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Exposure-response (ER) analyses are routinely performed as part of model-
informed drug development to evaluate the risk-to-benefit ratio for dose
selection, justification, and confirmation. For logistic regression analyses with
binary endpoints, several exposure metrics are investigated, based on
pharmacological plausibility, including time-averaged concentration to event
(CavTE). CavTE is informative because it accounts for dose interruptions,
modifications, and reductions and is therefore often compared against ER
relationships identified using steady-state exposures. However, its derivation
requires consideration in a logistic regression framework for time-invariant ER
analysis because it has the potential to introduce bias. This study evaluated
different approaches to derive CavTE for subjects whom did not have an event
by the end of treatment (EoT) and assessed their impact on the ER
relationship. Here we used a modified model based on a real data example
for simulating exposures and events (safety) in different virtual population sizes
(n = 50, 100, or 200) and drug effect magnitudes (0.5, 0.75, or 1). Events were
generated using a proportional odds model with Markov components. For
subjects whom did not experience an event, CavTE was derived at EoT,
EoT+7 days, +14 days, +21 days, +28 days. The derivation of CavTE at different
time points demonstrated significant impact on trends detected in logistic ER
relationships that could bias subsequent event projection, dose selection andGo/
No-Go decisions. CavTE in censored subjects must therefore be carefully derived
to avoid potentially making false positive or negative conclusions. Overall, CavTE

can be a useful exposure metrics in an ER analysis, when considered along with
physiological or biological plausibility, the drug’s pharmacokinetic, and
mechanism of action. Biological plausibility and different analysis factors (e.g.,
the time of the events with respect to observational period, the level of dose
reduction/interruption) should be considered in the choice of the exposure
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metric. It is recognized that although time-invariant logistic regression is relatively
fast and efficient, it overlooks recurring events and does not take into account the
exposure and response time course with the potential drawback of ignoring
important elements of the analysis like onset or duration of the effect. Care
should be taken when ER relationships with other exposure metrics do not
identify any statistically significant trends.

KEYWORDS

drug development, exposure-response analysis, exposure metrics, pharmacometrics,
logistic regression

1 Introduction

Exposure-response (ER) analyses are routinely performed in drug
development to evaluate the risk-to-benefit ratio, primarily to inform
decisions around dose selection, justification, and confirmation (Ruiz-
Garcia et al., 2023). ER models are commonly employed from phase
1–3 onwards, and support the learning-confirming paradigm in drug
development (Overgaard et al., 2015; Yee et al., 2019;Wang et al., 2022;
Hu et al., 2018). For event analyses, whether logistic regression with
binary endpoints or survival analysis with time-to-event (TTE)
endpoints (e.g., progression-free survival), the choice and derivation
of exposure metric may influence key decisions during ER model
development. Examples of binary endpoints include the objective
response rate for efficacy or treatment-emergent adverse events
(AEs) for safety. Typically, several exposure metrics are selected
when investigating ER relationships. The most common exposures
that are suggested in regulatory guidance documents (Overgaard et al.,
2015; Food and Drug Administration, 2003) include the maximum
concentration, minimum concentration, and area under the
concentration-time curve (AUC) after the first dose or cycle 1 (e.g.,
for oncology drugs), or at SS. Additional exposures used in assessing
ER include the average concentration at steady-state (SS, Cav,ss) (Yin
et al., 2021a) and time-averaged concentration to event (CavTE) (Yin
et al., 2021b). Cav,ss is a metric that describes the exposure over a given
dosing interval, and as such can be linked to responses after chronic
treatment. This, together with the AUC at SS (AUCss) has been a
preferred exposure metric in ER analyses. Recently, CavTE is also more
frequently requested by regulators for comparison against SS
exposures, since it accounts for dose modifications, interruptions, or
drug withdrawal. Although CavTE canmore accurately reflect the actual
exposure related to dose changes, careful consideration is required
when applying it to a logistic regression framework of time-invariant
ER analysis, which generally considers the first occurrence of the event
grade of interest. Overall, the choice of the exposure metric should be
based on physiological or biological plausible reasons and adapted
towards the endpoint of interest (Ruiz-Garcia et al., 2023).

