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Introduction:Mitochondrial dysfunction and oxidative stress play important roles
in diabetic retinal vascular injuries. Honokiol (HKL) is a small-molecule polyphenol
that exhibits antioxidant effects and has a beneficial effect in diabetes. This study
aimed to explore the potential ability of HKL to ameliorate vascular injury in
diabetic retinopathy (DR) and its possible mechanisms of action.

Methods: The effect of HKL was evaluated in vascular injury in an in vivo type 2
diabetic (db/db) mouse model. In vitro, retinal microvascular endothelial cells
were treated with high glucose (HG) to simulate the pathological diabetic
environment. Cell viability, expression of apoptosis-related proteins, cellular
reactive oxygen species, mitochondrial membrane potential, and
morphological changes in the mitochondria were examined.

Results: The diabetic mice exhibited severe retinal vascular damage, including
vascular leakage in vivo and capillary endothelial cell apoptosis in vitro. HKL
reversed the retinal vascular leakage in the diabetic mice. In vitro, HKL improved
retinal capillary endothelial cell viability, decreased apoptosis, and reversed the
HG-induced increased cellular oxidative stress and mitochondrial fragmentation.
The sirtuin 3 (SIRT3) inhibitor 3-TYP blocked all the in vivo and in vitro protective
effects of HKL against diabetic retinal vascular leakage and capillary endothelium
and eliminated the decrease in oxidative stress levels and reduction of
mitochondrial fragmentation.

Discussion: In conclusion, these findings suggest that HKL inhibits vascular injury
in DR, which was likely achieved through SIRT3-mediated mitochondrial fusion.
This study provides a potential new strategy for the treatment of DR.
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1 Introduction

Diabetic retinopathy (DR) is a severe microvascular complication of diabetes mellitus
that has become one of the leading causes of vision impairment in adults globally. This has
placed a heavy burden on public health systems and negatively affects both the quality of life
and the mental health of patients (Cheung et al., 2010). The main pathological changes in
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the early stage of DR are hyperglycemia-induced damage to retinal
cells, mainly affecting the microvascular system, including pericyte
loss and endothelial apoptosis, which manifests as vascular leakage
(Hammes, 2018). Possible causes of vascular damage have been
widely studied, and in the 1960s, hyperglycemia was found to be
associated with mitochondrial dysfunction (Brownlee, 2005).
Furthermore, compelling evidence supports the pivotal role of
mitochondrial dysfunction in the development of diabetic retinal
microvascular injury (Wu et al., 2018; Wu and Zou, 2022;
Kowluru, 2005).

Honokiol (HKL), 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-
2-enyl-phenol, is a natural bisphenol derived from the magnolia
bark. It crosses the blood-brain barrier (BBB) and has diverse
pharmacological activities, including anti-inflammatory,
antioxidant, anti-tumor, analgesic, and neuroprotective (Fried
and Arbiser, 2009; Rauf et al., 2021). HKL is known as an anti-
oxidative molecule (Shen et al., 2010; Dikalov et al., 2008). It has
traditionally been used as a medicinal compound for the treatment
of inflammatory diseases. Because it crosses the BBB and blood-
cerebrospinal fluid, HKL exhibits significant bioavailability in
neurological tissues with minimal toxicity (Khatoon et al., 2023).

Previous studies have demonstrated that HKL attenuates high
glucose (HG)-induced Schwann cell injury and peripheral nerve
dysfunction (Hu M. et al., 2023). It also improved renal function in
diabetic nephropathy (Rather et al., 2023), ameliorated diabetes-
associated cognitive dysfunction (Chang et al., 2023), and protected
human umbilical vein endothelial cells against apoptosis under
hyperglycemic conditions (Sheu et al., 2008). However, whether
HKL alleviates microvascular injury during DR progression and the
potential underlying mechanisms are unknown.

HKL has been demonstrated to be a pharmacological activator
of sirtuin 3 (SIRT3) (Zhang et al., 2020). SIRT3 is a member of the
SIRT family, which is a highly conserved family of nicotinamide
adenine dinucleotide (NAD+)-dependent enzymes, consisting of
members SIRT1–7 (Wątroba et al., 2017). SIRT3 is located in the
mitochondria where it plays a major role in controlling metabolism,
function, biogenesis, and dynamics by regulating mitochondrial
proteins (Zhang et al., 2020). Recently, SIRT3 downregulation

was observed in the heart (Guo et al., 2022), kidneys (Li et al.,
2022), and brain (Chang et al., 2023) of diabetic mice and rats.

