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Under normal physiological conditions, Fyn, a nonreceptor tyrosine kinase, is
involved in signal transduction pathways in the nervous system and in the
formation and activation of T lymphocytes. Fyn is a member of the Src family
of kinases (SFKs) and plays a role in cell morphogenic transformation, motility,
proliferation, and death, which in turn influences the development and
progression of various cancer types. SFKs are overexpressed or hyperactive in
tumours, and they are engaged in several signalling pathways that lead to tumour
development. Inhibition of Fyn can enhance patient outcomes and prolong
survival. Thus, Fyn is a desirable therapeutic target in a variety of tumour
types. To lay the groundwork for further investigation and targeted therapy in
tumours, in this article, we review the most recent findings on the function of Fyn
in tumours, with an emphasis on its role in gliomas. Understanding the function of
Fyn during tumourigenesis and development and in resistance to anticancer
therapeutic agents can aid in the development and application of innovative
medicines that specifically target this kinase, thus improving the management of
cancers.
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Introduction

Among the earliest kinases to be identified were the Src family of kinases (SFKs) (Frame,
2002), which contains 11 members, of which 8—c-Src, Fyn, Yes, Lck, Lyn, Hck, Fgr, and
Blk—have been extensively researched. While Fyn, Yes, and c-Src are expressed throughout
the human body, Blk, Hck, and Fgr are exclusively expressed in certain tissues (Thomas and
Brugge, 1997). Among the SFKs, c-Src has been the most extensively researched in terms of
cancer biology, as it is a crucial molecule in the genesis, progression, and resistance of
tumours to treatment (Larsen et al., 2015). Over the past 10 years, it has become increasingly
clear how other members of the SFK family—including Fyn—are involved in different facets
of cancer biology.

Myristic and palmitic acids bind and localize Fyn to the inner layer of the cell membrane
(Alland et al., 1994). Like other SFKs, Fyn function is controlled by tyrosine
phosphorylation- and dephosphorylation-induced intermolecular interactions. Many
target proteins, such as focal adhesion kinase (FAK) and breast cancer anti-oestrogen
resistance protein 1 (BCAR1), undergo tyrosine phosphorylation as a result of Fyn
activation (Yeatman, 2004). Fyn also regulates cell growth, survival, adhesion,
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cytoskeletal remodelling, motility, axon guidance, synaptic function,
myelination in the central nervous system, platelet activation, and
T-cell receptor signalling, among other various biochemical
processes (Kinsey, 2014). The function of Fyn in the brain is
discussed specifically in this review, particularly in relation to
several elements of the pathophysiology of brain tumours, such
as gliomas.

Gene and protein structure

Chromosome 6q21 contains genetic information for Fyn, a 59-
kDa protein with 537 amino acids (p59-FYN, Slk, Syn, MGC45350,
Gene ID 2534). Fyn belongs to the Src family and was first
discovered in 1986 (reported as Syn or Slk) using probes
constructed from v-yes and v-fgr (Semba et al., 1986; Alland
et al., 1994). Fyn is mostly found in the cytoplasmic leaflet
of the plasma membrane, where it phosphorylates tyrosine
residues on important targets connected to a wide range of
signalling pathways.

Three distinct transcript isoforms of Fyn have been
discovered, and among the three genomic sequences, isoform 1
(isoform a, Fyn [B]) is the longest and was the first to be
discovered. Compared with isoform 1, isoform 2 (also known
as isoform b, Fyn [T]) is more capable of mobilizing cytoplasmic
calcium and is more likely to be expressed in T cells (Thomas and
Brugge, 1997). Some of the variations in the regulation of these
two isoforms can be attributed to alterations in the linker region
between the SH2 and SH1 domains (Alland et al., 1994). In the
area close to the start of the kinase domain and the end of the
SH2 domain, isoforms 2 and 1 differ by approximately 50 amino
acids (Figure 1). While most tissues express a combination of both
isoforms (Thomas and Brugge, 1997), the brain expresses high
levels of Fyn(B), whereas T cells highly express Fyn(T). Isoform 3
(isoform c) lacks exon 7 (FynD7) and has been reported to be
expressed in blood cells; however, no translated protein has been
identified (Goldsmith et al., 2002). Other transcript variants have
also been identified, but they have not yet been linked to any
disease state.

