
during LPS transport (Vetterli et al., 2018). Upon superimposing the
solution structure of a thanatin-LptA complex with the LptA dimer,
overlapping thanatin (1) binding was observed (Vetterli et al., 2018).
Thanatin is also evidenced to interrupt the LptC-LptA protein-
protein interaction (Moura et al., 2020). Accordingly, thanatin (1) is
believed to prevent the crucial periplasmic bridges from forming,
inhibiting LPS transport (Vetterli et al., 2018). This mechanism is
consistent with a loss in potency towards Gram-negative pathogens
observed by Fehlbaum et al. (1996) when examining the
antimicrobial activity of an entirely D-enantiomeric thanatin
analogue (Fehlbaum et al., 1996). It has been observed on
multiple occasions that for AMPs which block protein-protein
interactions, the enantiomeric peptide (L-to D-switching of amino
acids) results in significant losses in antimicrobial activity. This
results from the inability of the enantiomeric peptide to interact with
the chiral target protein, which in the case of thanatin is evidenced to
be the LptA transporter (Henriques et al., 2019).

Whilst bacteria are able to modulate their LPS biosynthesis to
maintain an abundance in the cell membrane, they do not possess a
mechanism to remove LPS. For this reason, LPS targeting

FIGURE 2
AMP thanatin (1), represented by three letter code, disulfide bond between residues Cys11 and Cys18 shown in orange. Regions essential for
antimicrobial activity highlighted as follows; i) C-terminal loop (red), ii) the C-terminal three residue extension (green), iii) a stretch of seven N-terminal
mostly hydrophobic residues (blue) and iv) the three final N-terminal residues (pink).
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antibiotics, such as the polymyxins, remain promising antibacterial
agents (Sabnis et al., 2021). Polymyxin B is known to exert its
antimicrobial activity after binding to LPS of Gram-negative bacteria
in the outer- and subsequently inner-membrane. Unfortunately,
despite its approval for clinical use, its utility remains hamstrung by
significant toxicity concerns (Liu et al., 2021), limiting clinical use to
a last-line of defence that often caused severe nephrotoxic injury in
life-saving circumstances. Sabnis et al. (2021) recently demonstrated
murepavadin, a head-to-tail cyclised β-hairpin AMP and LptD
inhibitor active selectively towards Pseudomonas aeruginosa (Dale
et al., 2018), caused accumulation of LPS in the cytoplasmic
membrane. This resulted in increased sensitivity to polymyxins
and enhanced efficacy in vivo.

Although polymyxin is currently used as a last line of defence
antibiotic it has serious concerns regarding it nephrotoxicity (Na
et al., 2024). It has been suggested that by implementing
combination therapies that include polymyxin, the effective dose
may be minimised, ultimately reducing toxicity. Furthermore, with a
number of researchers working towards the development of new
less-toxic polymyxins (Aslan et al., 2022), including our own
research groups (Harris et al., 2022; Na et al., 2024), these new
derivatives may see further benefit from use in synergistic
combination therapies, reducing dose requirements and/or the
development of resistance. Most noteworthy of these is Spero
Therapeutics compound SPR206 (Bruss et al., 2023), which has
recently received FDA Fast Track designation and has Phase II
clinical trials planned.

Inspired by Sabnis et al. (2021) observing synergy between
polymyxin antibiotics and LPS transport inhibitor murepavadin
in P. aeruginosa, we set out to investigate whether thanatin
analogues would also act synergistically with polymyxin B due to
the documented inhibitory interaction with LptA in additional
species such as E. coli. Furthermore, we wanted to investigate
whether the disulfide of thanatin (1) could be replaced with vinyl
sulfides as bridge mimetics (Cameron et al., 2020; Shepperson et al.,
2024) and maintain a similar antimicrobial function and more
importantly, our hypothesised synergism.

