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Osteoporosis (OP) stands as the most prevalent systemic skeletal condition
associated with aging. The current clinical management of OP predominantly
depends on anti-resorptive and anabolic agents. Nevertheless, prolonged use of
some of these medications has been observed to reduce efficacy and elevate
adverse effects. Given the necessity for sustained or even lifelong treatment of
OP, the identification of drugs that are not only effective but also safe and cost-
efficient is of utmost significance. As disease treatment paradigms continue to
evolve and recent advancements in OP research come to light, certain plant-
derived compounds have emerged, presenting notable benefits in the
management of OP. This review primarily explores the pharmacological
properties of apigenin and elucidates its therapeutic mechanisms in the
context of OP. The insights provided herein aspire to offer a foundation for
the judicious use of apigenin in forthcoming research, particularly within the
scope of OP.
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1 Introduction

Osteoporosis (OP) is a metabolic bone disorder characterized by a reduction in bone
mass, compromised bone microarchitecture, and heightened bone fragility (Lane et al.,
2000). OP is categorized into primary and secondary forms. Primary OP encompasses
postmenopausal OP, age-related OP, and idiopathic OP (Glaser and Kaplan, 1997).
Secondary OP is defined by identifiable etiological factors (Favero et al., 2023). The
globally acknowledged standard for diagnosing OP is dual-energy X-ray absorptiometry,
which considers a bone mineral density (BMD) score of 2.5 standard deviations or more
below the mean for young, healthy populations as indicative of OP (Lorentzon, 2019).
Clinical manifestations commonly include pain, fractures, and skeletal deformities
(Lamichhane, 2005). A 2021 meta-analysis examining epidemiological trends in OP
over the past 2 decades reported a global prevalence of approximately 18. 3%, with
prevalence rates of 23.1% in women and 11.7% in men. The higher incidence in
women is primarily attributed to postmenopausal estrogen reduction and endocrine
metabolic disturbances (SALARI et al., 2021). Presently, the global population affected
by OP exceeds 200 million. The increasing age of the population is expected to drive a rising
trend in OP prevalence, with projections suggesting that by 2050, the number of individuals
over 50 years old with OP will surpass 400 million globally (Ma et al., 2023). Additionally,
the high bone fragility in OP patients increases the risk of fractures (Zhang et al., 2023). This
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condition leads to a diminished quality of life, elevated disability and
mortality rates, and substantial economic and caregiving burdens on
patients and healthcare systems (Tung et al., 2024; Srivastava and
Deal, 2002).

Currently, the therapeutic strategies for OP are primarily
divided into two major categories: a) Remodeling inhibitors,
which encompass four types of bisphosphonates, selective
estrogen receptor modulators, procalcitonin, estrogen, and
denosumab; and b) Bone anabolic agents, which include
abaloparatide, parathyroid hormone, and overlapping therapy
(Porwal et al., 2021). Additionally, non-pharmacological
interventions such as appropriate exercise, a balanced diet, and
the cessation of smoking and alcohol consumption are
recommended (Aibar-Almazán et al., 2022). Given the high costs
and notable side effects associated with certain clinical medications,
the pursuit of novel drugs remains imperative. Research has
indicated that natural active compounds derived from fruits,
vegetables, and medicinal plants hold significant promise in the
prevention and treatment of OP through diverse mechanisms,
potentially leading to the development of alternative therapies
that are more cost-effective, have reduced side effects, and are
suitable for long-term use (Li et al., 2023). Apigenin (API), a
natural flavonoid compound (Hong et al., 2022), has been
reported to exhibit a broad spectrum of pharmacological
activities, including anti-inflammatory (Liang et al., 2023),
neuroprotective and neurotrophic (Patil et al., 2014), and anti-
oxidative stress (Seo et al., 2014) effects. This study aims to
review the potential mechanisms and future prospects of API in
the management of OP.

2 Biological characteristics of API

2.1 Origin of API

API, which is derived from theApium genus within the Apiaceae
family, is present in specific fruits, vegetables, and medicinal plants
(Darabi et al., 2020). As a small flavonoidmolecule, it predominantly
exists in its glycosylated form and is classified as a secondary
metabolite of plants (Madunic et al., 2018). The concentration of
API in Coriandrum sativum L. surpasses that in Apium graveolensL.
by 180-fold. Moreover, API functions as a critical active ingredient

in various herbal remedies, including Scutelaria baicalensis Georgi,
Scutelaria barbata D. Don, Perilafrutescens Brit, Plantago asiatica,
and Taraxacum oficinale (Sara et al., 2020).