In standard ER analyses, exposure metrics are derived using
individual empirical Bayes estimates from a developed population
pharmacokinetic (PopPK) model. For each subject, the PopPK
model is then applied to simulate and predict concentrations
using an intensive sampling design. This process allows for
accurate derivation of individual exposure metrics that are
relevant to ER analyses. Commonly derived exposure metrics and
their definitions, as used in this paper, are as follows:

• minimum concentration at the end of a dosing interval at SS,

• maximum concentration achieved during a dosing
interval at SS,

• AUCss–cumulative concentration within a dosing interval at
SS, alternatively AUCss is defined by Dose × Bioavailability/
Clearance (CL),

• Cav,ss–AUCss divided by the dosing interval,
• CavTE–cumulative AUC since start of treatment up to an event
divided by time to an event since start of treatment.

CavTE is generally computed as time-averaged exposure using
the actual observed dosing history (e.g., to account for missing dose),
where time is the time of the measured event. Consequently, CavTE

accurately reflects the individual’s average concentration at the time
of an event based on actual rather than nominal dosing. The
derivation of CavTE is challenging in those subjects that either do
not experience an event or are lost at follow-up. For these subjects,
the event time is absent and is therefore defined as censored. CavTE in
censored subjects is commonly derived using either time at the end
of treatment (EoT), EoT + follow-up time per protocol, or the data
cut-off date. In all cases, the time of the ‘non-event’ is not available
and therefore requires some method of imputation to derive CavTE.
Based on the definition of CavTE above, it is noted that imputed time
can influence ER relationships that include subjects without events
(Supplementary Figure S1). We initially highlighted the potential for
bias using a case study in 2022 (Patel et al., 2022) where time
imputation was varied when deriving CavTE in censored subjects.
Others have described different types of bias, (such as election bias
and immortal time effects) that need consideration in ER modelling
(Khandelwal et al., 2022), and have shown a similar impact when
looking at censored subjects (Wiens et al., 2023).

An alternative approach to handling event type data is TTE survival
analysis, which accounts for censoring. While both methods investigate
the association between drug exposure and events, logistic regression
focuses on the dose-exposure-response relationships without taking the
event time into consideration. Logistic regression ER analyses are
currently more commonly used to support dose finding in drug
development programs, with the aim of identifying the optimal
therapeutic dose that minimizes risk (safety) and yet maximizes
efficacy. Whilst logistic regression ER models are simpler to
implement than TTE models, several assumptions or methodological
limitations must be considered (Khandelwal et al., 2022).

This case report illustrates the impact of applying different
derivations of CavTE in subjects without events on modelled ER
relationships within a logistic regression framework. We used a
modified real case example to demonstrate the potential introduction
of bias, depending on the methods used for time imputation.
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2 Methods

2.1 Motivation example

To illustrate the consequences of applying different derivations
of CavTE in subjects without events, we used a clinical trial dataset,
de-identified and modified for ethical and confidentiality reasons. A

simulation and estimation approach was used to ensure that only the
derivations of CavTE in censored subjects were changed. Exposures
for virtual populations of different sizes (n = 50, 100 or 200) were
simulated using a one compartment PopPK model with first-order
elimination following administration of a 60 mg dose once daily for
four dosing cycles of 28 days (Figure 1B). Events were simulated
based on a proportional odds model with Markov components

TABLE 1 Parameter values used for the Example Scenario.

Description Parameter Estimate IIV (CV%)

Parameters for the PopPK and proportional odds models

Clearance (L/h) CL 17.7 54.0

Volume (L) V 229 34.1

Absorption rate constant (/h) Ka 4.23 95.5

Lag time (h) Alag 0.154 —

Transition from Grade 0 to Grade 1 B01 −6.59 10.0%

Transition from Grade 0 to Grade 2 B02 −1.80 10.0%

Transition from Grade 1 to Grade 1 B11 0.311 10.0%

Transition from Grade 1 to Grade 2 B12 −6.70 10.0%

Transition from Grade 2 to Grade 2 B22 −0.684 10.0%

Transition from Grade 2 to Grade 1 B21 −0.563 10.0%

Maximum effect when previous event grade = 0 (no event) Emax0 4.73 10.0%

Maximum effect when previous event grade ≥ 1 (yes event) Emax1 1.09 10.0%

Half maximal effective concentration EC50 (ng/mL) 6.05 10.0%

Abbreviations: CV, coefficient of variation; IIV, interindividual variability; PopPK, population pharmacokinetic.