Fyn regulates the phosphorylation of intracellular tyrosine
proteins by interacting with numerous cell surface receptors, such
as those on mast cells and T cells (Davidson et al., 1994). The
development of oligodendrocytes, keratinocytes, and natural killer
cells is a result of the physiological function of Fyn in cellular
processes such as lymphocyte receptor signalling, and Fyn is known
to be involved in adhesion, cell migration, and platelet activation
(Cary et al., 1996; Zamoyska et al., 2003; Reddy et al., 2008).

Fyn in the brain

Fyn plays a significant role in both adult brain function and
brain development. The biological roles of Fyn in the brain have
been thoroughly studied using transgenic animal models. These
studies revealed that Fyn is an essential component for the growth
and operation of the central nervous system. Mice lacking Fyn
exhibit a variety of brain abnormalities, such as distorted
hippocampal architecture and aberrant long-term potentiation
(Kojima et al., 1997), impaired spatial learning and increased
sensitivity to ethanol (Grant et al., 1992), which indicates the
physiological importance of Fyn in a variety of brain
communication pathways. Furthermore, Fyn has been detected in
several brain regions, such as glial cells in white matter tracts and
cultured oligodendrocytes, and plays significant roles in CNS
myelination, which is the process by which a myelin sheath
forms around a nerve fibre. Actually, myelination occurs when
Fyn is most active in the brain (Osterhout et al., 1999). Sperber
and colleagues reported that Fyn knockout (KO) mice exhibit
substantial myelin loss in the forebrain at all ages (from 14 days
to 1 year). Their investigation demonstrated that Fyn has a distinct
function in myelination according to the number of
oligodendrocytes and myelinated fibres, and their findings were
supported by the results of experiments in which an inactivated form
of Fyn (containing a single amino acid substitution) was tested
(Sperber et al., 2001).

Fyn plays a role in the morphological differentiation that causes
oligodendrocytes to generate neurites, which are projections that
extend from the cell body of a neuron. Fyn interacts with α-tubulin, a
tubulin family member that plays a crucial role in the polar
orientation and nucleation of microtubules, which are
cytoskeletal structures necessary for the generation of neurites.
More specifically, membrane-associated α-tubulin combines with
Fyn to form a complex that participates in the signalling pathway
that initiates the nucleation of membrane-associated microtubules.
In one study, pretreatment of P19 embryonal cancer cells with
wortmannin or SFK inhibitors consistently inhibited α-tubulin
complex nucleation activity (Macurek et al., 2008). Additionally,
the association of Fyn with Tau, a cytoskeletal protein that binds to
tubulin to stabilize microtubules in the brain, promotes this process
(Lee et al., 1998).

Additional research revealed that Tau–Fyn interactions in
oligodendrocytes are important for developmental myelination
and that some human CNS neurodegenerative diseases, such as
multiple sclerosis, may be caused by dysfunctional Tau–Fyn
interactions. For example, in multiple sclerosis, axonal
degeneration is the primary cause of clinical decline (Belkadi and
LoPresti, 2008).

Interestingly, tyrosine-phosphorylation of Tau has also been
reported in human prostate cancer cells (Sangrajrang et al., 1998),
and it was previously reported that tyrosine within Tau can be
phosphorylated in vitro by the oncogene v-fms, a Src family tyrosine
kinase expressed in human histiocytic lymphoma cells (Kim et al.,
1991). Since cancer and oncogenes are associated with abnormal cell
proliferation, these findings in nonneuronal cells may serve to link
the tyrosine phosphorylation of Tau to cell signalling pathways that
induce cell growth. Preclinical studies in Fyn-deficient mice have
shown that Fyn plays a role in development (Grant et al., 1992;

FIGURE 1
A simplified linear structure of Fyn. The numbers indicate amino
acid residues and the locations of tyrosine residues that can be
phosphorylated during Fyn activation.
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Lowell and Soriano, 1996). Fyn also participates in the cell cycle
(Yasunaga et al., 1996; Sette et al., 2002). Previous studies have
demonstrated the upregulation of Fyn in the AD brain (Shirazi and
Wood, 1993) and the presence of a Fyn phosphorylation site in
Tau(Lee et al., 2004), which further supports a role for Fyn in the
pathogenesis of neurodegenerative disorders.