This protein or gene was also identified in retinal pigment
epithelial cells (Huang et al., 2022), umbilical cord blood
mesenchymal stem cells (Oh et al., 2019) and umbilical vein
endothelial cells (Chen et al., 2021) treated with high-glucose
(HG). The reported downregulation of SIRT3 expression in the
retina of streptozotocin-induced diabetic rats (Mao et al., 2020)
suggested the possible involvement of SIRT3 in DR progression.
Therefore, this study aimed to explore the protective effects of HKL
against diabetic retinal microvascular injury and its potential
involvement in SIRT3 activity.

2 Materials and methods

2.1 Animal models and experimental groups

All animal care and experimental procedures adhered strictly to
the Guidelines for the Care and Use of Laboratory Animals
published by the National Institutes of Health in 2011 and were
approved by the Eye and ENT Hospital of Fudan University, China
(IACUC-DWZX-2021–025). Male BKS wild-type and BKS-db mice
(BKS- Leprem2Cd479/Gpt, 8-week-old) were purchased from the
Jicui Pharmacon Biotechnology Company (Jiangsu, China). The
mice were categorized into the following experimental groups and
treated as indicated: wt/wt and db/db groups, comprising wild-type
and db/db mice, respectively that were fed standard chow for
6 weeks, followed by intraperitoneal injections of phosphate
buffered saline (PBS) containing less than 3% dimethyl sulfoxide
(DMSO, ST038, Beyotime Biotechnology, China) for two
consecutive weeks. And the db/db + HKL (HY-N0003, MCE,
United States) group, comprising db/db mice that were fed
standard chow for 6 weeks, followed by intraperitoneal injections
of HKL at 0.4 mg kg−1·day−1 (diluted in PBS containing less than 3%
DMSO) for two consecutive weeks.

The mice were housed in an animal facility maintained at 23°C ±
2°C and 60%–70% humidity, with free access to food and water, and
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kept on a 12-h light/dark cycle. The animals were handled in
accordance with the guidelines of the Association for Research in
Vision and Ophthalmology Statement for the Use of Animals in
Ophthalmic and Vision Research.

2.2 Cell culture and treatment

Primary rat retinal microvascular endothelial cells (RMECs)
(catalog no. RA-6065; Cell Biologics Company, Chicago, IL,
United States) were cultured in low-glucose Dulbecco’s modified
Eagle’s medium (DMEM, 10,567,014, Invitrogen, United States)
supplemented with 10% fetal bovine serum (FBS, 10,099,141,
Gibco, Australia), and 1% antibiotic solution (penicillin/
streptomycin, 1,514,012, Thermo Fisher, United States). The cells
were cultured under conditions of 5% CO2 and 37°C. The RMECs
from passages 2–6 were used in the experiments. The RMECs were
divided into the following groups and treated as indicated: (1)
normal glucose (NG) group, cultured in normal DMEM; (2)
osmic control (OSM) group, cultured in DMEM medium
containing 30 mM mannitol (M108831; Aladdin, Shanghai,
China); (3) HG group, cultured in DMEM medium containing
30 mM D-glucose (HY-N0003, MCE, United States); (4) HG +
HKL group, cultured in HG DMEM medium containing 30 mM
D-glucose (G7021, Sigma-Aldrich, St. Louis, MO, United States) +
10 µM HKL (diluted in PBS containing less than 0.1% DMSO); (5)
HG + 3-TYP(HY-108331, MCE, United States) group, cultured in
HG DMEM medium containing 30 mM D-glucose +30 µM 3-
TYP(3-TYP dissolved in PBS); and (6) HG + 3-TYP + HKL group,
pretreated for 2 h with HG DMEM medium containing 30 µM 3-
TYP and 30 mM D-glucose, and then 10 µM HKL was added to
the medium.