2.2 Physicochemical properties of API

API is presented as light yellow, needle-like crystals. The
chemical name of API is 4’, 5, 7-trihydroxyflavone, with a
molecular formula of C15H19O5. Hydroxyl groups are located at
the C-5 and C-7 positions on the A ring and at the C-4′ position on
the B ring. The relative molecular mass of API is 2 7 0. 2 4 Da, and its
melting point falls within the range of 3 4 5°C to 350°C. While API is
insoluble in water, it exhibits solubility in dimethyl sulfoxide, hot
ethanol, and dilute alkali solutions. According to the Biopharmaceutics
Classification System, it is categorized as a Class II compound (Darabi
et al., 2020; Jang et al., 2022; DeRango-Adem et al., 2021), Figure 1
illustrates the structure of API.

2.3 Biosynthesis of API

Flavonoids, a class of natural polyphenols, are characterized by a
common structure that incorporates multiple potential molecular
functionalities. The distinctive tricyclic alkaloid base is synthesized
by the polyketide synthase family, enabling the formation of over 6,
000 distinct molecular structures through modifications such as
hydroxylation, methoxylation, and glycosylation (Santos-buelga and
Feliciano, 2017). From a biogenetic perspective, API is derived from the
phenylpropanoid pathway, a product generated during the synthesis of
phenylalanine and tyrosine (as illustrated in Figure 2). Phenylalanine,
under non-oxidative deamination by phenylalanine ammonia-lyase, is
converted into cinnamic acid, which subsequently undergoes oxidation
at the C4 position by cinnamic acid-4-hydroxylase to yield coumaric
acid. Similarly, tyrosine, through deamination, produces coumaric acid.
The enzyme 4-coumaric acid-coenzyme A ligase reacts with coumaric
acid to produce p-coumaroyl-CoA, which then combines with
malonyl-CoA residues and is catalyzed by chalcone synthase to
form chalcone. This chalcone is subsequently isomerized by
chalcone isomerase to yield naringenin. Finally, flavonoid synthase
(FSI/FSII) facilitates the oxidation of naringenin, culminating in the
formation of API (Salehi et al., 2019).

3 Molecular mechanisms of API in OP

3.1 Effects of API on osteogenic
differentiation of human bone marrow
mesenchymal stem cells (hBMSCs)

hBMSCs serve as crucial sources for osteocyte precursors and
play a significant role in bone remodeling, with the ability to induce
osteogenic differentiation. Nevertheless, this process is often
hindered or disrupted by various factors or receptors, which can
inhibit or terminate the osteogenic differentiation of hBMSCs. As a
result, a reduction in hBMSCs can lead to the development of OP
and is a critical factor contributing to the failure of OP treatment (Li
et al., 2023; F et al., 2020).

FIGURE 1
The chemical structure of Apigenin.
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The Runt-related transcription factor 2 (RUNX2) gene is pivotal
in regulating the differentiation of hBMSCs into osteoblasts (OB)
and their subsequent maturation during skeletal development. API
has been demonstrated to activate c-Jun N-terminal kinase and
p38 mitogen-activated protein kinase, leading to the upregulation of
osteopontin messenger RNA (mRNA) and the transcription factor
Runx2, thereby promoting osteogenesis in hBMSCs. The expression
of the Runx2 gene signifies the commencement of OB
differentiation. Asadi et al. (2022) identified that API can
counteract the inhibitory effects of lipopolysaccharide and
palmitic acid (PA) on osteogenesis. It achieves this by
diminishing the expression of NOD-like receptor protein three
and reducing the activity of cysteinyl aspartate-specific
proteinase-1 (caspase-1), while concurrently enhancing the
osteogenic capacity of hBMSCs.

3.2 Wnt/β-catenin signaling pathway

Recent research has demonstrated that the Wnt/β-catenin
signaling pathway plays a regulatory role in the growth and
metabolism of articular cartilage, OB, and synovial cells. This
pathway functions as a pivotal regulator of OB formation,
differentiation, and OC activity, and is intimately linked with
bone proliferation (U et al., 2016; Y et al., 2016). The Wnt/β-
catenin pathway modulates bone cell activity by elevating both
the level and activity of intracellular β-catenin (García-García.

et al., 2022). Typically, phosphorylated β-catenin undergoes
degradation, yet Wnt proteins can activate Frizzled receptors,
which in turn decrease β-catenin phosphorylation, thereby
enhancing its stability within the cytoplasm. The stabilized β-
catenin then translocates to the nucleus, where, influenced by
transcription factors such as TCF/LEF, it induces the expression
of Wnt target genes (Tang et al., 2021).

API (Pan et al., 2021) has been shown to elevate β-catenin
protein levels and activate the Wnt/β-catenin pathway, thereby
promoting osteogenic differentiation in MC3T3-E1 cells. This
activation results in the accumulation of β-catenin within the
cytoplasm and aids in the translocation of transcription activator
family members to the nucleus, initiating osteogenic differentiation
and bone regeneration. Furthermore, it has been observed (Jiao
et al., 2019) that API can inhibit Wnt/β-catenin signaling in a
concentration-dependent manner, leading to the downregulation
of Wnt target genes such as the myelocytomatosis viral oncogene
homolog, recombinant axis inhibition protein 2 (AXIN2), and
recombinant cyclin D1 (CCND1), thereby reducing tumor cell
invasion as illustrated in Figure 3.