Some studies have focused on the nonreceptor tyrosine kinase
Fyn, which interacts with polyproline helices in Tau through its
SH3 domain (Lee et al., 1998), and interestingly, also regulates
seizure susceptibility (Cain et al., 1995; Kojima et al., 1998). Tau
reduction is protective in a Fyn-dependent model of AD (Roberson
et al., 2011). Thus, studies have shown that Tau targets Fyn to
dendrites, where Fyn facilitates N-methyl-d-aspartate (NMDA)
receptor-mediated dysfunction and aberrant Tau phosphorylation
(Ittner et al., 2010; Larson et al., 2012).

The role of Tau or Fyn, or both, as part of a sharedmechanism of
neuronal hyperexcitability and seizures has been reported (Roberson
et al., 2011; Putra et al., 2020). Genetically ablated Fyn or
pharmacological inhibition of Fyn/SFK prevents neuronal loss
and decreases network hyperexcitability and seizure progression
(Kaufman et al., 2015; Sharma et al., 2018). The proconvulsive
property of Fyn is also mediated through microglia, independently
of Tau, and Fyn/SFK inhibition significantly decreases
epileptogenesis (Sharma et al., 2021). These findings suggest the
role of Fyn and Tau in promoting seizures and epilepsy. A recent
study in an experimental temporal lobe epilepsy (TLE) model
demonstrated that amyloidogenic pathways promote Tau
pathology during early epileptogenesis (Thom et al., 2011).
Similarly, another group reported the deposition of Aβ in the
hippocampus of human patients with chronic TLE (Gourmaud
et al., 2020), which suggests possible early interactions between
Fyn-Tau complexes and amyloid pathways during epileptogenesis
that may persist in the chronic stage of epilepsy. Moreover, the
degree of Fyn-Tau interactions was shown to be positively correlated
with NR2B-PSD95 complexes, Tau phosphorylation and increased
Fyn levels in the human epileptic brain. The binding of Fyn-Tau is
also correlated with microgliosis, which suggests its contribution to
the neuroinflammatory state of the human epileptic brain (Putra
et al., 2024). Recently, tat-Tau PxxP5/6, a peptide that targets Fyn-
Tau interactions, was shown to prevent Aβ-induced neurotoxicity
in vitro, but the efficacy of this peptide has not been tested in vivo
(Rush et al., 2020; Roth et al., 2024). Thus, blocking Fyn and Tau
interactions with this peptide inhibitor could further validate the
outcomes of pharmacological inhibition of Fyn/SFK in an epilepsy
model and could identify the Fyn-Tau interaction as a potential
therapeutic target in epilepsy.

In the healthy brain, the microglial response is protective and
may decrease once damage has occurred; however, under
pathological conditions, microglia become activated and release
reactive oxygen species (ROS), nitric oxide (NO) and
proinflammatory cytokines, such as tumour necrosis factor-α
(TNF-α), interleukin (IL)-1β (IL-1β) and interferon gamma (IFN-
γ) (Yan et al., 2014). These products further accelerate microglial
activation by binding to their microglial cell surface receptors to
sustain chronic inflammation (Kim and de Vellis, 2005). Fyn kinase
has been demonstrated to be involved in this process through its role
in microglial activation via the Fyn‒PKCδ signalling axis and NOD-
like receptor protein 3 (NLRP3) inflammasome. Under pathological

conditions, such as those observed in neurodegenerative diseases,
these proinflammatory cytokines bind to their receptors on the
microglial cell surface, which leads to further propagation of
aberrant microglial activation (Xu et al., 2021). Studies involving
cell culture and transgenic Fyn−/− mice have consistently
demonstrated that Fyn is required for cytokine release and
activation of iNOS(Ko et al., 2018; Sharma et al., 2018). More
recently, Fyn was shown to be critical for the upregulation and
posttranslational modification of Kv1.3, a voltage-gated calcium
channel, in microglia (Sarkar et al., 2020). Kv1.3 may play a key
role in sustaining the chronic neuroinflammatory response
observed in PD.

