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Introduction: Lung adenocarcinoma (LUAD) has become one of the leading
causes of cancer-related deaths globally, with metastasis representing the most
lethal stage of the disease. Despite significant advances in diagnostic and
therapeutic strategies for LUAD, the mechanisms enabling cancer cells to
breach the blood-brain barrier remain poorly understood. While genomic
profiling has shed light on the nature of primary tumors, the genetic drivers
and clinical relevance of LUAD metastasis are still largely unexplored.

Objectives: This study aims to investigate the genomic differences between
brain-metastatic and non-brain-metastatic LUAD, identify potential prognostic
biomarkers, and evaluate the efficacy of AH-6809 in modulating key molecular
pathways involved in LUAD metastasis, with a focus on post-translational
modifications (PTMs).

Methods: Genomic analyses were performed using data from The Cancer
Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO).
Differentially expressed genes (DEGs) between brain-metastatic and non-
metastatic LUAD samples were identified. Key gene modules were
determined using Weighted Gene Co-expression Network Analysis
(WGCNA), and their prognostic significance was assessed through Kaplan-
Meier analysis. Cellular experiments, including CCK8 and qRT-PCR assays,
were conducted to evaluate the anti-cancer effects of AH-6809 in LUAD
cells. Apoptosis and inflammatory marker expression were assessed using
immunofluorescence.

Results: Genomic analysis differentiated brain-metastatic from non-brain-
metastatic LUAD and identified NLRP7, FIBCD1, and ELF5 as prognostic
markers. AH-6809 significantly suppressed LUAD cell proliferation, promoted
apoptosis, and modulated epithelial-mesenchymal transition (EMT) markers.
These effects were reversed upon NLRP7 knockdown, highlighting its role in
metastasis. Literature analysis further supported AH-6809’s tumor-suppressive
activity, particularly in NLRP7 knockdown cells, where it inhibited cell growth and
facilitated apoptosis. AH-6809 was also found to affect SUMO1-mediated PTMs
and downregulate EMT markers, including VIM and CDH2. NLRP7 knockdown
partially reversed these effects. Immunofluorescence revealed enhanced
apoptosis and inflammation in lung cancer cells, especially in
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NLRP7 knockdown cells treatedwith AH-6809. The regulatorymechanisms involve
SUMO1-mediated post-translational modifications and NQO1. Further studies are
required to elucidate themolecular mechanisms and assess the clinical potential of
these findings.

Conclusion: These findings demonstrate the critical role of NLRP7 and associated
genes in LUAD metastasis and suggest that AH-6809 holds promise as a potential
therapeutic agent for brain-metastatic LUAD.

KEYWORDS

lung adenocarcinoma, brain, brain metastasis, pan-cancer analysis, genomic, genomic
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Introduction

Lung adenocarcinoma (LUAD), the most common subtype of
non-small cell lung cancer (NSCLC), is a leading cause of cancer-
related mortality worldwide (Sainz De Aja et al., 2021; Ye et al.,
2019). Despite advancements in diagnostic tools and therapeutic
strategies, accurate prediction of LUAD progression, particularly
metastasis, remains challenging. This is due to the reliance on
indirect findings and a lack of understanding of the molecular
mechanisms driving LUAD metastasis (Webb and Simon, 2010;
Li et al., 2018). Brain metastasis occurs in approximately 20%–40%
of patients with advanced LUAD, making it one of the most
common sources of brain metastasis across cancer types (Yang
et al., 2004; Valastyan and Weinberg, 2011). Metastasis, a
complex multi-step process in which cancer cells spread from the
primary tumor to distant organs, is regarded as the most lethal phase
of cancer progression (Shi et al., 2016; Kleczko et al., 2019). LUAD
cells enhance their invasive capabilities and promote metastasis,
including to the brain, through epithelial-mesenchymal transition
(EMT). These cells also stimulate angiogenesis, alter the local brain
microenvironment, and create favorable conditions for metastatic
growth. Additionally, LUAD cells evade immune responses, further
complicating the treatment of metastasis (Chen et al., 2020; Li
et al., 2021).

While genomic profiling has provided significant insights into
the genetic and molecular drivers of primary LUAD tumors,
particularly through efforts like The Cancer Genome Atlas
(TCGA) project, the molecular mechanisms specific to LUAD
brain metastasis remain largely unexplored. This gap includes
key gene alterations, such as EGFR mutations and ALK
rearrangements, which are associated with a higher risk of brain
metastasis (Li et al., 2018; Xie et al., 2021). Much of the work in
cancer research focuses on genomics, which calls for cross-cancer
analyses to study pan-cancers like LUAD together with other types
both genetic and molecular basis providing global understanding
around diseases (Liu and Zhang, 2014; Shi et al., 2016). While the
existing literature has identified various genes and epigenetic
changes associated with LUAD, the heterogeneity and dynamism
of metastatic disease present significant challenges in identifying
consistent biomarkers and therapeutic targets (Mastrogiacomo et al.,
2024; Testa et al., 2022). Previous genomic studies have
predominantly focused on primary tumors, with limited attempts
to link genomic alterations to metastatic potential (Mardis, 2018).

In the existing LUAD studies, many genes have been found
associated with primary tumors, but their direct relationship with

metastatic potential remains unclear (Minn et al., 2005; Yao et al.,
2020). Although the roles of genes like ARRDC5 and ELF5 in cancer
progression have been studied, their pan-cancer significance across
different cancer types has not been fully demonstrated (Mishra et al.,
2016; Piggin et al., 2016). Additionally, the downregulation of
L1CAM in LUAD metastasis contrasts with its known role in
promoting invasion in other cancers, revealing a more complex
and context-dependent role of L1CAM in cancer biology (Wu et al.,
2019; Hai et al., 2012). Current research on these genes highlights
the need for a deeper investigation into their prognostic potential
and their roles in mediating the metastatic cascade in LUAD.
Furthermore, while some therapeutic strategies have targeted
these pathways (Guo et al., 2022; Yamaguchi et al., 2024), their
efficacy in treating brain-metastatic LUAD is still under
investigation. Identifying molecular markers that can predict
metastasis and guide therapy is critical to improve patient
outcomes. Though an overall understanding of the genomic
signature has been established through studies on LUAD,
metastatic disease is rarely studied and done so with a small
sample size (Li et al., 2021; Feng et al., 2022). In addition,
Conducting such analysis in existing studies that are mainly
based on public genomic data (having advantages of large scope
but maybe lack detailed information) can be challenging (Näpflin
et al., 2019; Liang and Greenwood, 2015). Further studies are
required to verify these genes and their functional roles in LUAD
metastasis, using experimental methods (Wang et al., 2020; Zhang
et al., 2021).

The integration of big data and bioinformatics has become
increasingly important for identifying biomarkers that can aid in
the diagnosis and prognosis of LUAD (Takano and Ito, 2023; Yuan
et al., 2024). Protein-protein interaction networks, as well as their
modifications and regulatory mechanisms, are central to
understanding cellular signaling and functional regulation (Wu
et al., 2024; Tian et al., 2023). In the field of genomics,
unsurpassed work in immune microenvironment-related
diagnosis and prognostic evaluation for many diseases has been
achieved through transcriptome (Cao et al., 2024; Zhao et al., 2024).
Advances in transcriptomic analysis have also provided valuable
insights into the immune microenvironment and its role in disease
progression (Thakur et al., 2023; Wu et al., 2023). By employing
cutting-edge methodologies such as machine learning, multi-omics
analysis, high-throughput sequencing, and bioinformatics,
researchers continue to explore new therapeutic strategies that
open doors to precision medicine and personalized treatments
(Wu et al., 2023; Zhuo et al., 2024; Aydoğdu et al., 2024).
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This study aims to address these gaps by conducting a
comprehensive genomic analysis of LUAD metastasis. Previous
research has identified various genetic alterations in LUAD, but
few have linked these changes specifically to brain metastasis. The
clinical implications of these genes remain largely unexplored, and
while certain therapeutic agents targeting these pathways show
promise, their efficacy in treating brain-metastatic LUAD is still
being evaluated. Further studies are necessary to determine the
molecular mechanisms behind these observations and assess their
potential for clinical application. This version streamlines the
background, enhances clarity, and aligns the content with the
formal tone typical of SCI papers, making it concise yet
comprehensive for a scientific audience.