3.3 Mediating the OS pathway

OS is intricately linked to the dysregulation of OB and OC
functions, which ultimately contributes to OP. OS can impair the
function of hBMSCs and OBs through various pathways, thereby

FIGURE 2
The production process of Apigenin. Biosynthesis process of API.
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diminishing bone differentiation. A sustained imbalance between
antioxidant defenses and reactive oxygen species (ROS) may result
in elevated lipid peroxidation, a reduction in antioxidant enzymes,
and accelerated OB apoptosis (Kimball JS. et al., 2021; Geng et al.,
2019; Da Silva et al., 2010), The nuclear factor E2-related factor 2
(Nrf2) plays a pivotal role in regulating the OS response. When
Nrf2 binds to the antioxidant response element, it triggers the
expression of endogenous antioxidant enzymes, such as
superoxide dismutase (SOD) and glutathione peroxidase (GSH-
Px), thereby enhancing the body’s antioxidant capacity (An and
Shang, 2018). HemeOxygenase-1 (HO-1), a downstream target gene
of Nrf2, catalyzes the degradation of heme, producing biliverdin,
which bolsters cellular defense mechanisms and mitigates OS (Chen
et al., 2019). Elevated intracellular ROS levels can activate FoxO
family proteins, which interact with β-catenin, leading to its
increased nuclear translocation. In the nucleus, this complex
binds to transcription factors, exerting transcriptional regulation.
Within the Wnt pathway, this process upregulates the expression of
antioxidant enzymes like SOD and catalase (CAT), thereby reducing
OS, inhibiting the osteogenic differentiation of hBMSCs, and
decreasing OB-mediated bone formation (Kimball J. S. et al., 2021).

API has been demonstrated to upregulate the expression of
Nrf2 and HO-1, increase the activities of SOD and GSH-Px (Dang
et al., 2020; Pedersini et al., 2020), and inhibit the nuclear

translocation of nuclear factor Kappa-B (NF-κB) (Li et al., 2020).
These actions collectively contribute to the reduction of oxidative
cellular damage in MC3T3-E1 cells and the improvement of bone
repair and OS-related bone metabolism (Jung, 2014). By lowering
ROS levels, API plays a regulatory role in OS and inhibits lipid
peroxidation. Under H2O2 treatment, API has been observed to
modulate the protein levels of Nrf2, reduce ROS levels, and enhance
CAT activity (Chen et al., 2019b), thereby alleviating OS-
induced damage.

3.4 Promotion of mineralization

The mineralization process necessitates the involvement of
proteins such as recombinant Annexin (Anx) and tissue
nonspecific alkaline phosphatase (TNAP) (Bozycki et al., 2021).
TNAP, which can exist in a soluble form, is responsible for
hydrolyzing inorganic pyrophosphate (PPi) into phosphate (Pi).
In conjunction with recombinant ectonucleotide pyrophosphatase/
phosphodiesterase 1, TNAP hydrolyzes adenosine triphosphate to
produce PPi, serving as the primary regulator of PPi/Pi balance. The
conversion of PPi to Pi by TNAP is essential for the mineralization
process (Mroczek et al., 2022). Anx, a protein that binds to calcium
ions and phospholipids, is partially localized within the matrix

FIGURE 3
Biosynthesis process of API.
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vesicle (MV) lumen or associated with the inner or outer surface of
the MV membrane, which is abundant in phosphatidylserine.
Recombinant Annexin A6 (AnxA6), comprising eight domains,
forms transmembrane ion channels under acidic pH conditions,
allowing calcium ions to pass through the membrane and act as
activators or inhibitors of mineral formation (Veschi et al., 2020;
Takegahara et al., 2024).

API facilitates the differentiation of cells into mature, bone-
forming OB (Azam et al., 2023). It upregulates OB differentiation
genes, including bone morphogenetic protein (BMP), in mouse
MC3T3-E1 OBs. BMP, a multifunctional growth factor, plays a
crucial role in regulating alkaline phosphatase (ALP) activity. ALP,
an enzyme secreted by OBs, serves as an early marker of osteoblastic
differentiation and functional status by reflecting the degree of OB
differentiation through its expression level in cells. This enzyme
hydrolyzes pyrophosphate into phosphate, a process vital for
hydroxyapatite formation. The increase in ALP activity raises the
local phosphate concentration, which leads to mineralization
through hydroxyapatite crystallization (Bottini et al., 2018). The
formation of mineralized nodules marks the late stage of OB
differentiation, representing the phase where OBs are fully
mature and actively engaged in bone formation, and serves as a
morphological manifestation of osteogenic function. In the API-
treated group, a significant increase in the number of calcium
nodules was observed, with these nodules appearing darker in
color and showing a concentration-dependent enhancement. This
observation indicates that API has a pronounced effect on
promoting cell mineralization. Furthermore, studies have
suggested that API can regulate the mineralization process in
human bone cells in vitro by modulating AnxA6 and TNAP in
MVs (Mroczek et al., 2022).