In addition to microglia, Fyn is also expressed to a lesser extent
in astrocytes, where it has a key role in astrocytic migration in
response to neuronal signals (Dey et al., 2008). Astrocytes are also
involved in the regulation of the CNS immune response, and
similarly to microglia, they play both beneficial and detrimental
roles in the brain’s response to insult or injury (Giovannoni and
Quintana, 2020). Fyn kinase, particularly the isoform FynT, plays a
role in the astrocyte-mediated production of proinflammatory
cytokines (IL-1β and IL-6) via the PKCδ signalling axis, and
additionally, Fyn kinase inhibition attenuates this response (Lee
et al., 2017). This response is associated specifically with chronic
exposure to inflammation, which suggests the involvement of
astrocytes in a more chronic insult. Fyn also appears to play a
regulatory role in the astrocytic expression of iNOS following
inflammatory stimulation, as increased iNOS expression is
observed in Fyn-deficient astrocytes (Ko et al., 2018).
Interestingly, this seems to contrast with findings in Fyn-deficient
microglia, in which iNOS expression is decreased (Panicker et al.,
2015). These data suggest that Fyn kinase is not only involved in the
upregulation of the microglia-mediated release of iNOS but may also
be involved in the downregulation of the astrocyte response.

The postsynaptic density (PSD), the primary cytoskeletal
specialization at neuronal excitatory synapses, is where PSD95,

FIGURE 2
Multiple biological functions of Fyn in the brain. Themain roles of
Fyn include oligodendrocyte differentiation, neurite formation,
microtubule stabilization, myelination by oligodendrocytes and
synaptic regulation.
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NMDAR, and AMPAR, among other proteins, reside. Fyn and other
SFK members are involved in synaptic transmission and plasticity at
excitatory synapses. PSD95 plays a crucial role in the multiprotein
complex formed by NMDARs by directly attaching to the
NR2 subunit of NMDARs. Additionally, PSD95 interacts with
the SH2 domain of Fyn, and it has been suggested that this
interaction helps Fyn phosphorylate tyrosine residues within the
NMDAR subunit NR2A (Tezuka et al., 1999; Kalia and Salter, 2003).
Thus, Fyn (as well as Src) controls the phosphorylation of the
NMDAR complex and increases NMDAR activity, which results
in the generation of NMDAR-dependent synaptic potentiation
(Salter and Kalia, 2004).

Additionally, Fyn modulates other CNS signalling proteins; Fyn
works in tandem with Cas and other FAK family kinases to control
the shape of dendritic spines, which are the primary sites of the
postsynaptic components of excitatory synapses in the mammalian
central nervous system (Bourgin et al., 2007) (Figure 2).

Biological functions of Fyn in cancer

Fyn regulates the tumour cell cycle

As a member of the Src family of kinases, Fyn uses anti-SH2 to
halt cytoplasmic division following mitosis, which inhibits cell
division (Tominaga et al., 2000; Ng et al., 2005). Fyn controls the
stabilization and polymerization of microtubules, which in turn
controls the development of mitotic spindles. Through enhanced
microtubule aggregation, Fyn stimulates the development of mitotic
spindles, which accelerates the progression of M phase (Okamoto
et al., 2016). Insufficient Fyn activity results in cytoplasmic division
failure and prevents the occurrence of mitosis (Levi et al., 2010). In
addition, depending on its N-terminal length, Fyn can be confined to
the cortical membrane-bound region during cytoplasmic division
(Czech and Vander Zanden, 1991). It is believed that cortical Fyn
regulates cytoplasmic division (Levi et al., 2010). According to the
findings above, Fyn prevents pericellular growth and suppresses
mitotic progression.

Fyn regulates tumour cell adhesion

Dasatinib-induced Fyn inhibition or Fyn silencing has been
shown to improve intercellular adhesion (Fenton et al., 2015).
T-cell activation is followed by initial T-cell adhesion, which
occurs independently of Fyn kinase activity. Nevertheless,
noncatalytically functioning Fyn is necessary for late cell
attachment (Chapman et al., 2012). In integrin α6-deficient
acute lymphoblastic leukaemia (ALL), phosphorylated Fyn
(pTyr530) is increased and mediates the development of
chemoresistance through adhesion (Gang et al., 2020).