Materials and methods

General information

For general procedures and materials see SI. Common chemical
abbreviations used throughout include; dimethylformamide (DMF),
dichloromethane (CH2Cl2), amino acid (AA), approximately
(approx.), 1,4-dioxane (dioxane), diethyl ether (Et2O), 3-butynoic
acid (3-BA), solid-phase peptide synthesis (SPPS), 2,4,6-
trimethylpyridine (sym-collidine), trifluoroacetic acid (TFA),
Milli-Q water (MQ H2O), N,N′-diisopropylethylamine (DIPEA),
(7-azabenzotriazol-1-yloxy) trispyrrolidinophosphonium (PyAOP),
diemthylsulfoxide (DMSO), triisopropylsilane (TIPS), 1-
[bis(dimethylamino) methylene]-1H-1,2,3-triazole [4,5-b]
pyridinium 3-oxide hexafluorophosphate (HATU), tert-
butyloxycabonyl (Boc), tert-butyl (tBu), acetonitrile (MeCN),
fluorenyl-methoxycarbonyl protecting group (Fmoc),
pentamethyl-2,3-dihydrobenzofuran-5-sulfonyl (Pbf),
triphenylmethyl (Trt), phenylsilane (PhSiH3), N-ethoxycarbonyl-

2-ethoxy-1,2-dihydroquinoline (EEDQ), di-tert-butyl decarbonate
(Boc2O), trifluoroethanol (TFE), phosphate buffered saline (PBS),
5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB, Ellman’s Reagents), 4-
[(R,S)-α-[1-9H-flouren-9-yl)]methoylcarbonylamino]-2,4-dimetho
xyphenoxyacetic acid (Fmoc-Rink-amide linker), 1-(4,4′-dimethyl-
2,6-dioxocyclohexylidene)-3-ethyl (Dde), tetrakis (triphenylphosp
hine) palladium (0) (Pd(PPh3)4) and 2,3-diaminoproprionic
acid (Dap).

Peptide synthesis

All linear peptides were prepared by Fmoc-SPPS using a
manually operated flow-chemistry apparatus, employing
TentaGel®-S-NH2 resin at ca. 0.15 mmol scale. Disulfide
cyclisation was performed post resin cleavage and global
deprotection with N-chlorosuccinimide (1.2 equiv.) in a solution
of MeCN/H2O (3:7, v/v) solution. Vinyl sulfide cyclisation was
performed at physiological pH (7.4) in MeCN:MQ H2O (3:7, v/v)
at 4 °C. See SI for further details.

MIC (minimum inhibitory concentration)
assay–bacteria

Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa
(SVB-B9) (type strain) and Escherichia coli ATCC 25922 were
grown in cation adjusted Mueller Hinton (MH) broth at 37°C
with shaking (200 rpm). MIC assays were performed in
accordance with the CLSI recommended protocols (Clinical and
Laboratory Standards Institute, 2006, Performance standards for
antimicrobial susceptibility testing; sixteenth informational
supplement. CLSI document M100-S16, Wayne, PA., 2006). See
SI for further details.

MIC (minimum inhibitory concentration)
assay–fungus

Candida albicans SC5314 (type strain) was grown using RPMI
1640 media (with glutamine and phenol red, without bicarbonate).
MIC assays were performed in accordance with the CLSI
recommended protocol (Clinical and Laboratory Standards
Institute, 2006, Performance standards for antimicrobial
susceptibility testing; sixteenth informational supplement. CLSI
document M100-S16, Wayne, PA., 2006). See SI for further details.

Circular dichroism (CD)

All CD spectra were recorded in either phosphate buffer (pH 7.4,
200 µM) or TFE:phosphate buffer (pH 7.4, 200 μM, 1:1, v/v) at a
peptide concentration of 50 µM. All spectra were recorded at 20°C
with a cuvette of 1 mm path length in a range from 180 nm to
260 nm at 0.5 nm intervals with a time-to-point of 0.5 s. Each
spectrum was prepared from an average of five scans obtained with a
1 nm optical bandwidth. The baseline scans were collected with
solvent alone, averaged, and then subtracted from sample scans.
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Results and discussion

Initial peptide design

The chemical space surrounding thanatin has been explored
extensively. Multiple series of analogues have been developed
through truncations and substitutions to gain insight into its
mechanism of action (MoA). Of the variety of analogues
previously synthesised, the most poignant for the design of novel
compounds active towards Gram-negative bacteria include:
D-thanatin (2) by Fehlbaum et al. (1996), Ser substituted
S-thanatin (3) by Wu et al. (2013) and thanatin M21F (4) by
Sinha and Bhattacharjya (2022) (Figure 3). S-thanatin (3) and
thanatin M21F (4) both presented examples of single amino
acids substitutions whereby activity was improved or unaffected.
Additionally, these substitutions replaced amino acids of increased
synthetic difficulty, namely the C-terminal Met and Thr in position
15. While many more analogues of thanatin have been created, the
analogues discussed are the most crucial with respect to our research
(Lee et al., 2002; Hou et al., 2013; Zhou et al., 2018; Ma et al., 2019).