3.5 Mechanisms of API-mediated inhibition
of OC-induced bone resorption

OC, which are terminally differentiated cells, predominantly
contribute to bone resorption. The differentiation of OC can be
induced through receptor activators for nuclear factor-κB ligand
(RANKL) and macrophage colony-stimulating factor (M-CSF)
(Reinholz et al., 2000). OC activity is modulated by the nuclear
factor of activated T cells 1 and the oncogene Fos, enabling bone
resorption by secreting enzymes such as tartrate-resistant acid
phosphatase (TRAP), cathepsin K (CTSK), and matrix
metalloproteinase 9, which degrade the bone matrix (Yanan
et al., 2023). Excessive OC activation results in accelerated bone
loss and reduced bone density, which are critical factors in the
development of OP. Thus, the reduction of OC over-differentiation
is crucial for controlling bone loss.

3.5.1 Regulatory inflammatory factors
The generation of OB and the dynamic modulation of anti-OB

cytokines are pivotal for the preservation of skeletal homeostasis.
Within the phase of macrophage polarization induction,
inflammatory mediators facilitate OC differentiation via pro-
inflammatory mechanisms, hastening bone resorption and
precipitating OP. Tumor necrosis factor α (TNF-α) instigates the
translocation of NF-κB into the nucleus, thereby perturbing the

equilibrium of the RANK-RANKL axis, augmenting OC activity,
and upregulating pro-inflammatory genes linked to RANK,
consequently advancing OC differentiation (Wang et al., 2018).
Moreover, interleukin-1β and interleukin-6 contribute to the
differentiation and maturation of OCs through RANKL,
subsequently inducing bone resorption (Mo et al., 2024).
RANKL, a pivotal cytokine for the differentiation and activation
of OCs, facilitates the activation of the NF-κB receptor activator
(RANK)/RANKL signaling pathway, thereby enhancing OC
differentiation, resulting in an excessive increase in OCs and
intensifying bone degradation (Ren et al., 2022).

The NF-κB signaling pathway and its consequent impact on
bone tissue are markedly inhibited by API. Studies focused on the
anti-psoriasis effects of API have demonstrated its ability to
diminish the expression and secretion of pro-inflammatory
cytokines, including recombinant chemokine C-C-Motif receptor
6 (CCR6), interleukin-17 (IL-17), and NF-κB, through modulation
of the interleukin-23/IL-17/interleukin-22 (IL-22) axis. This, in turn,
results in the inhibition of OC activation and a subsequent reduction
in bone degradation (Rahmani et al., 2022).

3.5.2 RANKL/RANK/osteoprotegerin (OPG)
signaling pathway

The RANKL/RANK/OPG signaling pathway plays a pivotal role
in OC formation and skeletal remodeling. In the presence of M-CSF,
RANK engages with the C-terminus of RANKL, thereby facilitating
the transcription and expression of downstream OC-specific genes
through tumor necrosis factor receptor-associated factors. This
interaction initiates signaling cascades that involve NF-κB,
adenosine 3′,5′-cyclic monophosphate, and recombinant nuclear
factor of activated T-cells cytoplasmic 1 (NFATc1), which, in turn,
induce the expression of proteins such as TRAP, integrin beta 3, and
CTSK, governing OC differentiation and bone resorption (Zhang
et al., 2019). OPG, which is secreted by OB, functions as a decoy
receptor for RANKL, thereby inhibiting the interaction between
RANKL and RANK. Such inhibition reduces the formation and
maturation of OCs, ultimately leading to decreased OC activity
(Udagawa et al., 2021).

API has been reported to lower serum levels of bone Gla-protein
and ALP while also diminishing the mRNA and protein expression
levels of OPG in femoral tissue, thereby expediting bone healing
(Zhang et al., 2023). Moreover, API has the capacity to activate the
PI3K/Akt pathway and upregulate the expression of RUNX2 and
OPG while concurrently inhibiting RANKL expression. This results
in an indirect increase in the OPG/RANKL ratio, restoring the
equilibrium of the RANKL/OPG system and thereby augmenting
the healing potential of bones damaged under OP conditions (Feng
et al., 2023).

4 Other effects of API on bone
metabolism

4.1 Estrogen receptor signaling pathway

A reduction in Estrogen levels disrupts the equilibrium between
bone resorption and formation, resulting in diminished bone
strength, an elevated risk of fragility fractures, and decreased
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BMD. This reduction in Estrogen levels fosters OC differentiation
and activity, which may initiate the onset of OP (Słupski et al., 2021).
Estrogen is also widely employed in the clinical management of
skeletal disorders due to its role in regulating bone homeostasis
through both bone formation and resorption. Phytoestrogens, which
share structural and functional similarities with Estrogen,
particularly in receptor binding, can emulate the effects of
Estrogen while mitigating potential side effects. Furthermore,
phytoestrogens have the capacity to enhance calcium absorption
via Estrogen receptor pathways in intestinal cells, thereby affecting
bone remodeling (Xu et al., 2016).