Fyn regulates tumour cell proliferation

Fyn is a proto-oncogene and member of the Src family.
Numerous studies have shown that Fyn inhibits apoptosis and
promotes cancer cell growth. As an essential mediator and

regulator of mitogenic signalling, Fyn controls cell entry into
the cell cycle, growth, and proliferation (Gururajan et al., 2015).
Fyn is expressed more frequently in thyroid cancer at both the
mRNA and protein levels, thus facilitating cell division and
preventing apoptosis (Zheng et al., 2017). MicroRNA-125a-3p
directly targets Fyn to inhibit both its expression and activity;
additionally, this RNA drives the production of Fyn downstream
proteins and cell cycle arrest, which further suppresses cell
proliferation. This implies that Fyn stimulates tumour cell
growth (Ninio-Many et al., 2013). Increased Fyn expression and
activity in chronic granulocytic leukaemia facilitates the transition
from chronic to acute disease and increases the rate of cell division
(Singh et al., 2012). Osteoclast apoptosis is inhibited by Fyn, thus
resulting in osteoclast growth (Kim et al., 2010). Samples from
patients with acute myeloid leukaemia (AML) exhibit dysregulated
Fyn expression, which is linked to both oncogenic FLT3-ITD and
wild-type FLT3. The SH2 structural domain of Fyn and the kinase
activity of FLT3 are required for this association. FLT3 contains
several Fyn binding sites, and Fyn expression increases
STAT5 phosphorylation and colony formation but also
marginally increases the phosphorylation of AKT, ERK1/2, and
p38. Furthermore, a poorer prognosis in AML patients is
associated with increased Fyn expression in conjunction with
the FLT3-ITD mutation, which is enriched in the
STAT5 signalling pathway. These findings show that Fyn
preferentially activates the STAT5 pathway in conjunction with
the oncogenic FLT3-ITD gene during cell transformation to
increase AML cell proliferation (Chougule et al., 2016). By
upregulating Fyn expression and downregulating miR-153-3p
expression, LINC00152 promotes the growth of oesophageal
squamous cell carcinoma (ESCC) (Liu D. et al., 2019). Fyn
phosphorylates PIKE-A in glioblastoma, which encourages the
binding of this protein to AMPK, reduces the ability of AMPK to
prevent tumour growth, and increases the rate at which tumour
cells proliferate (Zhang et al., 2016). The proliferation of pancreatic
cancer cells is hindered by the inhibition of Fyn activity (Je et al.,
2014). Increased Fyn activity in skin squamous cell carcinoma
(SCC) cells decreases Notch1/NICD mRNA and protein
expression levels and stimulates STAT3 phosphorylation to
promote tumourigenesis and proliferation (Zhao et al., 2009).
By inhibiting cellular senescence and promoting the formation
of malignant gliomas, Fyn phosphorylates STAT3 and increases
G6PD expression (Sun et al., 2021). Fyn also interacts with
ARHGEF16 to stimulate the growth of colon cancer cells (Yu B.
et al., 2020). Moreover, melanoma cell proliferation is inhibited by
the Fyn/STAT3 pathway (Tang et al., 2020). Through the
activation of GluN2b and the control of the AKT protein kinase
signalling pathway, Fyn promotes the growth of pancreatic cancer
(Dong et al., 2020).

Fyn and the immune response

Increased expression or activation of Src and its downstream
protein PI3K enhances the growth and activation of lymphocytes,
macrophages, dendritic cells, and natural killer (NK) cells.
Fyn splice variation was originally observed in T lymphocytes
(Sugie et al., 2004; Abram and Lowell, 2008). According to one
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study, Fyn activity is necessary for antigen-specific T-cell
activation, as the inhibition of Fyn activity significantly
reduces the T-cell response (Sugie et al., 2004). Dasatinib,
a Bcr-Abl tyrosine kinase inhibitor that also inhibits SFKs,
has been used to treat CML patients in clinical trials. This
medication causes transitory immunosuppression, which is
characterized by the activation of T lymphocytes and
haemophilic cells by T-cell receptors and IgE(Sillaber et al.,
2009). The effects of SFK inhibitors on patients treated with
dasatinib were described in a previous study. Lipid disturbance
and a lack of Fyn binding to intraluminal leaflets reduce NK cell
activation (Wu et al., 2021). FasL overexpression increases the
death of NK cells and T cells by attracting Fyn via proline-rich
domains (Malarkannan, 2020).