2.3 Fundus fluorescein angiography (FFA)

The mice were anesthetized using a mixture of tiletamine
hydrochloride and zolazepam (Zoletil, 50 mg/kg) and xylazine
hydrochloride (6.25 mg/kg) administered intraperitoneally, and
then they received bupivacaine hydrochloride eye drops (Santen,
China) for eyeball surface anesthesia. Subsequently, compound
tropicamide eye drops (Santen, China) were applied to fully
dilate the pupils, and a layer of carbomer gel (Bausch + Lomb
Inc., United States) was applied to the corneal surface to protect the
cornea. Next, the mice were injected with 10% fluorescein sodium
(46,955, Sigma-Aldrich, St. Louis, MO, United States)
intraperitoneally and then placed on a special animal holder with
the probe aligned to their pupils. A digital fundus camera
(OptoProbe Research Ltd., Burnaby, Canada) was used to
identify the fundus using fluorescein angiography.

2.4 Evans Blue assay

Mice were anesthetized using an intraperitoneal injection of a
mixture of Zoletil and xylazine hydrochloride. Evans blue (E2129,
Sigma-Aldrich, St. Louis, MO, United States) working solution
(45 mg/mL, 0.1 mL/20 g) was injected through the mouse tail

vein, allowed a 10-min systemic circulation, and then the eyes
were extracted and fixed with 4% paraformaldehyde (PFA,
P0099, Beyotime Biotechnology, China) at 35°C for 1 h. The
anterior segment, lens, and vitreous humor were removed, and
the retinal tissue was carefully peeled off. The retina was
carefully cut into four sections and placed flat on a slide. An
antifade reagent was applied, and the slide was covered with a
coverslip. Finally, images were captured using a confocal microscope
(LCM SP-2, Leica Microsystems, Switzerland).

2.5 Cell viability assay

Cell viability was assessed using a Cell Counting Kit-8 (CCK-8,
C0037, Beyotime, Shanghai, China). Cells were seeded in a 96-well
plate, treated with the specified treatments, and then 10 μL CCK-8
solution was added to each well. After incubation at 37°C for 2–4 h,
the absorbance values of the reaction solution in each well were
measured at 450 nm using a microplate reader.

2.6 Calcein-AM/propidium iodide (PI)
fluorescence

The calcein-AM/PI double staining method (C2015, Beyotime,
Shanghai, China) was used to detect live and dead cells according to
the manufacturer’s instructions. Calcein-AM and PI (1 μmol/L
each) were added to the wells of a 24-well plate containing cells
that had been stimulated with drugs for an appropriate duration.
After incubation at 37°C for 30 min in the dark, the cells were
examined and photographed using a fluorescence microscope (Axio
Observer, ZEISS vision care, Germany).

2.7 Determination of reactive oxygen
species (ROS)

The intracellular levels of ROS were measured using a
fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate
(DCFH-DA) detection kit (S0033, Beyotime, Shanghai, China)
according to the manufacturer’s instructions. Briefly, cells were
seeded in a 96-well plate and treated under various conditions.
Subsequently, DCFH-DA was diluted in serum-free culture medium
to a suitable final concentration of 10 μmol/L and added to cover the
cells, which were then incubated in the dark at 37°C for 30 min.
Then, the cells were washed three times with serum-free culture
medium to remove any unloaded probes, and finally, they were
examined and photographed using a fluorescence microscope.

2.8 Measurement of mitochondrial
membrane potential (ΔΨm)

Cells were seeded in 24-well plates, cultured, and exposed to the
different predetermined treatments, and then the cell culture
medium was removed, followed by gentle washing once with
phosphate-buffered saline (PBS, AM9624, Invitrogen,
United States). Subsequently, a 1:1 ratio of cell culture medium
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and JC-1 staining working solution (C2006, Beyotime, Shanghai,
China) was added, and the cells were incubated at 37°C for 30 min.
Then, the cells were washed twice with JC-1 staining buffer, 1 mL cell
culture medium was added to each well, and lastly, the cells were
examined using a fluorescence microscope.

2.9 Western blotting

Proteins were extracted and lysed using a
radioimmunoprecipitation assay lysis buffer (P0013B, Beyotime,
Shanghai, China) with ultrasonic treatment on ice. The lysate
was then centrifuged at 12,000 × g for 10 min at 4°C, the
supernatant was collected, and then the protein content was
determined using a bicinchoninic acid protein assay (Beyotime,
Shanghai, China). The quantified total protein samples were loaded
onto various lanes of 10% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis gels, and the separated proteins were transferred
onto polyvinylidene fluoride membranes.