API, a phytoestrogen with a chemical structure akin to 17β-
estradiol (E2), commonly prescribed for postmenopausal OP
treatment, demonstrates bidirectional activity by functioning both
as an Estrogen-mimetic and an Estrogen inhibitor, thereby
potentially providing protection against OP (Long et al., 2008; Yang
et al., 2015; Lu et al., 2021). Moreover, API has been demonstrated to
interact with OP-related signaling pathways, such as the mitogen-
activated protein kinase and Wnt pathways. It enhances E receptor
expression in OC and OB, increases ALP activity in OB, augments
bone collagen content, and decreases the secretion of OC-promoting
factors induced by interferon-γ and TNF-α. These effects collectively
contribute to bone formation, regulation of bone resorption, and
improvement in bone turnover (Tantowi et al., 2020).

4.2 Improvement of gut microbiota

With the advancement of research into gut microbiota,
orthopedic researchers have increasingly examined the correlation

between gut microbiota and orthopedic diseases (Awuti et al., 2020). It
has been observed that gut microbiota can upregulate the expression
of OPG and mammalian targets of rapamycin transcription factors,
thereby modulating osteoclast differentiation (Schepper et al., 2020).
The reduction in BMD is strongly linked to alterations in the
abundance of specific bacterial populations, with their mediated
catabolic effects being closely associated with pathological bone
diseases (Pedersini et al., 2020; Li et al., 2021). Dysbiosis of the gut
microbiota can disrupt the pH balance within the intestine,
influencing the absorption of calcium, phosphorus, and vitamin D.
It can also elevate intestinal permeability and compromise the barrier
function of the intestinal epithelium, leading to bone loss and
trabecular bone fractures (Guan et al., 2020).

API has been demonstrated to remodel the gut microbiota,
mitigate inflammation, fortify intestinal immune barriers, and
sustain intestinal homeostasis (Fu et al., 2022). It modulates
bacterial cell membrane permeability and impacts bacterial cell
wall integrity, thereby curbing the proliferation of Staphylococcus
aureus, Escherichia coli, and Candida albicans, leading to an
improvement in the intestinal flora (Sato et al., 2000). This
process supports the maintenance of overall health. A balanced
gut microbiome facilitates nutrient absorption, strengthens the
body’s immune system and disease resistance, while also aiding
recovery from skeletal diseases as illustrated in Table 1.

4.3 Reduction of adipocyte count

Adipocytes and OB both originate from mesenchymal cell
precursors derived from bone marrow. Adipocytes exhibit the

TABLE 1 To study the therapeutic model and mechanism of apigenin on osteoporosis in vitro and in vivo.

Type of
experiment

Animal/
cell

Mechanism action References

In vivo experiments Rats Reshaping the intestinal bacterial
community, alleviating inflammation and
maintaining intestinal homeostasis

It can improve the body’s immunity
and is beneficial to the rehabilitation of
bone diseases

Fu et al., 2022

Rats Activation of PI3K/Akt pathway can up-
regulate the expression of Runx2 and OPG,
and increase the OPG/RANKL ratio

Repair the healing ability of damaged
bone in the OP state

Feng et al., 2023

Mice Decreased STAT3 differentiation to
express CD36 decreased PPAR-γ
expression, and activated AMPK

Reduce fat cells and inhibit lipogenesis,
which is beneficial to bone health

Su et al., 2020

Mice Activation of GPX4 can activate
Nrf2 expression and promote the increase
of GSH level

Inhibition of ferroptosis Zhang et al., 2020; Zhao et al., 2020;
Chen et al., 2024

In vitro experiments hMSCs JNK and p38 MAPK were activated, and
the expression of mRNA and Runx2 was
up-regulated

It promotes osteogenesis Asadi et al., 2022

MC3T3-E1 Increases β-catenin protein levels, via the
Wnt/β-catenin pathway

It stimulates osteogenic differentiation
and bone regeneration

Pan et al., 2021

MC3T3-E1 The expression of Nrf2 and HO-1 was up-
regulated, and the activities of SOD and
GSH-Px were increased

Enhanced bone repair and bone
metabolism associated with oxidative
stress

Dang et al., 2020; Pedersini et al., 2020;
Li et al., 2020; Jung, 2014; Chen et al.,

2019

MC3T3-E1 Upregulating BMP, regulating ALP
activity, and decomposing pyrophosphate
to phosphate

Promotion of mineralization Azam et al., 2023; Bottini et al., 2018

Frontiers in Pharmacology frontiersin.org06

Lin et al. 10.3389/fphar.2024.1486646

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1486646


capability to self-enhance their differentiation, potentially
influencing the quantity of OB in the bone marrow and
subsequently impacting BMD (Proietto, , 2020; Greco et al., 2010).