Elevated Fyn expression in glioma cells diminishes the
immunological response against glioma, whereas Fyn inhibition
enhances the effectiveness of antiglioma immunotherapy (Comba
et al., 2020). Cytokine production in NK and T cells is selectively
regulated by the Fyn-ADAP pathway (Gerbec et al., 2015). ADAP,
SKAP55, and SHP-2 are directly bound and phosphorylated by Fyn,
while SHP-2 interacts with PD-1 to promote PD-1+ CTLA-4+ CD8+

TILs in malignancies (Li et al., 2015).

Fyn in tumour drug resistance

Numerous studies have revealed that Fyn promotes drug
resistance in tumours, which is a significant obstacle to the
successful treatment of cancer patients. The susceptibility of TKI-
resistant cells to the dual BCR-ABL1/Src inhibitor dasatinib
increases when Fyn protein expression levels are knocked down
versus when Fyn activity is inhibited (Irwin et al., 2015). In one
study, the knockdown of Fyn kinase via pharmacological inhibition
or siRNA resensitized a BCR-ABL inhibitor imatinib-resistant
chronic granulocytic leukaemia (CML) cell line (IM-R cells) to
imatinib (Fenouille et al., 2010). Moreover, the susceptibility of
tamoxifen-sensitive cells to tamoxifen therapy decreased after Fyn
overexpression. Moreover, tamoxifen sensitivity was restored upon
the suppression of Fyn expression, and mechanistic research
revealed that Fyn counteracts the antiproliferative effects of
tamoxifen by activating crucial cell cycle-related proteins (Elias
et al., 2015). Compared with control cells, BC cells are more
chemosensitive to DOX when miR-381 downregulates Fyn,
which deactivates MAPK signalling (Mi et al., 2018). Drug
resistance has been shown to develop in dasatinib-resistant cells
through the overactivation of Fyn (Airiau et al., 2017). Tamoxifen
resistance in breast cancer (ER+) is caused by Fyn, and the
proliferation of tamoxifen-resistant cells and the correlation of
tamoxifen-resistant cells with a poor prognosis in breast cancer
are markedly decreased by the use of a Fyn inhibitor or by the
knockdown of Fyn expression (Joshi et al., 2016). Fyn plays a role in
anticancer drug resistance; in K562 cells, increased Fyn expression
was linked to imatinib resistance (Grosso et al., 2009). The imatinib
resistance observed in prostate cancer patients is modulated by Fyn
via its interaction with miR-128/193a-5p/494 (Ergün et al., 2023).
Fyn is therefore strongly expressed in numerous types of cancer-
resistant cells and contributes to the emergence of treatment
resistance in cancer.

Glioma

Gliomas, which account for 40% of all primary brain tumours,
are the most common type of brain cancer. The term glioma is
used to characterize all primary brain cancers that involve central
nervous system (CNS) glial cells (Liang et al., 2020). According to
the IARC’s GLOBOCAN report on cancer incidence and
mortality, 308,102 new cases of central nervous system
malignancies were diagnosed worldwide in 2020, which
accounted for 251,329 deaths (Bray et al., 2024). An imbalance
between cell proliferation and apoptosis, with reduced apoptosis
due to the overexpression of antiapoptotic genes in cells, and
increased malignant proliferation resulting in tumour
development, is the current theory of glioma development;
however, its exact pathogenesis is unknown (Poonan et al.,
2021). Fyn tyrosine kinase is overexpressed in human gliomas
and is a downstream target of the oncogenic receptor tyrosine
kinase pathway (Comba et al., 2020), where abnormal SFK
activation results in numerous protumor consequences, such as
decreased apoptosis, increased angiogenesis, and enhanced cell
invasion, motility, and proliferation (Eskilsson et al., 2016). In
patients with GBM, Src and Fyn, two downstream targets of the
EGFR oncogenic signalling pathway, are often overexpressed.
Since glioblastoma activates the EGFR signalling pathway along
with Fyn and Src, blocking Fyn and Src may increase the
effectiveness of anti-EGFR-targeted therapy (Ahluwalia et al.,
2010). Many malignancies have EGFR mutations. However,
EGFR inhibitor-induced clinical responses are rare and fleeting.
Fyn and Src were identified as putative EGFR effectors in early
studies. Moreover, molecular circuits connecting EGFR/
EGFRVIII to Fyn and Src have been shown to increase
glioblastoma invasion and tumour growth in a variety of cell
lines and mouse models. These findings in tumour tissues validate
the clinical significance of the abovementioned results, as
glioblastoma patients with activated EGFR signalling also often
exhibit activated Fyn and Src. These findings indicate that Fyn and
Src are clinically significant targets and that blocking them could
improve the effectiveness of treatments that target EGFR (Lu
et al., 2009).