FIGURE 1
Illustration of the Population Pharmacokinetic and Proportional Odds Model used for the Motivation Example (A) and the resulting Pharmacokinetic
profile (B). Abbreviations: B01, B02, B11, B12, B21, B22 = transition parameters shown in Table 1. Reference source not found.; CL = clearance; Vd =
central volume of distribution.
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(Table 1). Grade 1 and 2 AEs were grouped into an “Any Grade”
category, and only the first event for each virtual subject was
selected. Grade 0 events were classified as “no events” and
represented censored subjects. A schematic of the structural
model is illustrated in Figure 1A. The logits of event probabilities
were positively dependent on concentration in the central
compartment. For subjects with an event, CavTE was derived as
the cumulative AUC divided by the time of the first event. For
censored subjects (Grade 0), five imputation scenarios of the event
time were explored to obtain the CavTE. These included EoT and
EoT+7 days, +14 days, +21 days, and +28 days of follow up time. The
magnitude of the ER relationship was modified by changing both
Emax parameters from 0.25-fold to 1.25-fold in the same way. The
Emax value assigned depended on the previous event score (either
no event, or an event), with maximal drug effect implemented on a
logit scale, as described previously (Zingmark et al., 2005).

Once the data was simulated, a logistic regression analysis was
used for the estimation using each of the five different CavTE

scenarios. CavTE based ER models were compared to Cav,ss based
ER models.

The logistic regression model was based on the following
Equation 1:

logit Pi,responder( ) � log
Pi,responder

1 − Pi,responder
( ) � β0 + βXi, (1)

where Pi,responder is the probability of the event of interest, β0 and β

are scalar and vector parameters that represent the baseline logit and
the effect of Xi (e.g., CavTE) on the logit, respectively.

2.2 Computation

All simulations were conducted using the mrgsolve package and
logistic regression analyses were performed in R (version
4.3.0 within RStudio v. 2023.03.1).

3 Results

For illustrative purposes the results for this case study are
presented for an example scenario Emax of 0.5-fold using a
sample size of 200 subjects (Figure 2). For all other scenarios
tested, the same trends were observed as represented by the
results shown below. Consistent event rates were generated

FIGURE 2
Trends of changes in the Logistic Regression Models illustrated for the Example Scenario. Abbreviations: EoT = end of treatment, Cavg,TE = average
concentration to event or time-average exposure. Notes: Blue lines represent the logistic regression; grey shaded area represents 95% confidence
interval; black dots represent the exposures with a corresponding event (0 no event, 1 yes event). The colored dots and boxplots represent exposure
distributions for each quartile with boxplots presenting themedian and the 95%CI of each quartile for all exposuremetrics. The p-value presents the
p-value corresponding to the slope parameter. Example scenario: Sample size = 100, CL = 17.7 L/h, and Emax = 0.5-fold.
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across the three virtual study size scenarios (Supplementary Table
S1) using the PopPK and proportional odds model with Markov
components. As expected, higher event rates were obtained with
models that included a higher Emax value. Exposure distributions
are illustrated in Supplementary Figure S2 showing that an increase
in the follow-up time (included in the calculation of CavTE) were
associated with a left shift (i.e., lower exposure) in the CavTE

distribution for the censored subjects, also noted in the
regression plots.