API is capable of binding to the non-phosphorylated form of the
signal transducer and activator of transcription 3 (STAT3), which
results in a decrease in the expression of the STAT3 differentiation
target gene cluster of differentiation 36 (CD36) and also reduces the
expression of peroxisome proliferator-activated receptor γ (PPAR-γ).
Consequently, the lowered expression of CD36 and PPAR-γ serves to
inhibit adipogenesis (Su et al., 2020). Moreover, API can activate
adenosine monophosphate-activated protein kinase, which leads to a
downregulation of genes associated with lipogenesis and lipolysis. This
process diminishes PA-induced lipid accumulation in HepG2 cells,
thereby reducing lipid content and suppressing adipocyte
differentiation (Lu et al., 2019). The potential of API in decreasing
adipocytes and inhibiting adipogenesis is evident, indirectly supporting
skeletal health and possibly exerting an influence on OP. However,
current research is limited, necessitating further exploration and
validation of these specific mechanisms.

4.4 Ferroptosis

Recent investigations have demonstrated that ferroptosis
constitutes an iron-dependent form of cell death characterized by
iron accumulation and lipid peroxidation. This phenomenon
influences the proliferation and differentiation of osteoblasts
(OBs), resulting in bone loss and being recognized as one of the
common risk factors for osteoporosis (OP) (Luo et al., 2022; Jiang
et al., 2022). Nuclear factor erythroid 2-related factor 2 (Nrf2) serves
as a crucial regulator of lipid peroxidation and ferroptosis.
Glutathione peroxidase 4 (GPX4) is a specific marker of
ferroptosis. When the activity of GPX4 is inhibited, the
antioxidant capacity of cells is diminished. Excessive Fe3+
generates a substantial amount of reactive oxygen species (ROS)
through the Fenton reaction, leading to the accumulation of lipid
peroxides, causing oxidative damage and subsequently inducing the
occurrence of ferroptosis (Zhang et al., 2024; Che et al., 2020). The
nuclear transcription of Nrf2 regulates the expression of GPX4 and
the antioxidant capacity of cells, activates cell membrane iron
transporter proteins, and balances intracellular iron concentration
(Bao et al., 2023; Ma et al., 2020; Deng et al., 2024).

Di(2-ethylhexyl) phthalate (DEHP) is an artificial persistent
organic pollutant (POP) capable of inducing ferroptosis-like
injury. API can activate GPX4, inhibit intracellular iron
accumulation, and exert a protective role against DEHP-induced
ferroptosis (Han et al., 2022). The potential role of apigenin in
regulating ferroptosis has been established in other pathological
studies. For instance, API can activate the expression of Nrf2,
promote the elevation of intracellular glutathione (GSH) level
and scavenge it after binding to ROS, inhibiting the occurrence
of lipid peroxidation during ferroptosis. Meanwhile, a high
concentration of GSH helps maintain the activity of GPX4,
which is capable of reducing lipid peroxides to harmless lipols,
further preventing the development of ferroptosis (Zhang et al.,
2020; Zhao et al., 2020; Chen et al., 2024). It has also been shown that
API can downregulate the oxidative stress gene ATF3 and
upregulate GPX4 in non-obese diabetic (NOD) mice, inhibiting

ferroptosis in salivary gland epithelial cells (SGECs) (Liu et al.,
2024). This suggests that in OP, API may slow down the degradation
of bone matrix and the decrease in bone mineral density (BMD) by
inhibiting ferroptosis.

5 Advantages of apigenin in the
treatment of osteoporosis

5.1 Natural sources with fewer side effects

API is a naturally occurring flavonoid found in fruits and
vegetables, exhibiting low toxicity and minimal side effects. In
comparison to common therapeutic agents such as
bisphosphonates (BPS) (Ng et al., 2004), it can inhibit osteoclast
activity and is well tolerated. However, BPS can induce osteonecrosis
of the jaw, aseptic inflammatory responses, and increase leukocyte-
endothelial cell interactions, leading to the development of
secondary infections and impaired healing (Ting et al., 2007).
Denosumab has been demonstrated to increase BMD and reduce
fracture risk in patients with OP, but there is a rapid rebound of the
bone resorption effects after discontinuing the drug (Zhou et al.,
2022; Alfaleh et al., 2022). Tetracyclines (TCs) are clinical broad-
spectrum antibiotics that can be deposited in bone tissue and bind to
calcium ions in the main components of bone. Due to their excellent
osteotropic properties, they are utilized as a targeting moiety of bone
tissue for drug delivery to the target site to achieve targeted therapy
(Seydi et al., 2016a). It has been found (Hicks et al., 2017) that TCs
cause tooth staining and lead to enamel hypoplasia during
calcification. Additionally, calcium and vitamin D
supplementation are routinely paired for the treatment of OP,
but calcium supplementation alone cannot compensate for renal
calcium loss, and the increased circulating calcium load may lead to
additional bone deposition (de Campos et al., 2023). Hormone
replacement therapy is an effective treatment for postmenopausal
OP. Although it is effective in improving bone density, long-term
use of estrogenic medications induces the development of
hypertension and edema, as well as increasing the risk of breast
cancer, endometrial cancer, and blood clots (Vigneswaran and
Hamoda, 2022). In contrast, apigenin, as a plant extract with
estrogen-like effects, can reduce drug dependence and hormone-
related risks, presenting itself as a safer alternative choice.