Fyn establishes a complex regulatory pathway involving
specific molecules during glioma development. T-cell
immunoglobulin and mucin domain containing-3 (Tim-3),
which is highly expressed in gliomas, is a typical immune
checkpoint molecule (Kim et al., 2020). Galectin-9 (Gal-9) is
the primary ligand that activates Tim-3. According to one
study, Tim-3 interacts with Fyn kinase and binds Gal-9 (Wolf
et al., 2020). A member of the PIKE family, PtdIns-3-kinase
enhancer-activating Akt (PIKE-A), is an oncogenic factor that
is essential for the survival and proliferation of cancer cells (Zhang
et al., 2019). Numerous investigations have demonstrated that
PIKE-A expression is elevated in a variety of malignancies,
including glioblastoma, and that it facilitates the growth,
invasion, and survival of glioblastoma cells in situations of
cellular energy stress (Jia et al., 2016). Fyn can phosphorylate
the GTPase PIKE-A, which prevents its degradation (Zhang et al.,
2016). Interestingly, PIKE-A increases the growth of glioblastoma
and suppresses cellular senescence by triggering the Fyn-mediated
STAT3 signalling pathway, which increases the activation of the
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pentose phosphate pathway (PPP), promotes G6PD expression,
and increases DNA synthesis and ROS detoxification (Sun et al.,
2021). G6PD is essential for cancer progression, but its underlying
mechanisms are still unknown. Some researchers have
demonstrated that Fyn directly phosphorylates and increases
G6PD activity in response to EGFR activation, which then
activates the PPP. Furthermore, Fyn expression, malignancy,
and prognosis are correlated with G6PD pY481 in human
glioblastoma. These results demonstrate a critical function for
Fyn-dependent G6PD phosphorylation in tumour development
stimulated by EGF (Liu et al., 2019b).

A recent article reported that the Fyn gene, together with other
genes involved in brain development and neural differentiation, is
strongly enriched in astrocytoma, a common and lethal human
malignancy (Wu et al., 2010). Moreover, Fyn and c-Src are
effectors of oncogenic EGFR signalling in glioblastoma and
enhance invasion and tumour cell survival in vivo. In one
study, the pan-SFK inhibitor dasatinib consistently inhibited
invasion, promoted tumour regression, and induced apoptosis
in vivo, which significantly prolonged the survival of mice in an
orthotopic glioblastoma model. This study demonstrated a
mechanism linking EGFR signalling with Fyn and Src activation
to promote tumour progression and invasion and provided a
rationale for combined anti-EGFR and anti-SFK targeted
therapies (Lu et al., 2009). In addition, a phosphotyrosine
proteomic screen identified novel signalling molecules,
including JAK1, STAT1, cortactin, FER, p130Cas, c-Src and
Fyn, as molecules that undergo tyrosine phosphorylation and
activation in human malignant mesothelioma. They also
confirmed that known signal transduction pathways previously
implicated in mesothelioma, such as EGFR and Met, are
coactivated in most human mesothelioma specimens and tested
cell lines. Since all these enzymes seem to be hyperactivated in
malignant mesothelioma cell lines, dual or multitargeted
inhibition of some of these kinases is likely to be more
efficacious than inhibition of a single tyrosine kinase to prevent
potential antiproliferative activity in glioma treatment (Menges
et al., 2010).