We opted to implement prior knowledge from thanatin
analogues to utilise an already optimised lead analogue in our
studies, denoted herein as thanatin* (5). Thanatin* (5)
synthesised and used as both a lead and reference compound
within this work comprises two amino acid substitutions,
adopted from analogues reported by Wu et al. (2013) and Sinha
and Bhattacharjya (2022), and C-terminal amidation (Figure 4),

namely the C-terminal Met and Thr in position 15 were substituted
for Phe and Ser, respectively. These modifications were shown to
improve or have little effect on activity, however, can significantly
improve the ease of synthesis. Met is known to commonly form
unwanted sulfoxide side products (Reusche and Thomas, 2021), and
Thr often decreases amino acid coupling efficiency due to its more
hindered β-branched structure (Humphrey et al., 1996).
Furthermore the M21F substitution is known to enhance LptA
binding affinity (Sinha et al., 2022), which we believe is a crucial
interaction to mediate synergy with polymyxin B.

Synthesis of thanatin analogue 5

Fast flow Fmoc-SPPS
For the synthesis of thanatin* (5), an early version of Pentelute

and co-workers (2014) fast flow Fmoc-SPPS system was employed
(Simon et al., 2014). The linear peptide was elongated on large
particle size and high swelling TentaGel®-S-NH2 resin (600 mg,
0.15 mmol, 0.25 mmol/g), attached via a 4-[(R,S)-α-[1-9H-flouren-
9-yl)]methoylcarbonylamino]-2,4-dimethoxyphenoxyacetic acid
(Fmoc-Rink amide linker) to yield a C-terminal carboxamide
functionality (Rink, 1987; Pires et al., 2014) in accordance with
our previously optimised conditions ((Shepperson et al., 2021;
Shepperson et al., 2024)) for the synthesis of Cys containing β-
hairpin peptides (Scheme 1). Following complete elongation by flow
chemistry to afford peptidyl resin 7, the resin bound linear peptide

FIGURE 3
Summary of three of the key analogues developed over the years for thanatin (1). Key residue substitutions (red) and disulfides (orange) (Fehlbaum
et al., 1996; Wu et al., 2008; Sinha and Bhattacharjya, 2022).

FIGURE 4
Chemical structures of native thanatin (1) and thanatin* (5). Amino acids substitutions (red), disulfide residues (orange), and C-terminal amidation
(purple) highlighted.
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was cleaved from the resin (Scheme 1) to yield linear peptide 6 in
high purity (ca. 85%) (Supplementary Figure S15).

Solution phase disulfide bond formation

With the linear peptide 6 in-hand, we envisaged an N-
chlorosuccinimide (NCS) mediated solution-phase disulfide
cyclisation as this approach is both mild and efficient, exhibiting

quantitative conversion (Postma and Albericio, 2013). Accordingly,
the linear peptide 5 was solubilised in a solution of 30% (v/v)
acetonitrile in water at a concentration of 1 mM, to avoid
oligomerization, and cyclisation initiated by the addition of a
slight excess of N-chlorosuccinimide (1.2 equiv.) (Scheme 1).

Although, Postma and Albericio (2013) standardised this
oxidation strategy and found the reaction to be quantitative and
complete within 15 min, an extended period (1 h) was required to
provide the best conversion (Supplementary Figure S16) to

SCHEME 1
Synthesis of thanatin* (5). Cys residues and disulfides (orange), Cys (Trt) protecting groups (red). (1) 40 s flow (15mL/min) 30% (v/v) piperidine in DMF;
(2) AA coupling following protocol 2A for all non Cys AAs and protocol 2B for Cys residues (see SI); 2A) 30 s flow of AA coupling solution (0.3 M AA,
0.28MHATU, 20 equiv. DIPEA) at 15mL/min; 2B) 40 s flowof Cys (Trt) (0.3M AA 0.28M PyAOP, 20 equiv. sym-collidine) at 15mL/min (3) 40 s flowof DMF
at 15 mL/min. All flow reactions were performed at 65 °C.
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thanatin* (5). The reaction could be monitored by a noticeable
0.6 min shift in retention time (tR) on RP-HPLC and the product
identity confirmed by an ESI-MS shift of 2 Daltons (Supplementary
Figure S16). The need for an extended reaction may be due to the
choice of aqueous solvent mixture (MeCN/H2O) in our work
compared to dimethylformamide (DMF) used previously (Postma
and Albericio, 2013). However, the choice of MeCN/H2O solvent
system in this work enabled simple removal of the solvents by
lyophilisation upon reaction completion, avoiding more complex
work-up protocols for the removal of DMF. Thanatin* (5) was
purified by semi-preparative RP-HPLC to yield a final isolated
product in high purity (>95%, Supplementary Figures S1, S6,
S11, S12) and moderate overall yield (6.9%, based on initial
resin loading).