5.2 Multi-target mechanisms of action

As a natural flavonoid, API exhibits a multilevel andmulti-target
mechanism of action in osteoporosis treatment, with significant
potential for preclinical application.API significantly promotes the
differentiation of hBMSCs to osteoblasts and enhances their
osteogenic capacity through the activation of key osteogenic
signalling pathways (e.g., JNK and p3 8 MAPK) and the
upregulation of expression of osteogenic genes Runx2 and OPN .
In addition, API also plays an important role in inhibiting
osteoclast-mediated bone resorption by interfering with the
activities of NF- κ B and RANKL/RANK/OPG signalling axes,
reducing osteoclast generation and maturation, thus effectively
preventing bone loss.
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Oxidative stress is considered an important pathological
mechanism of osteoporosis. API reduces the damage of oxidative
stress on osteoblasts, maintains osteoblast activity, and prevents
excessive degradation of bone matrix by activating the Nrf2/HO-
1 antioxidant signalling pathway and increasing the activity of SOD
and GSH-Px. API, as a potent antioxidant and anti-inflammatory
agent, can effectively mitigate the damage of oxidative stress and
inflammation on bone tissue. As a potent antioxidant and anti-
inflammatory agent, API is effective in mitigating oxidative stress
and inflammation damage to bone tissue, and has a more
comprehensive therapeutic potential to alleviate underlying
pathological factors (e.g . , inflammation) while mitigating the
underlying pathological factors (e.g., inflammation) than some
conventional drugs that only target bone resorption or bone
formation.API is also able to enhance the efficiency of
mineralisation by increasing the inward flow of calcium ions in
mineralisation through the upregulation of ALP activity, which
promotes the calcific deposition of bone matrix. In addition, API
also maintains the balance of bone metabolism by regulating the
stability of the intestinal flora, reduces the number and
differentiation of adipocytes, and prevents bone marrow fat from
negatively affecting the osteogenesis process, further supporting the
maintenance and enhancement of bone density. This mechanism of
indirectly affecting bone health through the microbiota is not
possible with some of the conventional treatments currently
available, and has the potential to provide a new pathway for the
treatment of osteoporosis.

Overall, the synergistic effects of API on multi-target signalling
pathways enable it to exhibit unique advantages in maintaining bone
metabolic homeostasis, resisting oxidative stress and regulating the
balance of bone production and resorption, and these properties
provide potential clinical applications and directions for further
research on APIs in the treatment of osteoporosis.

5.3 Potential to improve bioavailability

The bioavailability of API is influenced by factors such as food
matrix, bioaccessibility, digestibility, molecular structure, and
metabolic enzymes (Waheed et al., 2023). With a solubility of
0.001–1 .63 mg/mL in non-polar solvents and 2. 16 μg/mL in
water, oral bioavailability is low, limiting its clinical application
(Zhang et al., 2012) . The conversion of apigenin to macromolecules
such as glucosides in the intestinal mucosa is an important factor
affecting its biodistribution and reducing its net intestinal
absorption (Wang et al., 2016). Methylation, sulfonation, and
glucuronidation of apigenin also affect its bioavailability. The
Caco-2 cell monolayer system revealed that API can be a
substrate for glucuronidation of uridine 5′-diphosphate
o-glucuronosyltransferase present in the intestinal epithelium.
The permeability coefficient of API is at 10–5 cm/s, it has high
lipophilicity, and it is well absorbed in the intestinal mucosa and
eliminated slowly in serum (Awad et al., 2023; Ng et al., 2004). After
discontinuation of the drug, API levels peaked after 3.9 h, with
recovery rates of 16 .6% in urine and 28 .6% in feces (Ting et al.,
2007). Some researchers have found liposomes, self-
microemulsifying drug delivery systems, nanocrystalline gel
formulations, and many other strategies and techniques to

enhance its bioavailability. API-loaded polymer micelles can
increase its solubility and oral bioavailability by 148 and 4
.03 folds, respectively, compared to API alone, suggesting that
polymer films can act as a delivery system for API (Zhou et al.,
2022). This provides greater advantages for apigenin in clinical
applications and may confer greater efficacy without increasing
toxicity and side effects.