Materials and methods

Acquisition and processing of GEO datasets

In this study, microarray data from brain metastasis samples of
lung adenocarcinoma patients were analyzed. A total of 28 samples
were included, with 19 obtained from Marc Ladanyi’s research
group and nine from William L. Gerald’s research group. The
data were retrieved from the Gene Expression Omnibus (GEO)
database provided by the National Center for Biotechnology
Information (NCBI) under the accession number GSE14108.
Additionally, to investigate the tumor microenvironment in brain
metastases of lung adenocarcinoma patients, bulk RNA sequencing
was performed on brain metastasis samples from six patients,
utilizing the Illumina HiSeq X Ten platform. These sequencing
data were also acquired from the GEO database, with accession
number GSE141685. Differential expression analysis was conducted
by comparing the expression profiles of brain metastasis samples to
those of primary lung adenocarcinoma tumors obtained from the
TCGA database. Specifically, data from 14 early-stage and 11 late-
stage primary lung adenocarcinoma tumors were included in the
analysis. Statistical analysis was performed using the False Discovery
Rate (FDR) for multiple testing correction with a significance
threshold set at p < 0.05. Data normalization was applied, and
the linear model coupled with empirical Bayes methods from the R
package “limma” was employed to identify significantly
differentially expressed genes.

Pan-cancer expression analysis of
core genes

This study encompassed the mRNA expression data, copy
number variation (CNV) data, and DNA methylation 450 K data
from 20 cancer types, including bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), cholangiocarcinoma
(CHOL), colon adenocarcinoma (COAD), cervical and endocervical
cancers (CESC), esophageal carcinoma (ESCA), glioblastoma
multiforme (GBM), head and neck squamous cell carcinoma
(HNSC), kidney chromophobe (KICH), kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),
liver hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), pancreatic

adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD),
rectum adenocarcinoma (READ), stomach adenocarcinoma
(STAD), thyroid carcinoma (THCA), and uterine corpus
endometrial carcinoma (UCEC). These data, which included both
tumor and normal samples, were downloaded from Firehose (http://
gdac.broadinstitute.org). Mutation, miRNA sequencing data, and
clinical information were obtained from the Xena Browser (https://
xenabrowser.net/datapages/). To assess the differences in gene
expression between cancerous and normal tissues across various
cancer types, we utilized the Wilcoxon rank-sum test (also known as
the Mann-Whitney U test), a non-parametric method suitable for
comparing the medians of two independent groups without
requiring assumptions of normality. Statistical significance was
determined with an alpha value of 0.05. TPM expression data for
tumor samples from TCGA and normal samples from GTEx were
accessed via the UCSC Xena database. Z-score standardization was
applied to normalize expression data and mitigate dimensional
discrepancies across datasets. To enhance the evaluation of gene
copy number alterations, both heterozygous and homozygous
amplifications and deletions were considered. Pearson’s
correlation coefficients were calculated between gene expression
levels and copy number segment values to assess the relationship
between CNV and gene expression.

Core gene promoter methylation analysis

We conducted an in-depth methylation analysis of several key
genomic regions, including the TSS1500 region (1,500 base pairs
upstream of the transcription start site), the TSS200 region (within
200 base pairs of the transcription start site), the first exon, and the
5’untranslated region (5’UTR). Methylation values across these
regions were then tallied and the median methylation value was
calculated to provide a global index of DNA methylation status for
each sample. To explore potential correlations between methylation
levels and gene expression, we used Spearman’s rank correlation, a
non-parametric method for assessing the monotonic relationship
between two variables that do not follow a normal distribution. The
methylation levels were defined as the independent variable, and
gene expression levels were being dependent on these exposure of an
exogenous linear regression was pursued to calculate their
associations by computing Spearman rank correlation coefficient.
Further, promoter region methylation was compared in tumors and
normal samples using Wilcoxon rank-sum test. This method is able
to identify large changes in methylation levels between tumor and
normal tissues.

Analysis of core genes using ATAC-seq

In this study, we utilized the ChIPseeker package to analyze and
visualize ATAC-seq data. Using its annotatePeak function allowed
us to closely examine transcription start sites within gene promoter
areas, setting the tssRegion parameter to c (-3,000, 3,000) to ensure
coverage from 3,000 base pairs upstream to downstream of the
transcription start site. This thorough investigation around the
transcription start site is critical for comprehending the scattering
of transcription factor binding locations and histone changes.
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Additionally, the covplot function created coverage plots visually
portraying the dispersion of peaks across the genome from our
ATAC-seq data. The plots supplied specific information too, like
gene names, cancer types, chromosomal positions, and precise
genetic distances. These comprehensive genomic visualization
tools provide researchers profound insights into the genomic
landscape, with some plots showing broad trends of open
chromatin regions across whole chromosomes and others
zooming in to examine the distribution of TF binding or histone
marks around individual gene promoters.

GSEA enrichment analysis in pan-
cancer studies

It searched the TCGA database and collected RNA-seq or
microarray data for various types of cancer, that included both
expression information on tumor and normal (or paired) samples.
These outcome data were put through rigorous quality control
before analysis to guarantee sample and probe precision. The
data would then be standardized to reduce technical variability.
Differential expression analysis was carried out using the “R package
‘clusterProfiler’” “limma”, a tool for normalization of data,
background correction and statistical testing to find significantly
differentially expressed genes. Genes were screened based on a
log2 fold change (log2FC) and p-value, with log2FC representing
the logarithmic ratio of gene expression changes and the p-value
indicating statistical significance. Next, we used the R package
“clusterProfiler” in pathway enrichment analysis of differentially
expressed genes against databases such as KEGG, GO and Reactome
by gene set enrichment analysis (GSEA). The enrichment score (ES),
ranging from 0 to 1, was used to assess the correlation between
biological processes and gene expression changes. Finally, the R
package “ggplot2″was used to visualise data more conveniently with
intuitive graphs and charts such as bar plots, scatter plots and gene
expression heatmaps. This analytical framework provides a
systematic approach to understanding the molecular mechanisms
underlying cancer gene expression.

Molecular characterization of core genes
in LUAD

We conducted a ROC curve analysis using the pROC package to
evaluate the diagnostic performance of the single-sample gene set
enrichment analysis score (ssGSEAscore) in distinguishing LUAD
from normal control groups. This evaluation involved calculating
the 95% confidence interval---the area under the curve (AUC) and
plotting the smoothed ROC curve. The ssGSEAscore was derived
from the TCGA dataset’s RNA-seq data using the “ssgsea” method
of the GSVA package. Data was sourced from the PanCanAtlas,
specifically the EBPlusPlusAdjustPANCAN_IlluminaHiSeq_
RNASeqV2 geneExp.tsv file processed by the Firehose pipeline
with MapSplice + RSEM and normalized by setting the upper
quartile to 1,000. Further analysis involved using the Wilcoxon
rank-sum test to compare ssGSEAscore expression levels between
tumor and normal tissues within the LUAD dataset, assessing their
statistical significance. The Wilcoxon signed-rank test also

compared expression differences between tumor and adjacent
non-tumor tissues. Calibration curves described the consistency
between model predictions and actual observations, while
goodness-of-fit tests evaluated the model’s alignment with ideal
conditions.