Finally, cognitive impairments and recurring seizures affect up
to 80% of all patients with diffuse glioma and up to 50% of patients
with glioblastoma multiforme (GBM) during the course of the
disease (van Breemen et al., 2007; van Kessel et al., 2017).
Although no single experimental model recapitulates the full
diversity of human gliomas, insight into the emergence of
hyperexcitability and the natural history of epileptogenesis in
cortical networks, along with the opportunity to link these to
specific oncogenic drivers (Yu K. et al., 2020), can provide a
precise, mechanism-based approach to individualized medical
management of this serious tumour comorbidity. The
mechanisms underlying peritumoral hyperexcitability in glioma
are likely reciprocal in that greater excitability drives tumour
progression, and greater tumour progression promotes further
hyperexcitability (Hatcher et al., 2020). These pathological waves
involve a massive intracellular calcium influx mediated in part by
NMDA receptor activation, which transiently silences neuronal
activity and briefly impairs the precise coding of high-frequency
synaptic inputs in recovering neurons (Revah et al., 2019). Thus,
along with the loss of peritumoral synaptic inhibition, increased

extracellular glutamate due to the overexpression of the glial
glutamate antiporter system xc-has been proposed to be an
important contributor to epileptogenesis in tumour-related
epilepsy (Robert et al., 2015; Sørensen et al., 2018). Fyn can
regulate neuronal activity, and Tau interacts with Fyn via its
amino-terminal projection domain (Lee et al., 1998). Fyn
phosphorylates NMDA receptor subunit 2 to facilitate interaction
of the NMDA receptor complex with PSD-95 (Nakazawa et al., 2001;
Rong et al., 2001), which links NMDA receptors to synaptic
excitotoxic downstream signalling (Salter and Kalia, 2004).
Disruption of the NMDA receptor/PSD-95 interaction prevents
excitotoxic damage in cultured neurons and in a rat model of
stroke without affecting synaptic NMDA currents (Aarts et al.,
2002), which may decrease neuronal activity and inhibit tumour
progression.

Conclusion

Src is a well-known oncogene, but its family members, such as
Fyn, have received less attention even though they may be more
crucial in some malignancies than c-Src. Since Fyn participates in
multiple intracellular signalling pathways to govern processes such
as cell proliferation and differentiation, interest in Fyn has increased
nearly a century after it was first described. New research has
demonstrated that Fyn is aberrantly and extensively expressed in
a variety of cell types. Apart from its direct contribution to the
control of signalling pathways, Fyn is also linked to certain signalling
molecules that are specific to tumour cells. These molecules
collectively contribute to the advancement of cancer metastasis
and growth. In addition, numerous highly selective Fyn/Src
inhibitors have been synthesized and shown to be successful in
clinical studies. For example, saracatinib is a highly specific small
molecule inhibitor of the SRC family of kinases with an IC50 value of
10 nm against Fyn. In a phase II clinical trial, saracatinib was
confirmed to act as a metastasis suppressor in prostate cancer in the
initial stages (Posadas et al., 2016). Saracatinib can be used alone or
in combination with radiotherapy to treat malignant tumours, such
as glioblastoma (Yun et al., 2021). Dasatinib is a novel and effective
multitargeted inhibitor of kinases of the SRC family, as well as
several other kinases. In a phase II clinical trial in patients with
melanoma, dasatinib was not significantly effective because of
poor patient tolerance and dosage reductions (Kluger et al., 2011).
Ine one study, immunotherapy plus dasatinib treatment in mice
with liver metastases from colorectal cancer significantly
increased immune cell infiltration into the tumour, thereby
enhancing antitumour immunity (Kadota et al., 2022).
Chemotherapy combined with dasatinib is also significantly
more effective in the treatment of tumours than chemotherapy
alone (Ma et al., 2019; Wang et al., 2022). However, Fyn is still a
difficult target. However, whether Fyn promotes malignancy in all
tumour types is unclear. Due to its strong similarities with other
Src family kinases and its widespread expression throughout the
body, targeted therapy may have unanticipated and unwanted
off-target consequences. To improve the prognosis of cancer
patients, more research is necessary to understand the
activation and inactivation of Fyn as well as its mode of action
in other cancers.
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