5.4 Synergistic effects in combination with
other natural medicines

API can exhibit synergistic effects with other natural drugs or
nutrients. Raloxifene is a phenothiophene compound with
estrogenic effects in regulating bone levels, which can increase
bone mineral density and reduce bone loss. API combined with
raloxifene can reduce the first-pass metabolism of raloxifene and its
glucuronidation and sulfation in the intestinal tract, reduce the
intestinal metabolism and outward transfer function, and improve
drug utilization and enhance the efficacy of treatment for
postmenopausal OP (Chen et al., 2010). The combination of API
with paclitaxel inhibits superoxide dismutase (SOD) activity,
promotes ROS-mediated cleavage of caspase-2, and attenuates to
a certain extent the toxicity of paclitaxel (Young-Ah et al., 2015) This
multi-component combination therapy may enhance therapeutic
efficacy while reducing the problems of dependence and resistance
to a single agent, a potential advantage not available with existing
single-agent therapies.

Apigenin derivatives also have therapeutic effects on
osteoporosis. Studies have shown that Isovitexin, a natural
derivative of apigenin, effectively promotes bone production
through activation of mitochondrial biosynthesis and respiration
in osteoblasts in an estrogen-deficient mouse model, demonstrating
its potential for osteoporosis prevention and treatment (Isika et al.,
2020). Isovitexin has been shown to interact with adiponectin
receptors (AdipoRs), thereby triggering the upregulation of
peroxisome proliferator-activated receptor γ coactivator 1 α
(PGC - 1 α), a key mitochondrial biogenesis factor within
osteoblasts. Concomitantly, this interaction promotes oxidative
phosphorylation (OxPhos) and ATP synthesis, ultimately leading
to enhanced osteoblast differentiation (Pal et al., 2021) In studies
utilizing the femur osteotomy model in adult mice and the
ovariectomized osteopenic mouse model, it was observed that
Isovitexin at doses of 2.5 and 5 mg/kg markedly augmented bone
formation at the osteotomy site (Pal et al., 2022). Another study
found that both API and rutin derivatives promoted osteogenic
differentiation of human bone marrow stromal stem cells
(hBMSCs). These compounds effectively enhanced osteogenic
activity by activating signaling pathways such as JNK and
p38 MAPK. Especially in age-related osteoporosis, these
derivatives showed high therapeutic potential in reducing cellular
aging and bone loss (Ali et al., 2024). In addition, it has been
reported (Isika et al., 2020) that a series of apigenin amide
derivatives have been validated for their potential to enhance
osteogenic activity by molecular docking simulations.

These compounds are designed to enhance the stability and
activity of apigenin in bone tissue, thus improving its effect in anti-
bone resorption and promotion of bone formation. These studies
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provide a new perspective for the application of apigenin derivatives
in the treatment of osteoporosis.

5.5 Multiple prevention and treatment
effects on other chronic diseases

In addition to bone protection, API have shown potential in
combating some chronic diseases such as cardiovascular disease.
There is a correlation between osteoporosis and cardiovascular
disease, and many people with osteoporosis also suffer from
cardiovascular problems. API have been widely studied for their
cardiovascular protective effects, improving vascular health, anti-
inflammatory, and antioxidant properties. Compared to existing
treatments, APIs may provide additional health benefits to the
cardiovascular system while protecting bone. In recent years, API
have even gained attention as a common ingredient in health-
promoting, balanced diets. With its lower intrinsic toxicity to
normal and cancerous cells compared to other structurally
related flavonoids, apigenin has been suggested as a
complementary therapeutic agent for patients with hepatocellular
carcinoma (Seydi et al., 2016b).

6 Conclusion

The increasing incidence of OP each year imposes a considerable
burden on various patient populations and their families,
underscoring the need for more effective intervention strategies.
The pathogenesis of OP is intricately linked with hormonal
imbalances, cellular autophagy, ferroptosis, OS, and gut
microbiota dysbiosis. These pathological factors may operate
independently or in synergy, influencing the growth,
differentiation, and apoptosis of OB, OC, and osteocytes through
the modulation of distinct signaling pathways. However, the precise
mechanisms remain only partially understood. As research
advances, additional pathogenic factors associated with OP
continue to be identified. In terms of treatment, a substantial
body of research has shown that active components of Chinese
herbal medicines and traditional Chinese medicine formulations can
effectively manage OP by modulating hormone levels, influencing
cellular autophagy, inhibiting ferroptosis, counteracting OS
responses, and maintaining gut microbiota balance. API displays
a range of anti-osteoporotic effects, including the promotion of bone
formation, reduction of bone resorption, inhibition of inflammation,
antioxidant properties, and estrogen-like activities. These attributes
render API a promising candidate for maintaining skeletal health
and combating OP. However, the therapeutic efficacy, optimal

dosage, and safety profile of API in human subjects still require
extensive clinical trials for further elucidation. The broad spectrum
of bioactivities exhibited by API provides new perspectives and
directions for the clinical management and prevention of OP. API
holds significant potential in the prevention and treatment of OP,
with considerable clinical application value and research
significance.
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