TheWilcoxon rank-sum test was also used to analyze differences
in ssGSEAscore distributions between early- and late-stage LUAD
samples. A Kruskal-Wallis rank-sum test then assessed further
whether this was merely due to chance within the LUAD data
set. These methods represent robust statistical tools for evaluating
how gene set expression profiles correspond with clinical
characteristics in lung adenocarcinoma.

Survival prognosis analysis of core genes
in LUAD

Kaplan-Meier survival analysis used the survival package in R
environment determined optimal high and low ssGSEAscore group
cut-off values. The survminer package ensured each score group had
a minimum 0.3 proportion. The log-rank test assessed survival
differences between the two groups using the survfit function.
Additionally, univariate Cox survival analysis results were
combined using the inverse variance method in a meta-analysis,
with hazard ratio serving as the primary measurement.

Connectivity map (cMAP) analysis

To identify potential therapeutic options that could mitigate the
tumor-promoting effects driven by specific genes, a Connectivity
Map (cMAP) analysis was performed using CMAP_gene_
signatures. The associated RData file comprises gene expression
profiles for 1,288 different compounds. A gene signature was
generated by selecting the 150 most significantly upregulated and
150 most significantly downregulated genes, based on a comparison
between patients with high and low levels of gene expression in
tumors. The eXtreme Sum (XSum) algorithm was employed to
compare these gene signatures with cMAP signatures, generating
similarity scores for the 1,288 compounds. The analysis followed
established protocols as described in prior studies (Yang et al., 2022;
Malta et al., 2018).

Cell lines and clinical samples

The non-small cell lung cancer (NSCLC) cell line, NCI-H1299
(ATCC® CRL-5803™), was obtained from the American Type
Culture Collection (ATCC, United States). These cells were
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM),
supplemented with 10% fetal bovine serum (FBS).

Silencing of NLRP7 gene using
lentiviral vectors

To assess the impact of NLRP7 gene knockdown, lentiviral
vectors were employed to silence the gene in NLRP7 cells. The

Frontiers in Pharmacology frontiersin.org04

Feng et al. 10.3389/fphar.2024.1486265

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1486265


specific targeting sequences were sourced from Open
Biosystems.

Immunofluorescence

Cells were seeded into 24-well culture plates and incubated
overnight to allow for attachment. Fixation was performed at room
temperature using 3.7% paraformaldehyde for 15 min, followed by
permeabilization in chilled methanol at −20°C for another 15 min.
Afterward, cells were incubated at room temperature for 1 h in
blocking buffer (PBS containing 5% normal goat serum and 0.5%
Triton X-100). Primary antibodies were added, and the cells were
incubated overnight at 4°C. The next day, cells were washed three
times with PBS, 10 min each time, and then incubated at room
temperature with a goat anti-rabbit secondary antibody conjugated
to a fluorophore (diluted 1:500 in blocking buffer). Prior to imaging,
the nuclei were stained at room temperature with DAPI for 30 min
(catalog number D9542; Sigma). Images were captured using a
Nikon Eclipse E800 fluorescence microscope.

Quantitative real-time PCR (qRT-PCR)

Total RNA was isolated with TRIzol, and complementary DNA
(cDNA) synthesis was carried out using the FastStart Universal
SYBR GreenMaster (ROX) from Roche, Switzerland, in conjunction
with the PrimeScript™ RT Reagent Kit from TaKaRa, Japan. The
qRT-PCR was conducted using a CFX96™ Real-Time System
combined with a C1000™ Thermal Cycler, both from Bio-Rad,
United States.

CCK-8 assay

The CCK-8 assay was utilized to evaluate cell proliferation. In
brief, 2000 cells were seeded into each well of a 96-well plate and
incubated at 37°C under 5% CO2. Afterward, 10 µL of CCK-8
solution (Vazyme Biotech Co., Ltd.) was added to each well, and
the plate was incubated for an additional 2 h at 37°C. As a result, the
absorbance of 450 nm was determined by microplate reader assay.
Cell proliferation curves were constructed based on the three
independent experiments.

Plate colony formation assay

A plate colony formation assay was employed to evaluate the
long-term proliferative capacity of lung adenocarcinoma cells,
Briefly, LUAD cells were transfected with shRNA targeting
NLRP7, or cells were treated with AH-6809, to evaluate their
effect on the clonogenic prospective. Cells were plated into six-
well dishes in a density of 500 cells per well, incubated at 37°C under
5% CO₂ and kept in a humid environment. The culture medium was
changed every 3 days to maintain optimal growth conditions After
visible colonies had appeared (10–14 days after plating), the cells
were fixed with 4% paraformaldehyde at room temperature for
15 min. Following fixation, the colonies were stained with 0.1%

crystal violet solution for 30 min, and then gently washed with
phosphate-buffered saline (PBS) and air-dried.

The number of visible colonies containing more than 50 cells was
then counted under a microscope, and the colony formation efficiency-
ratio of number colonies to cells originally plated (as a percentage) was
calculated. This assay was performed in triplicate, and the results were
analyzed statistically using the Student’s t-test to evaluate the
significance of differences between experimental groups.

Statistical analyses

Data were expressed as mean ± standard deviation (SD) and
were processed using GraphPad Prism version 8. For comparing two
groups, a t-test was employed, while a one-way analysis of variance
(ANOVA) was utilized for comparisons across multiple groups.
Correlation analysis was performed using the Pearson correlation
coefficient. A p-value of less than 0.05 was regarded as indicative of
statistical significance.

Results

Differentially expressed gene analysis of
brain metastasis in lung adenocarcinoma

Through analysis of the GEO dataset, our comprehensive study
focused on identifying genes associated with brain metastasis in
LUAD. The analysis revealed significantly altered gene expression
patterns between primary LUAD tumors and brain metastasis
samples. As shown in Supplementary Figure S1A, a standardized
boxplot compares the expression values between primary LUAD
tumors and brain metastasis samples, illustrating the differences in
gene expression between these tissue types. The distribution of gene
expression highlighted significant differences between primary and
metastatic tissues, with brain metastasis samples showing distinct
patterns of gene regulation. To further explore the separation
between primary and metastatic samples, we performed principal
component analysis (PCA) (Supplementary Figure S1B).
Additionally, the volcano plot highlights the differential
expression of key genes between LUAD and LUAD brain
metastasis samples. The plot shows genes significantly
upregulated in brain metastasis, such as SLC7A10, SFT2D3,
KTI12, and MIR1244-1, and genes significantly downregulated
(Figure 1A). The heatmap presents normalized expression values
on a color scale (Figure 1B). Clustering based on gene expression
profiles reveals a clear separation between primary LUAD tumor
samples and LUAD brain metastasis samples (in cyan). These
findings identify potential therapeutic targets for future research
and emphasize the importance of understanding the molecular basis
of brain metastasis in LUAD.