After blocking, the membranes were incubated with the
following primary antibodies overnight in a shaker at 4°C:
monoclonal mouse anti-β-actin (1:5,000, A5441, Sigma-Aldrich,
St. Louis, MO, United States), monoclonal rabbit anti-SIRT3 (1:
1,000, 3,637, Cell Signaling Technology, United States), and
monoclonal rabbit anti-optic atrophy 1 (OPA1) (1:1,000, 80,471,
Cell Signaling Technology, United States). After washing, the
membranes were incubated with horseradish peroxidase-
conjugated anti-rabbit and anti-mouse IgG secondary antibodies
(1:5,000, 711–035-152 and 715–035-150, Jackson ImmunoResearch
Laboratories, United States) for 2 h. The blots were washed and
developed using a chemiluminescent reagent (BeyoECL Plus, P0018,
Beyotime, Shanghai, China).

2.10 Mitochondrial staining and
morphological analysis

An appropriate number of cells was seeded in a culture plate and
stimulated with predetermined treatments. The cell culture medium
was discarded, and MitoTracker working solution (C1035,
Beyotime, Shanghai, China) was added, followed by incubation at
37°C for 30 min. The MitoTracker working solution was aspirated
and the cells were washed three times with PBS, followed by the
addition of fresh culture medium, and live cells were examined using
a confocal microscope (LCM SP-2, Leica Microsystems,
Switzerland).

In a parallel experiment, cells were fixed with 4% PFA for
30 min, mounted on slides, and stored for later confocal
microscopy examination. The ImageJ software program was used
to analyze the mitochondrial morphology, and statistical analysis
was performed using the structural quantification method proposed
by Durand et al. (2019).

2.11 Statistical analysis

Statistical analyses were performed using GraphPad Prism
software version 8. The data were obtained from at least three

independent experiments and are expressed as the means ± standard
deviation. Multiple comparisons were performed using a one-way
analysis of variance, followed by Bonferroni’s multiple comparison
test. Results with a P-value < 0.05 were considered statistically
significant.

3 Result

3.1 HKL reduced retinal vascular leakage in
diabetic mice

The FFA imaging analysis of the mice showed that compared to
the control group, the diabetic mice exhibited significant points of
fluorescence leakage in the late stage, whereas the leakage points
were significantly reduced in the HKL-treated diabetic mice
(Figure 1A). The examination of the Evans blue-stained retinal
vascular system of the mice showed increased permeability in the
diabetic group, which was characterized by patchy leakage points.
This effect was greatly ameliorated by HKL treatment (Figure 1B).

3.2 HKL protected against diabetes-induced
RMEC impairment

Under normal conditions, HKL levels of 50uM could cause a
significant decrease in cell viability (P < 0.001; Figure 2A), possibly
due to the toxic effects of high concentrations. Further, the addition
of HKL did not exert any significant influence on cellular status or
mitochondrial function (Supplementary Figure 1). Our results
demonstrated that elevated HG levels decreased cell viability (HG
vs. NG, P < 0.0001). Furthermore, HKL effectively reversed the
decreased cell viability at all three concentrations (5, 10, and 20 μM;
all P < 0.001; Figure 2B). However, there were no significant
differences among the three groups (all P > 0.05). Based on these
results and similar findings from previous studies, (Qiu et al., 2015;
Pillai et al., 2015), 10 µM HKL was selected for subsequent
experiments.

Calcein-AM/PI double staining of dead and live cells showed
that the proportion of PI-positive cells in the HG and HG + HKL
groups was 2.62% and 0.24%, respectively (HG + HKL vs. HG, P =
0.0065). Thus, HKL reversed the HG-induced cell death
(Figures 2C, D).

3.3 HKL reduced ROS levels and improved
mitochondrial function

The results of the DCFH-DA fluorescent probe labeling on
examining ROS levels in the cells showed that the HG-induced
elevation of oxidative stress levels was effectively reversed by HKL
(ROS: HG vs. NG, P = 0.0234; HG + HKL vs. HG, P = 0.0361;
Figures 3A, B). Mitochondria are the main source of ROS
production, and a decline in the ΔΨm is a sign of mitochondrial
damage and early cell apoptosis (Cremers et al., 2018). HG
significantly inhibited ΔΨm in cells compared with the control
(HG vs. NG, P < 0.0001), and the HKL reversed the decrease in
ΔΨm induced by HG (HG + HKL vs. HG, P < 0.0001; Figures 3C,

Frontiers in Pharmacology frontiersin.org04

Shi et al. 10.3389/fphar.2024.1485831

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1485831


D). These results showed that HKL significantly diminished ROS
production and maintained the ΔΨm balance in the HG group.