Across all different strengths of the ER relationships, driven by
an increase in Emax, a consistent trend was demonstrated,
irrespective of the sample size. Logistic regression ER models
analyzing the simulated data presented a lower p-value on the
slope (β) of the drug effect, with increasing times used to derive
CavTE in censored patients (Table 2). In addition, statistical
significance (e.g., p < 0.05) on the p-value of slope (β, which
represents the coefficient for exposure) was achieved at longer
imputed times and increasing sample size (Figure 2; Table 2).
Statistical significance (Table 2) was only achieved in the dataset
with 50 subjects when EoT+21 or EoT+28 days follow-up was used.
The change in the model slope was noticeably different across the
five scenarios, with steepness increasing when increasing follow-up
times were used to derive CavTE (Supplementary Figure S1). The
same trend was found across all tested ER relationships and is seen
also in exploratory boxplot distribution plots (Supplementary Figure
S3). Table 2 further shows that statistical power decreases when the

number of subjects in the two categories (yes vs. no events) become
imbalanced. An increased strength of the ER relationship (using an
Emax change of 1.5-fold) resulted in <5% of subjects without an
event (Supplementary Table S1), causing estimation difficulties due
to substantial imbalances. Further, despite the strong relationship
used in the simulation, the power to detect it is limited even with
200 subjects in the dataset.

4 Discussion and conclusion

In this study, we investigated the impact of using time-averaged
exposure when analyzing binary endpoints in a time-invariant
logistic regression framework. These analyses are frequently used
to quantify ER efficacy and safety relationships, with the aim of
supporting therapeutic dose optimization in drug development
programs (Ruiz-Garcia et al., 2023). This investigation is essential
for sponsors seeking regulatory approval, to quantitatively support
decision-making around dose projection, selection, and justification
for risk-to-benefit ratio. ER analyses are applicable at various stages
in development, using nonclinical and clinical data across different
patient populations. Investigation of the CavTE - event relationship is
useful because it uses the actual dosing history for each subject, and
therefore accounts for any dose changes within the duration of
treatment. Our case study demonstrates that using CavTE could
introduce a potential bias when analyzing binary endpoint data due

TABLE 2 Significance of logistic regression exposure-response relationships, presented as p-values, based on imputation of time for censored events for the
Scenario using a CL of 17.7 L/h.

Drug effect CavTE

EoT EoT + 7 days EoT + 14 days EoT + 21 days EoT+ 28 days

Sample Size = 50

0.25 0.839 0.675 0.493 0.347 0.236

0.5 0.575 0.399 0.237 0.134 0.0741

0.75 0.405 0.225 0.100 0.0437 0.0195

1 0.660 0.880 0.853 0.624 0.445

Sample Size = 100

0.25 0.799 0.603 0.396 0.244 0.142

0.5 0.306 0.156 0.059 0.0201 0.00653

0.75 0.0862 0.0284 0.00687 0.00172 0.000465

1 0.0388 0.0189 0.00829 0.0040 0.00216

Sample Size = 200

0.25 0.270 0.143 0.0578 0.0221 0.00827

0.5 0.309 0.119 0.0285 0.00559 0.000944

0.75 0.0167 0.00244 0.000156 0.00000933 0.000000644

1 0.00351 0.000671 0.0000893 0.0000137 0.00000258

1.25 0.258 0.174 0.107 0.0668 0.0426

Abbreviations: EoT = end of treatment, CavTE, average concentration to event or time-average exposure, Cav,ss = average concentration at steady-state.

Note: For sample size N = 50 and N = 100 with an Emax ≥1.25 insufficient subjects (<5%) without an event were in the dataset, consequently logistic regression analysis was not performed.

p-values are colored according to: >0.05 = white, 0.05–0.01 = light grey, 0.01–0.005 = light orange, <0.005 = light red.
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to the method of time imputation for CavTE derivation in censored
subjects. In our motivation example, we used various EoT and
follow-up times (as is commonly used for regulatory submissions) to
illustrate that altered time imputations may produce differences in
the tested ER relationships. Furthermore, we show that bias in ER
relationships involving time-averaged exposure may be influenced
by the strength of the “true” drug effect. Limitations of CavTE

derivation (not illustrated here) occur also when different dosing
regimens or titration strategies are used throughout a clinical trial.
For example, ER using CavTE would be biased when events
predominantly occur within the first hours of a dosing interval
(e.g., infusion related adverse reactions), and the EoT period has
time units of weeks. The ER relationship would likely be significant,
with a steep slope for exposure and expected to be different to ER
trends using other exposure metrics. In this scenario, exposures
within the first dosing interval or cycle might be more informative
than consideration of the entire treatment period. Overall, one needs
to evaluate pharmacological and biological plausibility and different
analysis factors (e.g., the time of the events with respect to
observational period, the level of dose reduction/interruption) to
carefully consider and select the most appropriate exposure metric
for the ER analysis.