Enrichment analysis of genes associated
with lung cancer brain metastasis

In this study, we performed an enrichment analysis of genes
associated with lung cancer brain metastasis using data from the
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GEO dataset. The top 10 enriched GO terms, categorized into
Biological Process (BP), Cellular Component (CC), and
Molecular Function (MF), indicate key biological activities such
as bile acid biosynthetic process, organic hydroxy compound
metabolic process, and sperm plasma membrane (BP);
mitochondrion and synaptic membrane (CC); and bile acid
transmembrane transporter activity, organic hydroxy compound
transporter activity, andmRNA 3’-end processing (MF) (Figure 2A).
The enriched KEGG pathways, including neuroactive ligand-
receptor interaction, microRNAs in cancer, fat digestion and
absorption, and olfactory transduction (Figure 2B). The chord
diagrams in Figures 2C, D visualize the relationships between
enriched GO terms and KEGG pathways alongside their
associated genes, highlighting both shared and unique gene
associations, thereby offering a comprehensive overview of the
functional connections and biological processes relevant to lung
cancer brain metastasis. These findings emphasize critical biological
processes, cellular components, molecular functions, and pathways
potentially implicated in the pathogenesis and progression of lung
cancer brain metastasis, providing valuable insights for future
research and potential therapeutic targets.

Analysis reveals five L1CAM-Related
prognostic genes in lung cancer brain
metastasis

In this study, we used Weighted Gene Co-Expression Network
Analysis (WGCNA) to identify prognostic genes associated with
L1CAM in lung cancer brain metastasis. The hierarchical clustering
dendrogram of LUAD and brain metastasis samples was used to
detect outliers and visualize sample clustering (Supplementary
Figure S1C). The scale independence and mean connectivity plots
confirmed the scale-free topology of the co-expression network
(Supplementary Figure S1D). The node connectivity distribution
indicated that certain highly connected hubs play central roles in the
network (Supplementary Figure S1E). The module eigengene
clustering dendrogram revealed co-expression modules composed
of highly correlated genes, offering insights into network structure in
LUAD and brain metastasis samples (Supplementary Figure S1F).
Module-trait correlations (Figure 3A) showed a weak negative
correlation in the turquoise module and a stronger negative
correlation in the grey module. The gene dendrogram and
module colors are shown in Figure 3B. Correlation matrices and

FIGURE 1
Analysis of GEO dataset identifying genes associated with brain metastasis in lung cancer. (A) Volcano plot depicting differentially expressed genes
between lung adenocarcinoma (LUAD) and brainmetastases of LUAD (LUAD_brain). The x-axis represents the log2 fold change, and the y-axis represents
the -log10 p-value. Genes significantly upregulated in brain metastases are indicated in red, downregulated genes in green, non-significant (NS) genes in
black, and genes with no significant change (NS) in blue. Notable genes such as SLC7A10, SFT2D3, KTI12, and MIR1244-1 are highlighted. (B)
Heatmap showing the expression profiles of the top differentially expressed genes in LUAD and LUAD_brain samples. The expression values are
normalized and represented as a color gradient, with red indicating higher and blue indicating lower expression. The hierarchical clustering on the left
group genes is based on their expression patterns across samples. The groups (LUAD and LUAD_brain) are labeled at the top, with LUAD in red and LUAD_
brain in cyan.
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FIGURE 2
Enrichment Analysis of Genes Associated with Lung Cancer Brain Metastasis from GEO Dataset. (A) The bar plot displays the top 10 Gene Ontology
(GO) terms enriched in genes associated with lung cancer brain metastasis. GO terms are categorized into three ontologies: Biological Process (BP),
Cellular Component (CC), andMolecular Function (MF). The x-axis represents the gene count, while the y-axis lists the enrichedGO terms. Significant GO
terms include bile acid biosynthetic process, organic hydroxy compound metabolic process, and sperm plasma membrane (BP); mitochondrion,
and synaptic membrane (CC); and bile acid transmembrane transporter activity, organic hydroxy compound transporter activity, and mRNA 3’-end
processing (MF). The enrichment analysis was performed using theGEO dataset, and significancewas determined with adjusted p-values. (B) The dot plot

(Continued )
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scatter plots demonstrated strong correlations (up to 0.99) between
module eigengenes (Figure 3C). A Venn diagram (Figure 3D)
revealed 534 overlapping genes between WGCNA-identified
genes and differentially expressed genes (DEGs). Further analysis
identified five key L1CAM-related genes (L1CAM, ARRDC5,
NLRP7, ELF5, LINC00494, FIBCD1) (Figure 3E). Finally,
network analysis of these genes (Figure 3F) illustrated strong
interactions, suggesting their cooperative role in lung cancer
brain metastasis.

Pan-cancer expression landscape of
core genes

In this study, we examined the expression patterns of seven
core genes (ARRDC5, ELF5, FIBCD1, LINC00494, NLRP7,
L1CAM) across multiple cancer types using a combination of
unpaired and paired samples, along with data from the TCGA-
GTEx datasets. A heatmap of the differential expression analysis
for these core genes across various cancer types using unpaired
samples is shown (Figure 4A). This analysis revealed significant
variations in gene expression across different cancer types. For
example, L1CAM exhibited significant overexpression in LUSC,
whereas ARRDC5 showed marked upregulation in BRCA,
suggesting the involvement of these genes in tumorigenesis.
The paired sample analysis further refined these findings by
comparing cancer and adjacent normal tissues, minimizing
inter-patient variability. Significant downregulation of
ELF5 was observed in paired COAD samples, suggesting its
potential role as a tumor suppressor in this cancer type
(Figure 4B). Other genes, such as NLRP7 and ARRDC5, also
displayed consistent dysregulation across paired samples,
reinforcing their potential as therapeutic targets. Next, the
TCGA-GTEx datasets were used to provide a broader view of
gene expression across various cancer types and conditions. A bar
chart and dot plot summarize the number of cancer types where
each gene is significantly upregulated or downregulated
(Figure 4C). This comprehensive analysis emphasized
ARRDC5 and NLRP7 as the most consistently dysregulated
genes across multiple cancer types, underscoring their critical
role in cancer biology. Copy number variation (CNV) analysis
revealed notable alterations in several of the core genes across
different cancer types. For instance, ARRDC5 and L1CAM
demonstrated significant CNV alterations, suggesting that these
genetic changes may contribute to their differential expression and
oncogenic potential (Figure 4D). The correlation between CNV and
gene expression was further explored, with a bubble plot illustrating the
correlation strength. Larger bubbles indicate a stronger correlation, with

ARRDC5 demonstrating a positive correlation between CNV and
expression in breast invasive carcinoma (Figure 4E). This result
reinforces the hypothesis that CNV plays a role in regulating gene
expression in cancer. To explore the functional implications of these
findings, we performed a GSEA to identify the biological pathways
associatedwith the dysregulated genes. Key pathways, such as apoptosis,
immune response, and cell cycle regulation, were enriched for these
genes (Figure 4F). For instance, NLRP7 was particularly associated with
immune response pathways, indicating its involvement in modulating
the tumor immune microenvironment. Finally, tumor microbiome
analysis across various cancer types identified possible interactions
among microbial species and gene expression. The heatmap shows
the relative abundance of microbial species in tumor samples, with
certain species more prevalent in lung and gastrointestinal cancers,
potentially impacting the gene expression profiles observed in these
tumors (Figure 4G).

Core gene promoter methylation analysis
and its correlation with gene expression

The comprehensive relationship between gene promoter
methylation in the core promoter and gene expression levels is
displayed in Supplementary Figure S1G, H. This analysis
captured the variance between LUAD and brain metastasis
samples, confirming clear clustering and separation between
the two groups. The heatmap analysis of promoter
methylation levels for the core genes across the samples
revealed significant variations in methylation, as shown in
Supplementary Figure S1G. Blue cells indicate lower
methylation levels, while red cells denote higher methylation
levels, illustrating the wide range of epigenetic modifications
across different patient samples. This trend is particularly
prominent in ARRDC5 and NLRP7, which exhibit significant
methylation variability between LUAD and brain metastasis
tissues. Regarding the correlation between gene expression and
promoter methylation, Supplementary Figure S1H shows the
relationship between mRNA expression levels and promoter
methylation across the same core genes.