Biological evaluation of analogue 5

Prior to preparing analogues in which the disulfide bond was
modified with vinyl sulfide bridges, we sought to confirm the
antimicrobial activity of the modified thanatin analogue 5 by
minimum inhibitory concentration (MIC) assay (Table 1).

To our surprise, thanatin* (5) exhibited no activity against
Gram-positive bacteria (S. aureus) and varied activity against
Gram-negative bacteria (P. aeruginosa and E. coli). Towards P.
aeruginosa, thanatin* (5) was inactive within the range tested
(MIC >64 µM). However, against E. coli, thanatin* (5) was
highly active with a MIC of 1 µM. On comparison of these
results with those presented in literature for similar analogues,
our analogue, thanatin* (5), was at least equipotent towards
E. coli. Of note, the analogues S-thanatin (3) and thanatin M21F
(4) (Figure 3) were both reported to be highly active towards S.
aureus and P. aeruginosa, for which our analogue thanatin* (5)
exhibited no activity (Table 1). Our testing employed cation adjusted
media to better mimic physiological conditions, while the previously
reported analogues were tested in non-cation adjusted media (Wu
et al., 2008; Sinha and Bhattacharjya, 2022); the literature results are
included for comparison (Table 1). It is well-documented that

divalent cations, present under physiological conditions, can
antagonise the interactions of cationic AMP’s with bacterial
membranes resulting in decreased potency (Goldman et al., 1997;
Wiegand et al., 2008; Smart et al., 2017; Ma et al., 2019). Specifically,
previous research has observed similarly decreased activity for
thanatin towards P. aeruginosa in cation adjusted media
(Fehlbaum et al., 1996; Cirioni et al., 2011), This finding is of
key importance if these were to be developed as drugs.
Pleasingly, our analogues appear to have an even greater degree
of selectivity towards E. coli over P. aeruginosa (>64-fold) than that
of those previously reported.

Thanatin and analogues are known to interact with LPS,
forming a unique amphipathic dimer that is thought to offer
selectivity towards the Gram-negative outer membrane (Sinha
et al., 2020; Sinha and Bhattacharjya, 2022). These interactions
lead to the displacement of divalent cations from the outer
membrane, resulting in membrane disruption, which ultimately
provides thanatin with access to its additional protein target
(LptA) in the periplasmic space (Ma et al., 2019; Sinha et al.,
2022). Given the important role of divalent cation displacement
in the mechanism of action of thanatin, and their role in Gram-
negative outer membrane structures (Shephard et al., 2008), it is not
surprising that cation concentrations can alter thanatin derivative’s
activity profiles. More surprising is the apparent deviation of this
effect between Gram-negative species. Although P. aeruginosa is
well documented to possess a an exceptionally impermeable outer
membrane, believed to offer less than 10% the permeability of E. coli
(Hancock, 1998), the exact molecular differences in the membrane
structures responsible for the differing activity of our thanatin
analogues between these two species of Gram-negative pathogens
is unclear. The diminished sensitivity of P. aeruginosa in the
presence of divalent cations suggests thanatin may interact with
the LPS of the P. aeruginosa membrane less effectively than for
E. coli, resulting in a reduced capacity to compete for cation binding
sites. Despite the inactivity of thanatin analogue 5 towards P.
aeruginosa, the >64 fold selectivity towards E. coli is ideal in our
search for new and effective strategies to treat Gram-negative
pathogens, as partial or reduced activity (as observed for other

TABLE 1 Minimum Inhibitory Concentrations (MICs) of thanatin* (5) and similar analogues against a variety of pathogens.

