Skip to main content

ORIGINAL RESEARCH article

Front. Pharmacol.
Sec. Integrative and Regenerative Pharmacology
Volume 15 - 2024 | doi: 10.3389/fphar.2024.1487183

Nervonic acid as novel therapeutics initiates both neurogenesis and angiogenesis for comprehensive wound repair and healing

Provisionally accepted
Yu-Da Liu Yu-Da Liu 1Xiao Peng Xiao Peng 2Hao-Ran Chen Hao-Ran Chen 1Xue-Song Liu Xue-Song Liu 1,2Li-Hua Peng Li-Hua Peng 1,2*
  • 1 Zhejiang University, Hangzhou, Zhejiang Province, China
  • 2 Jinhua Institute of Zhejiang University, Jinhua, China

The final, formatted version of the article will be published soon.

    Rapid tissue reconstruction in acute and chronic injuries are challengeable, the inefficient repair mainly due to the difficulty in simultaneous promoting the regeneration of peripheral nerves and vascular, which are closely related. Main clinical medication strategy of tissue repair depends on different cytokines to achieve nerves, blood vessels or granulation tissue regeneration, respectively. However, their effect is still limited to single aspect with biorisk exists upon long-time use. Herein, for the first time, we have demonstrated that NA isolated from Malania oleifera has potential to simultaneously promote both neurogenesis and angiogenesis in vitro & in vivo. First, NA was identified by NMR and FTIR structural characterization analysis. In a model of oxidative stress in neural cells induced by hydrogen peroxide, the cells viability of RSC96 and PC12 were protected from oxidative stress injury by NA. Similarly, based on the rat wound healing model, effective blood vessel formation and wound healing can be observed in tissue staining under NA treatment. In addition, according to the identification of nerve and vascular related markers in the wound tissue, the mechanism of NA promoting nerve regeneration lies in the upregulation of the secretion NGF, NF-200 and S100 protein, and NA treatment was also able to up-regulate VEGF and CD31 to directly promote angiogenesis during wound healing. This study provides an important candidate drug molecules for acute or chronic wound healing and nerve vascular synchronous regeneration.

    Keywords: nervonic acid, natural product, neural regeneration, Angiogenesis, wound repair

    Received: 27 Aug 2024; Accepted: 10 Oct 2024.

    Copyright: © 2024 Liu, Peng, Chen, Liu and Peng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Li-Hua Peng, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.