Promotermethylation analysis of core genes

The study analyzed the promoter regions of six core genes and
their methylation patterns. Methylation levels and distributions
were scrutinized; samples were classified by methylation status;
methylation peaks’ concentration and its relationship with
various genomic characteristics were recorded. Promoter

FIGURE 2 (Continued)

illustrates the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for genes related to lung cancer brain metastasis. The x-axis
shows the rich factor, and the y-axis lists the KEGGpathways. Dot size represents the number of genes, and color indicates the p-value. Notable pathways
include Neuroactive ligand-receptor interaction, MicroRNAs in cancer, Fat digestion and absorption, and Olfactory transduction. (C) The chord diagram
visualizes the relationship between enriched GO terms and their associated genes. Each GO term is connected to the corresponding genes,
highlighting the shared and unique associations among the terms. This representation provides an overview of the functional connections and biological
processes involved in lung cancer brain metastasis. (D) This chord diagram shows the relationships between enriched KEGG pathways and their
associated genes. Similar to (C), the connections illustrate the shared and unique gene associations among different pathways, revealing the intricate
network of biological interactions relevant to lung cancer brain metastasis.
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FIGURE 3
WGCNA analysis reveals five L1CAM-related prognostic genes in lung cancer brain metastasis. (A) Heatmap showing the correlation between
identifiedmodules and the trait of interest (group). The turquoise module has a weak negative correlation (−0.13, p = 0.5), while the grey module shows a
stronger negative correlation (−0.65, p < 0.001), indicating a significant association. (B)Hierarchical clustering dendrogram of genes, with different colors
representing distinct modules identified by WGCNA. Modules correspond to highly interconnected gene clusters. (C) Scatter plots and correlation
matrices showing the relationships between module eigengenes. High correlation values (up to 0.99) indicate significant co-expression among genes
within these modules. (D) Comparison of genes identified by WGCNA (left circle) and differentially expressed genes (DEGs) (right circle). The intersection

(Continued )
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Methylation of ARRDC5 (Supplementary 60% of the promoter
showed hypermethylation and 20% showed hypomethylation.
(Figure 2A). Consensus Coding Sequence revealed that mostly
methylation occurred in exonic areas or in promoter regions;
however, at promoter level there were discrete peaks which were
usually concentrated. ELF5 Promoter Methylation Analysis

(Supplementary Figure S2B) showed a balanced distribution of
methylation with significant peaks in CpG islands and promoter
regions. FIBCD1 Promoter Methylation Analysis (Supplementary
Figure S2C) indicated high methylation levels, with 70%
hypermethylation and concentrated peaks within the promoter
region. L1CAM Promoter Methylation Analysis (Supplementary

FIGURE 4
Pan-cancer landscape analysis of core gene expression, copy number variation, and functional enrichment. (A) Heatmap showing the differential
expression analysis of core genes (ARRDC5, ELF5, FIBCD1, LINC00494, NLRP7, L1CAM) across various cancer types (unpaired samples). The log fold
change (logFC) values represent the expression differences between tumor samples and normal tissues, with red indicating upregulation and blue
indicating downregulation. Statistical significance is denoted by p < 0.05. (B) Heatmap representing differential expression of the same core genes,
but comparing paired cancer and adjacent normal tissue samples. The paired analysis aims to reduce inter-patient variability, with logFC values following
the same color scheme as in (A). (C) Bar chart and dot plot summarizing the differential expression analysis using TCGA-GTEx datasets. The bar chart at
the top illustrates the number of cancer typeswhere each gene is significantly upregulated (red) or downregulated (blue). The dot plot below indicates the
logFC for each cancer type, with the dot size corresponding to the statistical significance (-log10(FDR)). (D)Copy number variation (CNV) rate of the core
genes across different cancer types. The boxplot shows the variation in CNV rates, with cancer types represented by different colors, highlighting genes
with significant copy number alterations across the pan-cancer dataset. (E) Correlation analysis between CNV and expression of the core genes. The
bubble plot demonstrates the relationship betweenCNV and gene expression levels inmultiple cancer types, with the size of the bubbles representing the
strength of the correlation. (F) Gene Set Enrichment Analysis (GSEA) results for the core genes across different cancer types. The dot plot shows the
enriched pathways, with the size of the dots reflecting the significance of enrichment (-log10(p-value)) and color indicating the direction of enrichment
(red for positive enrichment, blue for negative enrichment). (G) Tumor microbiome analysis across various cancer types. The heatmap illustrates the
relative abundance of different microbial species identified in tumor samples, providing insights into the potential role of the tumormicrobiome in cancer
progression and gene expression.

FIGURE 3 (Continued)

reveals 534 overlapping genes, suggesting these are critical in the trait of interest. (E) Venn Diagram of WGCNA Genes, DEGs, and L1CAM-Related
Genes: Overlap ofWGCNA genes (blue), DEGs (pink), and L1CAM-related genes (green). The intersection indicates five common genes (highlighted in the
center), likely key prognostic markers for lung cancer brain metastasis. (F) Interaction network of the five identified L1CAM-related prognostic genes
(L1CAM, ARR, NLR, ELF, LIN, and FIB). The network shows strong interactions (green lines) among these genes, suggesting their cooperative role in
lung cancer brain metastasis.
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Figure S2D) presented moderate methylation with 60%
hypermethylation and significant peaks in CpG islands and
promoter regions. LINC00494 Promoter Methylation Analysis
(Supplementary Figure S2E) exhibited high hypermethylation
(80%), with dense methylation in gene bodies and promoter
regions. NLRP7 Promoter Methylation Analysis (Supplementary
Figure S2F) revealed predominant hypermethylation (90%) with
prominent peaks within the promoter region. Overall, these findings
indicate distinct methylation patterns in the promoter regions of
these core genes, suggesting significant variability and a common
feature of hypermethylation, which could play a crucial role in
regulating gene expression.

Correlation of core gene expression with
LUAD prognosis

The study investigated the relationship between ssGSEAscore
expression and LUAD prognosis. The calibration curve and
goodness-of-fit test for ssGSEAscore expression in predicting
tumor versus normal groups showed a satisfactory model fit, as
indicated by the Hosmer-Lemeshow test (p = 0.555) (Supplementary
Figure S3A). The differential expression analysis revealed
significantly higher ssGSEAscore in LUAD tumor groups
compared to normal groups (Supplementary Figure S3B).
However, paired difference analysis between normal and tumor

FIGURE 5
Core gene survival prognosis analysis in LUAD. (A–D) Kaplan-Meier survival analysis for four survival periods in LUAD, including Overall Survival (OS),
Disease-Specific Survival (DSS), Progression-Free Interval (PFI), and Disease-Free Interval (DFI). Each panel represents the survival curves based on high
and low expression levels of the core gene, with the number of patients indicated (high: red, low: blue). (A)OS survival curve (p = 0.327, high n = 279, low
n= 314). (B)DSS survival curve (p=0.195, high n = 201, low n= 234). (C)DFI survival curve (p=0.453, high n = 363, low n= 378). (D) PFI survival curve
(p = 0.261, high n = 353, low n = 388). (E, F) Overall survival curves from GSE68465 and GSE72094 datasets respectively. (E) GSE68465 overall survival
curve (p = 0.044, high n = 177, low n = 222). (F)GSE72094 overall survival curve (p = 0.383, high n = 219, low n = 228). (G–H)Overall survival curves from
GSE68465 and GSE72094 datasets, displaying Kaplan-Meier survival analysis based on high and low expression levels of the core gene. (G)
GSE68465 overall survival curve. (H) GSE72094 overall survival curve. (I) Meta-analysis of univariate Cox survival analysis across multiple datasets,
showing hazard ratios (HR) with 95% confidence intervals (CI) for each study and the combined HR using a random effects model. The plot includes
studies GSE68465-OS, GSE72094-OS, TGCA-LUAD-OS, TGCA-LUAD-DSS, TGCA-LUAD-DFI, and TGCA-LUAD-PFI. The heterogeneity is indicated by I2