Bacteria Minimum inhibitory concentration (µM)

Thanatina,b (1) S-Thanatina (3) Thanatin M21Fb (4) Thanatin* (5) PMB AMX

Gram-positive

S. aureus ATCC 29213 - - - >64 - 2

S. aureus ATCC 25923 8b - 0.5 - - -

Gram-negative

E. coli ATCC 25922 3.2a 1.6 - 1 0.125 -

E. coli BL21 0.5b - 0.5 - - -

P. aeruginosa (SVB-B9)c - - - >64 0.125 -

P. aeruginosa ATCC 27853 1b - 0.5 - - -

aValues cited from Wu et al. (2013).
bValues cited from Sinha et al. (2022).
cType strain.
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thanatin derivatives) towards certain species may pose the greatest
risk for resistance to develop. Narrow spectrum antibiotics with high
and directed potency toward specific bacteria have been shown to
develop resistance at a reduced rate than those exhibiting broad
spectrums of activity with their potency varying towards different
pathogens (Melander et al., 2018; Alm and Lahiri, 2020; Ueda et al.,
2023). Furthermore, the potent activity of thanatin* (5) towards
E. coli is crucial. E. coli is an ever-increasing global health risk, with
drug-resistant E. coli declared as critical priority (Tacconelli et al.,
2018; Mughini-Gras et al., 2019). It has been identified as one of the
largest contributors to diarrhoeal death, and with the largest effected
communities often unable avoid infection, effective treatments are
urgently required (Erb et al., 2007; Ramatla et al., 2023).

Synergy with polymyxin B

Having confirmed the selective and potent activity of thanatin*
(5) towards E. coli, this AMP was assayed for synergy with
polymyxin B towards E coli by use of a checkerboard assay.
Synergy assays were performed with three repeats to determine
the average fractional inhibitory concentration indices (FICI) (Odds,
2003). FICs were calculated from Equation 1 and defined as follows;
synergy occurred at an FIC ≤0.5, antagonism at FIC >4.0 and an
additive effect in the range 0.5–4.0. Thanatin* (5) exhibited synergy
with polymyxin B, demonstrating an average FICI of 0.347 with a
standard deviation of 0.03 (Supplementary Figure S13). Given
thanatin (1) is known to inhibit LPS transport by binding LptA,
we postulate this synergy may result from of an inhibitory
interaction on the Lpt system acting cooperatively with
polymyxin B, similar to the synergy recently documented for
LptD binder murepavidin (Dale et al., 2018). In fact, a thanatin
analogue, S-thanatin, was reported in 2011 (Cirioni et al., 2011) to
have a positive interaction with the similar lipopeptide antibiotic
colistin (polymyxin E) (Kwa et al., 2007), with an FICI of 0.46 for P.
aeruginosa, despite its poor potency towards this pathogen (MIC =
16 μg/mL). The synergy with polymyxin B that we report towards
E. coli is particularly valuable due to the high potency of thanatin
analogue 5 (1 µM MIC, ca. 2.5 μg/mL). The previous work has
received surprisingly little attention, despite also reporting in vivo
efficacy of the combination and a reduction in the emergence of
polymyxin resistance, possibly due to the lack of evidence or
speculation as to the underlying mechanism. However, with the
rising global threat of AMR and increasing necessity of polymyxin
antibiotics as a last-line of defence, these finding are increasingly
valuable. Importantly, we highlight that the molecular mechanism
for this synergy is likely to be the result of thanatin analogues’ ability
to disrupt LPS transport, which is a mechanism only more recently
elucidated for thanatin. Furthermore, the potential for LPS
disruption to synergise with polymyxins is also only more
recently established from findings with the LptD inhibitor,
murepavidin (Sabnis et al., 2021). With the likely mechanism of
synergy now understood, these findings pave the way for further
elucidation of molecular mechanisms and to progress thanatin
analogues or LptA binders as synergistic agents to compliment
polymyxin antibiotics in the treatment of drug-resistant E. coli,
noting that murepavidin is active only towards P. aeruginosa (Dale
et al., 2018).

FIC Index � FICA + FICB � MICCombination
A

MICAlone
A

+ MICCombination
B

MICAlone
B

(1)
Equation 1 to determine FICs for two antibacterial agents

Vinyl sulfide library design

Encouraged by potent and selective antimicrobial activity of
thanatin* (5) towards E. coli, and its synergistic activity with
polymyxin B, we were curious if these properties would be
retained upon disulfide bond replacement. We envisioned
implementing thia-Michael addition between the sidechain thiol
of a Cys residue and an allenamide to mediate a facile cyclisation
yielding a vinyl sulfide that is not prone to reductive cleavage like the
native disulfide (Abbas et al., 2014). This approach was recently
implemented on oxytocin by Cameron et al. (2020) as a model
compound and most recently to prepare analogues of the
antimicrobial β-hairpin, capitellacin, in a similar manner to that
which we envisaged for thanatin* (5). In addition to a facile
cyclisation, this strategy offers versatility with respect to overall
bridge length and provides greater flexibility to the design of an
analogue library.