3.4HKL exerted protective effects on RMECs
through SIRT3

The expression of SIRT3 (HG vs. NG, P = 0.002) was
significantly reduced in the HG group; however, it was

significantly augmented by HKL (HG + HKL vs. HG, P = 0.0222;
Figures 4A, B). The SIRT3 inhibitor 3-TYP blocked the protective
effect of HKL in RMECs, where the proportion of PI-positive cells
was 5.33% and 0.24% in the HG + 3-TYP + HKL and HG + HKL
groups, respectively (HG + 3-TYP +HKL vs. HG +HKL, P < 0.0001;
Figures 4C, D). In addition, 3-TYP reversed the decreased
expression of the anti-apoptotic protein Bcl2 apoptosis regulator
(Bcl2; HG + 3-TYP + HKL vs. HG + HKL, P = 0.0003), whereas that
of the pro-apoptotic protein Bcl2 associated X apoptosis regulator

FIGURE 1
Effects of honokiol (HKL) on diabetic mice. (A) Fundus fluorescein angiography showing the effect of HKL on fundus vasculopathy. The white arrows
indicate fluorescence leakage points (n = 3). (B) Evans Blue staining showing the effect of HKL on the retinal vasculature (scale bars: 1 mm, n = 3). wt/wt:
control group; db/db: diabetic group; db/db + HKL: HKL-treated diabetic group.
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was increased (HG + 3-TYP + HKL vs. HG + HKL; P = 0.0139,
Figures 4E, F).

Treatment with the SIRT3 inhibitor 3-TYP abolished the
protective effects of HKL on cellular ROS levels (HG + 3-TYP +
HKL vs. HG + HKL, P = 0.0006; Figures 5A, B) and the ΔΨm (HG +
3-TYP + HKL vs. HG + HKL; P < 0.0001; Figures 5C, D).

3.5 HKL protected RMECs through SIRT3-
mediated mitochondrial fusion

MitoTracker fluorescent probes were used to label the
mitochondria (Figure 6A). Figures 6B–D shows that compared to
the levels in the control group, HG increased the mitochondrial

number and decreased the volume in the HG group (HG vs. NG,
both P < 0.0001). Meanwhile, the tubular mitochondria were
decreased, whereas the fragmented mitochondria were increased
(HG vs. NG, both P < 0.0001).

Furthermore, the proportion of the tubular mitochondria
increased after treatment with HKL, whereas that of the
fragmented mitochondria decreased (HG + HKL vs. HG, both P <
0.0001). Intervention with the SIRT3 inhibitor 3-TYP blocked the
protective effect of HKL onmitochondrial fragmentation (tubular and
fragmented: HG + 3-TYP + HKL vs. HG + HKL, both P < 0.0001).

Our examination of the mitochondrial dynamics-related protein
OPA1 showed that its expression level decreased in the HG group,
and this was accompanied by a decrease in SIRT3 expression
(OPA1 and SIRT3: HG vs. NG, P = 0.0013 and 0.0002,

FIGURE 2
Honokiol (HKL) protects against retinal microvascular endothelial cell (RMEC) Impairment. (A) The effect of different HKL concentrations on the
viability of RMECs under NG. (B) The effect of different HKL concentrations on the viability of RMECs under HG. (C) Calcein-AM/propidium iodide (PI)
double staining was used to stain dead and live cells. Green: Calcein-AM-labeled live cells, Red: PI-labeled dead cells (scale bars: 100 μm). (D)
Percentages of PI-positive cells. Values are expressed as means ± SEM, n = 5, ns P > 0.05, *P < 0.05, **P < 0.01, **P < 0.001.
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respectively). Furthermore, treatment with HKL increased the
expression of OPA1, which was blocked by the SIRT3 inhibitor
(OPA1: HG + HKL vs. HG, P = 0.0464; HG + 3-TYP + HKL vs. HG
+ HKL, P = 0 .0004, Figures 6E–G).