and the p-value.
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tissues showed no significant difference (p = 0.559) (Supplementary
Figure S3C). Further analysis depicted the ssGSEAscore expression
across the four clinical stages of LUAD. The violin plots indicated
variability in ssGSEAscore with disease progression from Stage I to
Stage IV (Supplementary Figure S3D). A comparison between early-
stage (Stage I-II) and late-stage (Stage III-IV) LUAD demonstrated
significant differences in ssGSEAscore expression, suggesting its
potential role in disease progression (Supplementary Figure S3E).
Median ssGSEAscore values across the four stages, along with a line
plot overlay, indicated the trend of expression with advancing
disease (Supplementary Figure S3F). Finally, the diagnostic
efficacy of ssGSEAscore in distinguishing tumors from normal
tissues in LUAD patients was evaluated using a ROC curve. The
AUC was 0.574, with a 95% confidence interval of 0.506–0.640,
indicating a moderate diagnostic ability (Supplementary Figure
S3G). These results highlight the potential utility of ssGSEAscore
as a biomarker for LUAD prognosis and underscore the variability
in its expression with disease progression.

Core gene survival prognosis analysis
in LUAD

The core gene survival prognosis analysis in LUAD was
evaluated through Kaplan-Meier survival analysis and meta-
analysis. Kaplan-Meier curves for Overall Survival (OS), Disease-
Specific Survival (DSS), Progression-Free Interval (PFI), and
Disease-Free Interval (DFI) stratified by high and low expression
levels of the core gene showed no significant differences in OS (p =
0.327, Figure 5A), DSS (p = 0.195, Figure 5B), DFI (p = 0.453,
Figure 5C), and PFI (p = 0.261, Figure 5D). External validation using
the GSE68465 dataset revealed a significant difference in OS (p =
0.044, Figure 5E), while the GSE72094 dataset did not show a
significant difference (p = 0.383, Figure 5F). A meta-analysis of
univariate Cox survival analysis across multiple datasets, including
GSE68465-OS, GSE72094-OS, TGCA-LUAD-OS, TGCA-LUAD-
DSS, TGCA-LUAD-DFI, and TGCA-LUAD-PFI, showed a
combined hazard ratio (HR) of 1.17 (95% CI: 0.85–1.48) with no
significant heterogeneity (Figure 5I). These results indicate varying
prognostic implications of the core gene expression in LUAD, with
significant findings in some datasets and non-significant results in
others, emphasizing the importance of dataset-specific factors in
interpreting survival outcomes. The comprehensive analysis,
including statistical evaluations and visual representations
through Kaplan-Meier curves and meta-analysis plots, provides a
thorough understanding of the core gene’s role in LUAD prognosis.

Pan-cancer GSVA enrichment analysis of
core genes

This study conducted a comprehensive pan-cancer GSVA
enrichment analysis of core genes. It compared their expression
levels across various cancer types and normal tissues using four
different scoring parameters: combined z-scores, GSVA z-scores,
PLAGE z-scores, and ssGSEA z-scores. Significant differences in
z-scores between tumor and normal samples were observed in
multiple cancer types, including GBM (Glioblastoma), THCA

(Thyroid Carcinoma), PRAD (Prostate Adenocarcinoma), KIRP
(Kidney Renal Papillary Cell Carcinoma), BRCA (Breast Invasive
Carcinoma), KIRC (Kidney Renal Clear Cell Carcinoma), BLCA
(Bladder Urothelial Carcinoma), and COAD (Colon
Adenocarcinoma), indicating upregulation or downregulation of
core genes in these cancers (Supplementary Figure S4). Notable
differences were seen in the combined z-scores analysis, with
exemplary p-values such as 6.1e-04 for GBM and a minute 2.6e-
16 for PRAD. The GSVA z-scores depicted substantial variances in
cancers like GBM and THCA, with telling p-values emphasizing the
divergent expression of these genes. The PLAGE z-scores revealed
meaningful changes in cancers like GBM and KIRC. The ssGSEA
z-scores exposed consequential upregulation or downregulation of
core genes in cancers such as GBM and THCA, with p-values
showcasing statistical significance. These discoveries underscore
the differing expression of core genes across diverse cancer types.
They offer useful insights into their possible roles in cancer
advancement and their potential usefulness as biomarkers for
cancer diagnosis and treatment.

AH-6809 exerts anti-tumor effects by
modulating apoptotic and EMT pathways
in LUAD

This investigation, concentrating on brain-metastatic LUAD
and the part of NLRP7, intended to examine the molecular
systems underlying the inhibitory impacts of AH-6809 on LUAD
metastasis. A high-throughput screening of a chemical compound
library revealed that AH-6809 significantly inhibited cancer-
promoting pathways, leading to its selection for further
evaluation. The initial drug screening identified AH-6809 as a
compound with potential anti-cancer activity (Figures 6A,B). To
assess the effects of AH-6809 on cell proliferation, a CCK8 assay was
conducted. The results showed a significant reduction in cell
viability following AH-6809 treatment, particularly at the 72 and
96-hour time points, indicating a time-dependent inhibition of cell
proliferation (Figure 6C). To further understand the molecular
effects of AH-6809, qRT-PCR was performed to measure the
mRNA levels of apoptotic and epithelial-mesenchymal transition
(EMT) markers in LUAD cells treated with AH-6809. The results
demonstrated a significant upregulation of pro-apoptotic genes
(BAX and Caspase-3) and inflammatory cytokines (TNFα),
alongside a marked downregulation of EMT markers (VIM and
CDH2) in AH-6809 treated cells compared to the control (p < 0.001)
(Figure 6D). To explore the role of NLRP7 in LUAD, NLRP7 was
knocked down using shRNA. Knockdown efficiency was confirmed
by qRT-PCR, with a significant reduction in NLRP7 mRNA levels in
shNLRP7-treated cells compared to the non-targeting control (p <
0.001) (Figure 6E). However, when combined with AH-6809
treatment, the inhibitory effects on cell proliferation were
partially reversed, suggesting a complex interaction between AH-
6809 and NLRP7-mediated pathways (Figure 6F). The colony
formation assay revealed that cells with NLRP7 knockdown
exhibited enhanced colony-forming ability compared to control
cells, indicating that NLRP7 may promote tumorigenicity.
However, AH-6809 treatment significantly reduced colony
formation, and this effect was partially mitigated in the presence
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FIGURE 6
The effects of AH-6809 on cellular proliferation, apoptosis, and NLRP7 expression across various assays. (A) High-throughput screening identified
AH-6809 as a lead compound from a drug library screen. The screening focused on compounds that influence cell proliferation, apoptosis, and
inflammation, with AH-6809 selected for further study. (B) Chemical structure of AH-6809, identified as 6-isopropoxy-8-oxosorban-2-carboxylic acid,
showcasing the molecular conformation of the compound used in the experimental assays. (C) Cell viability assay (CCK8) results depicting the

(Continued )
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of shNLRP7 (Figure 6H). Immunofluorescence analysis showed
altered expression of inflammatory marker NQO1 and anti-
apoptotic marker SUMO1 following treatment with AH-6809,
shNLRP7, and their combination. Colocalization of these markers
with DAPI revealed significant increases in apoptosis and
inflammation in cells treated with AH-6809, particularly in
combination with shNLRP7, indicating that these proteins may
be involved in the molecular mechanisms of AH-6809’s anti-
cancer activity (Figure 6I). In conclusion, this study demonstrates
that AH-6809 exerts potent anti-tumor effects in LUAD by
modulating key apoptotic and EMT-related pathways. AH-6809
likely reverses the molecular characteristics induced by
NLRP7 dysregulation, promoting tumor-suppressive effects
(Figure 7). These findings suggest that targeting NLRP7 with
AH-6809 could be a promising therapeutic approach for treating
brain-metastatic LUAD.