Taking the thanatin*(5) scaffold, a series of four vinyl sulfide
analogues were designed by varying both the length and direction of
the newly introduced asymmetrical bridge. (Figure 5). The overall
bridge length and direction of the vinyl sulfide was controlled via the
replacement of a single Cys residue of the native disulfide with either
2,3-diaminoproprionic acid (Dap) or Lys residue, upon which an
allenamide handle could be introduced. Upon thia-Michael
mediated cyclisation, these replacements yield a bridge of seven
or ten atoms total, compared with four for the native disulfide.
Introducing bridges of increased length has previously been
demonstrated as an effective strategy to modify disulfides in β-
hairpin AMPs, and in some cases has improved the therapeutic
index (Fázio et al., 2006; Holland-Nell and Meldal, 2011; Cui
et al., 2013).

Synthesis of vinyl sulfide analogues, 8–11

The linear precursors of vinyl sulfide analogues 8–11 were
prepared by fast flow SPPS analogously to thanatin* (5),
incorporating the required Cys residue substitutions. In order to
enable site selective introduction of the allenamidyl handle by the
coupling of 3-butynoic acid (3-BA), orthogonal sidechain protection
was introduced to the corresponding Lys or Dap residue
(Supplementary Scheme S1, S2). We have previously reported 1-
(4,4′-dimethyl-2,6-dioxocyclohexylidene)-3-ethyl (Dde) protection
to be unsuitable for Dap residues during flow chemistry under high
temperature. This protection strategy led to undesired migration,
however, this could be avoided by use of theN-allyloxycarbonyl (Nβ-
Alloc) group. Accordingly, Alloc protection was implemented for
Dap residues, and Dde protection implemented for Lys residues,
where these respective amine side chain amino acids were
substituted in place of Cys (Shepperson et al., 2024). Following
complete assembly of the linear peptides on-resin, Fmoc-protection
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of the terminal residue was exchanged for Boc where Dde protection
was present and the orthogonal protection removed from the
amino-sidechains of Dap/Lys under standard conditions. Dde
was removed in-flow by treatment with hydrazine hydrate
(Shepperson et al., 2024) and Alloc removed by batch-wise
treatment with (Shepperson et al., 2024). To the respective

liberated free amino groups of Dap/Lys, 3-BA was coupled to
introduce the allenamidyl handle in accordance with our
previously optimised protocol (Cameron et al., 2020; Shepperson
et al., 2024). The resultant peptides were liberated from the resin to
afford the desired linear precursors of peptides 8–11 for
cyclisation (Scheme 2).

FIGURE 5
Analogue library of thanatin* (5) and vinyl sulfide analogues (8–11). Cys residues and disulfide (orange) and substituted Cys residue and vinyl sulfide
bridge (blue).

SCHEME 2
Representative synthetic scheme for cyclisation of vinyl sulfide analogues 8–11. Cys residues and disulfide (orange) and substituted Cys residue and
vinyl sulfide bridge (blue).
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Implementing the conditions we previously developed (Cameron
et al., 2020) the linear precursors of the desired peptides 8–11 were
cyclised by thia-Michael addition to afford the desired vinyl sulfide
bridge analogues, simply by addition of phosphate buffer (10 mM,
pH ~7.4) at 4 °C (Scheme 2). Reaction progress was monitored by RP-
HPLCwith the addition of 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB)
employed for reaction quenching (Supplementary Scheme S3)
(Cameron et al., 2020; Shepperson et al., 2024). Pleasingly, the
reactions progressed with high conversion to the desired cyclised
peptides 8–11 (80%–90%, as indicated by RP-HPLC and ESI-MS)
within 30–60 min. Upon addition of DTNB to the reaction solution,
undesired side products bearing a free thiol were shifted to later
retention times, allowing for straightforward purification by semi-
preparative RP-HPLC (Supplementary Figures S2–S5, S7–S10). The
free thiol test employing DTNB was validated with the linear precursor
of peptide 9 (Supplementary Figure S17) which also exhibited a
significant retention shift upon mixed-disulfide adduct formation
(Supplementary Scheme S3).