The case study limitations include the proportional model used
for simulations, which does not directly simulate the event times.
The case example was performed without dose modification, as
these are often due to individual circumstances or clinical decisions
and cannot be easily incorporated into simulations. Other aspects
that impact exposure (e.g., linear/non-linear pharmacokinetic,
irregular dosing schedules, flat vs. weight-based dosing, target-
mediated pharmacokinetic) were not investigated here.

It is recognized that although time-invariant logistic regression
is relatively fast and efficient (especially for larger studies), it
overlooks recurring events and does not take into account the
time course of ER. This has the potential drawback of ignoring
important elements like onset of effect or duration of effect. A more
comprehensive and better suited analysis would consider the
longitudinal ER relationships throughout the study duration,
given that multiple events may occur. For this purpose, logistic
regression incorporating a proportional odds model with Markov
components or repeated TTE is more suitable due to the capacity for
including time-varying exposure to reflect changes in dosing
regimen, rather than relying on summary-level exposure metrics.
However, a logistic regression framework is a more commonly used
approach when the primary aim is to determine “probability” and
not “time-to-” response for a given exposure. This will provide an
understanding of how the probability of efficacy compares to that for
safety, to describe the risk-to-benefit profile. Once this is established,
decisions to select the optimal dose regimen are feasible, after which
it becomes useful to look at the response over time. While use of
time-averaged exposure in an ER logistic framework allows for
comparison with first dose or SS exposures, this must be
interpreted with caution, as illustrated above for infusion-related
AE. The results of a logistic regression using SS metrics with a TTE
analysis using time-averaged exposure cannot be compared.

In conclusion, this case study highlights bias and cautions when
deriving CavTE in censored subjects analyzing binary response data
against other (SS and first dose) exposure metrics. Although
standard practices have been described (Ruiz-Garcia et al., 2023),

regulatory guidance documents are generally broad and potentially
lack detail with regards to addressing recent advances in specific
therapeutic areas. Rules and recommendations around using CavTE

and its derivation are absent. We propose a need for more examples
from the community to learn when CavTE is appropriate, followed
with a white paper or an updating of regulatory guidance on the
relevance of different exposure metrics, when justifying the optimal
dose range in Phase 1 to 3 studies. Overall, we believe that CavTE can
be a useful exposure metrics in an ER analysis, when considered
along with physiological or biological plausibility, the drug’s
pharmacokinetic, and mechanism of action. Utilization of
additional sensitivity analyses to justify the utility of using CavTE

in logistic regression analyses when defining risk-to-benefit margins
should be performed as appropriate.

5 Study highlights

5.1 What is the current knowledge on
the topic?

Exposure-response (ER) analysis of binary endpoint data is an
essential part of model-informed drug development. Commonly
used exposure metrics, recommended by regulators, include the
maximum concentration, minimum concentration, and the area
under the concentration-time curve (AUC) at steady-state (SS).
Time-averaged exposure to event (CavTE) is additionally investigated
because this metric can account for dose interruptions and
modifications and is therefore requested for comparison against
relationships using SS exposures. However, the derivation of CavTE

requires imputation when analyzed in a logistic framework using
binary response data, since the time of event in censored subjects
is unknown.

5.2 What question did this study address?

This study investigates the impact of using various imputation
methods when deriving CavTE in censored subjects for ER analyses of
binary endpoint data.

5.3 What does this study add to
our knowledge?

Consideration of potential bias that is introduced when using
CavTE in ER analyses of binary endpoints, and how this may
influence key dosing decisions.

5.4 How might this change drug
development, and/or therapeutics?

When using ER analyses to inform decisions around dose
selection, justification, and confirmation, the exposure metrics
used require careful consideration. Analysis and decision makers
should apply caution when evaluatinging ER relationships that are
based on time-averaged exposure.
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