Discussion

We sought to study the rich gene network in LUAD metastasis
and discovered six significant players: ARRDC5, ELF5, FIBCD1,
LINC00494, NLRP7 and L1CAM, all of which are ribonucleic acids
that direct migration as well (Yao et al., 2020; Zhang et al., 2020). We
took an additional step and carried it out in a pan-cancer analysis
view. With this approach, the expression dynamics of each of these
genes across multiple cancer types is given and examined in depth
(Mishra et al., 2016; Anaya et al., 2016). Their potential as prognostic
markers was also described.

The expression levels of these genes were significantly
associated with the metastatic potential in LUAD according to
our study. In particular, increased expression of ARRDC5 and
FIBCD1 or ELF5 provided predictive value for higher risk to
develop metastasis both in non-IMIs AND IMIs studies which
were consistent with what we had got from the final prognostic
model. Our pan-cancer analysis further substantiated these
findings, demonstrating that the downstream effects of
CCDC6 and PTK2 on cell function are likely pervasive in
cancer beyond just HL, a finding consistent with prior
evidence showing their broader roles in cancer progression.
ARRDC5 and ELF5 were ubiquitously related to bad prognosis
in various cancer types such as represented by the example of

ARRDC5 (43,44), but also grouped together, indicative that they
may be novel universal prognostic markers. These findings are
consistent with previous work suggesting that ARRDC5 and
ELF5 contribute to cancer promotion. Our study, however
takes this knowledge further up by showing the pan-cancer
relevance of these genes and possible importance as prognostic
markers (Anaya et al., 2016; Nagy et al., 2021). Importantly, the
opposite correlation found with L1CAM in metastatic LUAD as it
was previously thought of to facilitate migration and invasion by
cancer cells in other cancers indicates that its role can be quite
complex on a case-by-case basis within our current
understanding (Hai et al., 2012; Tischler et al., 2011).

Several genes, including ARRDC5, ELF5, FIBCD1, LINC00494,
NLRP7, and L1CAM, have been implicated in various aspects of
cancer progression and metastasis (Altevogt et al., 2020; Graca et al.,
2022; Luk et al., 2018). However, their specific roles in LUAD,
particularly in brain metastasis, have not been fully elucidated. On
one hand, the pivotal role of NLRP7 in inflammation and cancer
immunity, as well as association with tumor metastasis is revealed
(Feng et al., 2022); on the other, L1CAM was reported to get
involved in tumor invasiveness across a number of malignancies
except for LUAD metastases which remains controversial (Wang
et al., 2022).

NLRP7 plays a complex and diverse role in tumors, particularly
in brain metastasis of LUAD (Lin et al., 2021; Li et al., 2021). Our
experimental results demonstrate that the expression of NLRP7 is
significantly lower in LUAD patients with brain metastasis
compared to non-brain metastasis patients, suggesting a potential
negative correlation between NLRP7 expression and the ability of
lung cancer cells to penetrate the blood-brain barrier. Further gene
silencing experiments revealed that treatment with AH-6809
significantly inhibited cell proliferation and induced apoptosis, an
effect reversed in NLRP7 knockout cells, indicating that
NLRP7 plays a crucial role in regulating tumor cell proliferation
and apoptosis. Thus, NLRP7 may inhibit brain metastasis by
regulating cell cycle and apoptosis pathways (Reynaud et al.,
2023). Moreover, AH-6809, as a potential activator of NLRP7,
could inhibit LUAD brain metastasis by enhancing NLRP7’s
function. Collectively, NLRP7 is a key regulator of tumor cell
survival and migration, and targeting its expression or activity
could represent a novel therapeutic strategy against LUAD brain
metastasis.

FIGURE 6 (Continued)

impact of AH-6809 on cell proliferation over 96 h. Cell viability was measured at 24, 48, 72, and 96 h post-treatment. The data show a significant
increase in cell viability after treatment with AH-6809, indicating a time-dependent effect. (Statistical significance: *p < 0.05, p < 0.01, *p < 0.001). (D)
qRT-PCR validation of mRNA expression levels for key apoptotic and inflammatory markers (VIM, CDH2, TNFα, BAX, Caspase-3) in cells treated with AH-
6809 compared to control. Treatment with AH-6809 upregulated pro-apoptotic genes and inflammatory markers significantly (p < 0.001),
highlighting the compound’s impact on gene expression. (E) Confirmation of shNLRP7 knockdown efficiency. The bar graph represents a significant
reduction in NLRP7 mRNA levels after transduction with shNLRP7 constructs compared to the non-targeting control (NC). The statistical significance of
knockdown efficiency is shown as *p < 0.0001. (F) Cell proliferation assay (CCK8) assessing the phenotypic effects of shNLRP7 knockdown in the
presence and absence of AH-6809. Cells with shNLRP7 knockdown showed a reduced proliferation rate, with a significant inhibitory effect observed
when combined with AH-6809 treatment over 96 h (*p < 0.001). (G) qRT-PCR analysis showing the expression of apoptotic and EMT-related markers
(VIM, CDH2, TNFα, BAX, and Caspase-3) in cells under different conditions: control, AH-6809 treated, shNLRP7 knockdown, and combined treatment of
AH-6809 + shNLRP7. Combined treatment notably exacerbated the expression of apoptotic markers, while reducing EMTmarkers significantly (p < 0.01,
*p < 0.001). (H)Colony formation assay demonstrating the effects of AH-6809 and shNLRP7 knockdown on the colony-forming ability of cells. Cells with
shNLRP7 knockdown and AH-6809 treatment formed fewer colonies than controls, indicating a reduction in proliferative capacity. (I)
Immunofluorescence analysis showing the expression of inflammatory (NQO1) and anti-apoptotic (SUMO1) markers in cells treated with AH-6809,
shNLRP7, and combined treatment. The merged images show colocalization with DAPI staining, indicating significant apoptosis and inflammation in
treated cells.
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FIGURE 7
Summary of findings illustrating the interplay between genomic differences and cellular behavior in LUAD metastasis and the potential therapeutic
implications of AH-6809 and NLRP7. Identification of key genomic differences between brain-metastatic LUAD and non-brain-metastatic LUAD
samples. Tumor cells that metastasize to the brain are characterized by differential expression of specific genes, such as FIBCD1, ELF5, and NLRP7,
identified through analysis of LUAD datasets (GSE14108). The heatmap and bar plots illustrate the significantly differentially expressed genes (DEGs)
between brain metastatic and non-metastatic LUAD samples. Cellular experiments reinforce bioinformatics findings. AH-6809 treatment partially
reversed themolecular changes caused byNLRP7 knockdown, suggesting that AH-6809 promotes the tumor-suppressive effectsmediated by shNLRP7.
The schematic illustrates the influence of AH-6809 and NLRP7 on cellular processes including proliferation, apoptosis, ROS generation, and
inflammatory cytokine expression.
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As a member of the NOD-like receptor family, NLRP7 exhibits
complex functions in various tumors (Li et al., 2021). It regulates
inflammation, tumor cell proliferation, apoptosis, and the immune
microenvironment. In ovarian cancer, NLRP7 influences cancer cell
survival by regulating apoptosis and autophagy, with low expression
linked to tumor progression and invasiveness (Mamoor, 2020).
NLRP7 also appears to regulate the stress response and drug
resistance in ovarian cancer cells (Mamoor, 2020). In gastric
cancer, NLRP7 expression correlates closely with tumor grading
and prognosis, with low levels indicating increased invasiveness and
poor outcomes, suggesting its potential as a prognostic marker
(Jiang et al., 2017). In breast cancer, NLRP7 affects tumor
progression and metastasis by regulating immune cell infiltration
and inflammation (Ershaid et al., 2019). Activating NLRP7 may
restore immune balance in the tumor microenvironment, thereby
inhibiting metastasis (Lee et al., 2020). Low expression of NLRP7 has
been linked to enhanced anti-apoptotic abilities in pancreatic
cancer, making it a potential therapeutic target.