Interestingly, vinyl sulfide analogues (8–11) of thanatin (5) eluted
earlier than our disulfide analogue of thanatin (5) on RP-HPLC
(Supplementary Table S1). Additionally, Lys bridged analogues were
found to elute earlier than Dap bridged analogues (Supplementary
Table S1), suggesting they present a less hydrophobic structure.

Antimicrobial activity of analogues 8–11

Thanatin vinyl sulfide analogues 8–11 were tested for
antimicrobial activity against a small series of bacterial and
fungal pathogens, including P. aeruginosa, E. coli, S. aureus and
C. albicans (Table 2). For antibacterial testing polymyxin B (PMB)
or amoxicillin (AMX) were used as controls and for fungal testing
amphotericin B (AMB) was employed.

Pleasingly, vinyl sulfide analogues 8–11 retained antimicrobial
selectivity towards E. coli. However, the potency of the analogues
was reduced to varying extents. Lys substituted analogues (8 and 10)
retained the greatest potency, each with an MIC of 4 µM towards

E. coli, while Dap analogue 9 (MIC 16 µM) demonstrated a 16-fold
reduction in potency compared to the thanatin* (5). Neither
thanatin* (5) nor the vinyl sulfide analogues (8–11) exhibited
antifungal activity towards C. albicans, despite the documented
antifungal activity of thanatin (1). The selective antimicrobial
potency retained by analogues 8 and 10 was promising as it
suggested the viability of vinyl sulfides for the substitution of
disulfides in AMPs and perhaps further bioactive peptides. These
results similarly coincide with previous work performed when
replacing the disulfide bridges of similar β-hairpin peptides,
whereby increased bridge flexibility inevitable leads to slight
reduction in activity (Fázio et al., 2006; Holland-Nell and Meldal,
2011; Chen et al., 2020; Shepperson et al., 2024). This result suggests
further exploration of different bridge surrogates could be a useful
strategy in developing therapeutic AMPs.

Synergism with polymyxin B

Curious to investigate whether synergy with polymyxin B would
be retained following replacement of the disulfide, vinyl sulfide 8was
subjected to a checkerboard assay towards E. coli with polymyxin B
(Odds, 2003). Delightfully, analogue 8 retained a synergistic effect
with polymyxin B, demonstrating an average FICI of 0.429 (SD 0.07)
(Supplementary Figure S14). The observed synergy suggests that
inhibition of the Lpt system in Gram-negative bacteria is retained as
an MoA upon disulfide substitution in analogue 8, despite the
change RP-HPLC retention time suggesting a structural change
may have occurred. These results further validate the vinyl sulfide as
a simple synthetic approach to a non-reducible bridge alternative.

Circular dichroism investigation of thanatin*
(5) and analogues 8–11

To examine the structure of thanatin* (5) and the vinyl sulfide
analogues (8–11), CD spectra were recorded in both phosphate

TABLE 2 Minimum Inhibitory Concentrations (MICs) of thanatin* (5) and analogues (8–11) towards a variety of pathogens.

Bacteria Minimum inhibitory concentration (µM)

1 (Thanatin)a 5 (Thanatin*) 8 9 10 11 PMB AMX AMB

Gram-positive

S. aureus ATCC 29213 - >64 >64 >64 >64 >64 - 2 -

S. aureus ATCC 25923 8 - - - - - - - -

Gram-negative

E. coli ATCC 25922 0.5 1 4 16 4 8 0.125 - -

P. aeruginosa (SVB-B9)b - >64 >64 >64 >64 >64 0.125 - -

P. aeruginosa PAO1 2 - - - - - - - -

Fungi

C. albicans - >64 >64 >64 >64 >64 - - 1

aValues cited from Sinha et al. (2022).
bType strain.
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buffer and a TFE:phosphate buffer (1:1, v/v) mixture (Figure 6). To
investigate the structure of the peptide at biological pH (200 µM
buffer) and an environment that stabilises the secondary structure of
peptides (TFE: buffer; 1:1, v/v), representative of interaction with
biological membranes (Nelson and Kallenbach, 1986).

As thanatin (1) has been previously studied by NMR, its
secondary structure has been defined as a β-hairpin. It has large
β-sheet regions (residues 8–21) and an N-terminal flexible portion
(residues 1–7) exhibiting random coil elements. Additionally, the β-
sheet region of the peptide is relatively small, contributing less to the
overall ellipticity of the entire peptide. Due to these conflicting
elements, the CD spectra of thanatin (1) is not representative of a
particular secondary structure. Instead, the CD spectra can be used
as a fingerprint of the molecules secondary structure, which has been
previously defined by NMR (Lee et al., 2002; Ma et al., 2016),
enabling comparison of analogue 5 and 8–11 to indentify changes in
secondary structure.