4 Discussion

The current study demonstrated that HKL mitigated HG-
induced retinal vascular impairment, and this protective effect

might be attributable to SIRT3–OPA1 signaling-mediated
improvement in mitochondrial fusion. To our knowledge, this is
the first study to demonstrate the retinal protective actions and
related underlying mechanisms of action of HKL against DR. In the
present study, we found that HKL protected diabetic mice against
retinal vascular leakage.

In vitro treatment of RMECs with HKL reversed the decrease in
cell viability, apoptosis, ΔΨm, and oxidative stress caused by HG.
These findings suggest a potential therapeutic value of HKL against
vascular injury in DR. Previous studies have demonstrated that HKL

FIGURE 3
Effect of honokiol (HKL) on oxidative stress and mitochondrial dysfunction. (A) Expression levels of reactive oxygen species (ROS) by fluorescence
microscopy (scale bars: 200 μm). (B) ROS relative fluorescence intensity. (C) The mitochondrial membrane potential was measured by JC-1 staining
(scale bars: 100 μm). Red: JC-1 aggregates, Green: JC-1 monomers. (D) Ratio of aggregate to monomer fluorescence intensity. Values are expressed as
means ± SEM, n = 5, ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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showed an anti-inflammatory effect in palmitic acid-inducted
endothelial dysfunction (Qiu et al., 2015). In addition, HKL
reduced HG-induced Schwann cells injury by activating the
AMPK/SIRT1/PGC-1α pathway and enhancing mitochondrial
function (Hu M. et al., 2023). Further, another study found that
HKL improve chronic cerebral hypoperfusion-induced neurological

damage by inhibiting astrocyte A1 polarization via regulating
SIRT3-STAT3 axis (Hu Y. et al., 2023). Interestingly, in recent
years, HKL has been shown to pharmacologically activate SIRT3
(Zhang et al., 2020), Pillai et al. have demonstrated that HKL directly
bound to SIRT3 to enhance its activity in cardiomyocytes, elevating
its expression level by approximately two-fold (Pillai et al., 2015).

FIGURE 4
Honokiol (HKL) protects against retinal microvascular endothelial cell (RMEC) impairment through sirtuin 3 (SIRT3). (A, B) Expression levels of SIRT3
(n = 3). (C) Calcein-AM/propidium iodide (PI) double staining was used to stain dead and live cells. Green: Calcein-AM-labeled live cells, Red: PI-labeled
dead cells (scale bars: 100 μm, n = 5). (D) Percentage of PI-positive cells. (E–G) Expression levels of apoptosis-related proteins (n = 3). Values are
expressed as means ± SEM, ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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Wang et al. (2018) and Ye et al. (2019) reported that HKL
upregulated SIRT3 protein expression even in a dose-dependent
manner. Moreover, numerous studies have confirmed that its
significant actions in various diseases are mediated through
SIRT3 signaling. These diseases include cardiovascular,
cerebrovascular, (Zheng et al., 2018; Liu et al., 2022; Chi et al.,
2020), and neurodegenerative (Ramesh et al., 2018) diseases; tumors
(Luo et al., 2017); infections (Kim et al., 2019; Yu et al., 2022); and
pulmonary fibrosis (Cheresh et al., 2021). Our evaluation of the
effects of HKL on SIRT3 expression demonstrated that its protein
levels in RMEC increased after HKL treatment. 3-TYP is a most
widely used selective SIRT3 inhibitor (Zhang et al., 2020) with high
selective SIRT3 inhibition (SIRT3 IC50 = 16 nM) (Galli et al., 2012).
Here, we used 3-TYP to verify whether the protective effect of HKL
was affected by SIRT3 signaling. The results showed that the
protective effect of HKL was antagonized by the SIRT3 inhibitor
3-TYP, which further demonstrated that HKL exerted its protective
effects through SIRT3.

SIRT3, which is expressed in the mitochondria, is an important
regulator of mitochondrial homeostasis (Zhang et al., 2020) and
various physiological and pathophysiological processes in
conjunction with other SIRT family members (Wątroba et al.,

2017). Three SIRTs (SIRT3–5) are located in the mitochondria,
and (Yang et al., 2016) found that SIRT3 interacts with most
substrates (at least 84 mitochondrial proteins). This observation
strongly indicates that SIRT3 might be the most critical SIRT
mitochondrial regulator. Several studies have reported the
importance of SIRT3 in cardiovascular diseases and diabetes-
related complications (Dikalova et al., 2020; Li et al., 2022;
Dikalova et al., 2017).