Meanwhile, SUMO1 is a key player in post-translational protein
modification via SUMOylation, regulating protein function,
localization, and stability (Barry and Lock, 2011). In tumors,
SUMOylation critically regulates cell proliferation and apoptosis
signaling (Gong et al., 2017). Our findings show that
SUMO1 expression is significantly upregulated in AH-6809-treated
LUAD cells, suggesting that AH-6809 may regulate apoptosis via
SUMOylation, thereby inhibiting tumor growth (Ke et al., 2019). This
may be connected to sustained activation of nuclear signaling
pathways like NF-κB and STAT3, which govern cell survival and
apoptosis (Fan et al., 2013). Thus, SUMO1-mediated post-
translational modification is crucial in regulating tumor cell fate.
Additionally, AH-6809was shown to enhance antioxidant defenses by
upregulating NQO1, maintaining cellular homeostasis and resisting
stress responses. Overall, by regulating SUMOylation and antioxidant
defense mechanisms, AH-6809 presents a potential therapeutic
strategy for LUAD, warranting further clinical investigation.

Over the past few years, as novel targeted therapeutic strategies
have emerged, it has become theoretically possible to improve
treatment efficacy and reduce toxicity, hence revolutionize
precision medicine (Vargas-Sierra et al., 2024). Systematic reviews
and meta-analyses have become more popular since their first
applications in biomedical research, encompassing different
methodologies not only within drug development but also
including studies carried out using bioinformatical approaches
(Wu et al., 2024). They have been widely recognized, not only for
in vivo and clinical applications but also those of basic research and
translational medicine. The development course of computer-aided
drug design has also attracted our attention to this discipline, which
created some new research hotspots and provided more chances for
novel drugs exploring (Wu et al., 2024). In contrast, the role of cell
death and metabolic regulation in facilitating disease progression has
garnering increased prominence over the same period (Lin et al.,
2023), providing novel drugable targets. Much of the increased
efficacy and specificity of treatments, for example, by targeting
specific proteins or genetic pathways as outlined in this report
(Hong et al., 2024). For example, kiwi root extract exhibits gastric
cancer inhibitory effect by suppressing Wnt/β-catenin pathway (Chu
et al., 2023). The combination of modern technology with traditional
Chinese medicine also offers new perspectives and potential for drug

development (Wang et al., 2023). Significant advancements in
materials science have enabled the application of various novel
composite materials in biomedical and engineering fields (Wu
et al., 2024). Additionally, applying photothermal therapy and
nanoparticle-based drugs derived from natural substances in
regulating the microenvironment and alleviating inflammation has
shown promising future directions for treatment (Shi et al., 2023;
Yang et al., 2023). The development of “off-the-shelf” gene therapy
nanoparticles, particularly in orthopedics and soft tissue repair, has
opened up new clinical applications in regenerative medicine (O’Shea
et al., 2024). Studies have shown that by improving drug delivery
systems and utilizing nanotechnology, drug targeting and therapeutic
efficacy have been significantly enhanced (Romanovska et al., 2024).
These achievements not only provide new insights and approaches
within their respective fields but also demonstrate the immense
potential of interdisciplinary collaboration in disease diagnosis and
treatment, highlighting the importance of integrated data analysis and
multidimensional evaluation inmodernmedicine (Oinaka et al., 2024;
Latini et al., 2024). Furthermore, social support has a significantly
positive impact on the mental health of cancer patients, a finding that
has been well-documented, particularly in studies conducted in China
(Zhu, 2024; Paillard-Brunet and Couillet, 2024).

Identifying genes that play crucial roles in the development of
LUAD metastasis and have predictive power across multiple cancers
will help enable personalized medicine (Li et al., 2018; Liu et al., 2023).
Molecular typing for metastasis and prognostication of patients, based
on gene expression profiling, is crucial in guiding personalized
therapeutic strategies for individuals (Bustin and Dorudi, 2004;
Van’T Veer et al., 2002). Our findings also provide new insights
into how these genes impact cancer progression, focusing in particular
on how they control the clinical environment of the tumour and
human immune responses. They give a new perspective for future
therapeutic research (Yang et al., 2023; Andrews et al., 2018). Seeing as
our research was based on a retrospective study and its data of shares
notched a relatively limited sample size, there may be potential bias in
what we have found (Lin, 2018; Zhou, 2014). In addition, our use of
publicly available databasesmay restrict the detail of our findings even
though it yields valuable data from something broader in scope
(Altamimi et al., 2024; Phillippi et al., 2017). Potential sources of
bias exist, such as differences in data collection methods, variations in
patient populations, and possible lack of control over data quality.
This is why further experimental studies will be needed in order to
determine exactly the functional roles these genes are playing in
LUADmetastasis (Wang et al., 2020; Cheng et al., 2021). These studies
will be larger andmore diversified cohorts than ours were, confirming
our findings at the same time opening up clinical applications for
these genes as biomarkers and drug targets (Minn et al., 2005; Yao
et al., 2020). Therefore, future research can adopt studying different
patient populations, exploring additional datasets from other sources,
and applying the same analytical methods to different cohorts to
evaluate the consistency of our findings in different environments. In
addition, in-depth in vitro experiments and additional in vivo animal
experiments are the focus of the next research step.

Without a doubt, our investigation sheds light on the intricate
gene interactions involved in LUADmetastasis and broadens this
inquiry to a pan-cancer examination. Through comprehensive
genomic, epigenomic, and transcriptomic dissections, we
pinpointed ARRDC5, ELF5, FIBCD1, LINC00494, NLRP7, and
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L1CAM as possible prognostic indicators across multiple cancer
types (Zhao et al., 2015; Zhu et al., 2017). This discovery
significantly advances our comprehension of cancer
progression (Paltridge et al., 2013; Nicolini, 2023). Despite the
restrictions of our study, it establishes a solid foundation for
future research and has the potential to advise clinical practice, in
the end adding to improved patient care and results (Jeffs et al.,
2018; Ferrill et al., 2021). Supplementary studies are warranted to
substantiate these conclusions and scrutinize their therapeutic
potential, paving the way for more effective and individualized
cancer treatment strategies (Ledermann et al., 2015; Kamel and
Al-Amodi, 2017).

Conclusion

In this study, NLRP7, ELF5, FIBCD1, ARRDC5, LINC00494,
and L1CAM were identified as key prognostic markers for LUAD
metastasis, particularly brain metastasis. Among these,
NLRP7 was highlighted as a critical regulator of metastatic
progression. The therapeutic potential of AH-6809 was
demonstrated through its ability to inhibit LUAD cell
proliferation, induce apoptosis, and modulate key molecular
pathways such as SUMO1-mediated post-translational
modifications and NQO1 expression. These findings suggest
that targeting NLRP7 and related pathways could offer new
strategies for preventing LUAD metastasis. Further
experimental validation and clinical studies are needed to
confirm these results and explore their therapeutic applications.
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