When thanatin* (5) and vinyl sulfide analogues (8–11) were
examined in pH 7.4 buffer (Figure 6A) all peptides exhibited spectra
representative of random coil, all of which were highly similar to one
another and the literature data for native thanatin (1). Each analogue
exhibited negative maxima at ~200 nm (Lee et al., 2002). In the
secondary structure favouring environment (TFE:phosphate buffer;
1:1, v/v, Figure 6B) thanatin* (5) and analogues (8–11) exhibited
slightly more defined secondary structures, in agreement with the
literature (Venyaminov and Yang, 1996; Lee et al., 2002; Ma et al.,
2016). Positive maxima were observed between 190 nm–195 nm for
all peptides. Additionally, vinyl sulfide analogues 8–11 exhibited a
negative maxima between 200 nm–205 nm with 8–10 exhibiting a
second smaller negative maxima at ~220 nm. Collectively, CD
experiments evidenced minimal change in secondary structure
between the disulfide bridged thanatin* (5) and vinyl sulfide
analogues 8–11, despite the changes in RP-HPLC retention time
noted earlier. These results suggested that a replacement of disulfide
by vinyl sulfide does not drastically alter the secondary structure of
thanatin* (5). Furthermore, the length and direction of the vinyl
sulfide bridge appears to have little effect on the secondary structure
despite its more substantial impact on antimicrobial activity.
Interestingly, in our previous work (Shepperson et al., 2024),
changing length and direction of vinyl sulfide bridges had a more
drastic impact on the secondary structure of capitellacin analogues,

suggesting the effect of disulfide replacement with vinyl sulfides is
scaffold dependent.

Conclusion

This study presents the first investigation into the potential of
thanatin analogues as synergistic agents in combination with
polymyxin B, and the replacement of the disulfide bridge in
thanatin. Several analogues of the antimicrobial β-hairpin peptide
thanatin (1) were prepared by chemical synthesis using flow
chemistry. A simple analogue of thanatin (1) carrying C-terminal
amidation and two residue substitutions (thanatin* 5),
demonstrated potent and selective inhibitory activity towards
E. coli. This peptide demonstrated a synergistic effect with
polymyxin B, a last line of defence antibiotic for Gram-negative
infections. Given thanatin (1), is known to bind to LptA and inhibit
LPS transport in Gram-negative bacteria, we postulate this
mechanism may be responsible for the observed synergy.

Replacement of the native disulfide bridge in this analogue with
vinyl sulfide bridge mimetics, prepared through thia-Michael
addition of a Cys thiol to an allenamide handle, afforded four
analogues (8–11). These analogues retained similar hairpin
conformations as evidenced by CD spectroscopy and two
compounds retained substantial selective antimicrobial activity
towards E. coli, highlighting suitability of the vinyl sulfide as a
versatile and facile strategy to replace reduction prone disulfide
bridges. Furthermore, analogue 8 was shown to retain synergistic
activity with polymyxin B.

The narrow spectrum antimicrobial activity demonstrated by
these peptides is promising for the development of new antibiotics
for the treatment of E. coli with reduced impact on the host
microbiome and more limited development of resistance. These
findings not only highlight the potential of thanatin* (5) and our
vinyl sulfide analogues (8–11) as standalone antimicrobial agents,
but also as promising candidates for combination therapies.
Employing combinatorial treatments could enhance the potential
for polymyxin B use by reducing the need for nephrotoxic doses and
pave the way for innovative approaches to tackling antibiotic
resistance. In particular, the ability of highly potent thanatin
analogues to synergise with polymyxin antibiotics towards E. coli

FIGURE 6
(A) CD spectra overlay of thanatin* (5) and analogues (8–11) at 50 µM in 200 µM sodium phosphate buffer (pH ~7.4, 20°C). (B) CD spectra overlay of
thanatin* (5) and analogues (8–11) at 50 µM in TFE:200 µM sodium phosphate buffer 1:1 (pH ~7.4, 20°C).
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at low concentrations is promising for the development of strategies
to combat AMR, particularly in light of the highly anticipated new
generation of polymyxins in the development pipeline.
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