SIRT3 expression is significantly decreased in the arterioles of
patients with hypertension, and transgenic mice overexpressing
SIRT3 exhibited a reversal of hypertension, endothelial
dysfunction, and vascular oxidative stress (Dikalova et al., 2020).
Extensive vascular endothelial dysfunction often occurs in early
sepsis, and SIRT3 plays an important role in its pathogenesis (Yu
et al., 2022). SIRT3 is also involved in the destruction of the
endothelial cell barrier function (Wu et al., 2020).
SIRT3 expression was found to decrease in the myocardium of
diabetic mice, and knockout of SIRT3 aggravated cardiomyocyte
necrosis and cardiac dysfunction (Song et al., 2021).

Although SIRT3 plays an important role in cardiovascular
diseases and other diabetes-related complications, few studies have
investigated its role in DR. Gao et al. (2016) reported that

FIGURE 5
Honokiol (HKL) protects against oxidative stress and mitochondrial dysfunction through sirtuin 3 (SIRT3). (A) Expression levels of reactive oxygen
species (ROS) by fluorescence microscopy (scale bars: 200 μm). (B) ROS relative fluorescence intensity. (C) The mitochondrial membrane potential was
measured by JC-1 staining (scale bars: 100 μm). Red: JC-1 aggregates, Green: JC-1 monomers. (D) Ratio of aggregate to monomer
fluorescence intensity.
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SIRT3 overexpression attenuates hyperglycemic injury through
deacetylation and activation of manganese superoxide dismutase
in bovine retinal capillary endothelial cells. Our results showed
that the protective effects of HKL against mitochondrial
dysfunction and ROS increase under HG were mediated
through SIRT3. These findings highlighted the importance
of SIRT3 in DR.

Mitochondria are the energy centers of cells and are involved in
regulating cellular biological processes, metabolism, and apoptosis
(Sorrentino et al., 2018). Mitochondria are highly dynamic
organelles that individually express various morphologies
controlled by opposing processes of fusion and fission (Chan,

2020). By regulating the dynamics of fusion and fission, the
mitochondria facilitate cellular adaptation to changing energy
requirements, thereby maintaining normal cell function (Yu and
Pekkurnaz, 2018). Unbalanced mitochondrial dynamics lead to
excessive mitochondrial ROS production and imbalanced
oxidative homeostasis (Willems et al., 2015).

To elucidate the potential mechanisms underlying the
involvement of SIRT3 in the protective actions of HKL, we
examined and quantified the mitochondria in live cells. The
results showed that HG increased mitochondrial fission in
RMECs, which is consistent with the findings of a previous study
(Kim et al., 2020).

FIGURE 6
Honokiol (HKL) improves mitochondrial fusion through sirtuin 3 (SIRT3). (A)Mitochondrial morphology in living cells by confocal microscopy (scale
bars: 25 μm). (B) Mitochondrial numbers. (C) Mitochondrial volumes. (D) Mitochondrial roundness. At least 20 mitochondria were included in
3 independent experiments. (E–G) Expression levels of SIRT3 and OPA1 (n = 3). Values are expressed as means ± SEM, ns P > 0.05, *P < 0.05, **P < 0.01,
***P < 0.001.
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Furthermore, HKL treatment significantly decreased the
proportion of fragmented mitochondria. These results suggest
that the actions of HKL mediated through SIRT3 enhanced
mitochondrial fusion. We further examined the mitochondrial
dynamics-related fusion protein OPA1, which mediates the
fusion of the inner mitochondrial membrane (Cipolat et al.,
2004). We found that HKL likely acting through
SIRT3 reversed the HG-induced mitochondrial fragmentation,
and the expression levels of OPA1 and SIRT3 were closely
related, indicating that SIRT3 potentially regulates
mitochondrial fusion via OPA1. However, the direct or
indirect interactions between OPA1 and SIRT3 require
further study.

There are some limitations to our study that warrants further
investigation. First, experiments in vivo were insufficient as we
did not comprehensively evaluate the effects of HKL in the db/db
mice. The number of animals in the study was restricted, and a
clinically applicable dose and administration mode need to be
further explored. Second, the SIRT3 activity need be further
evaluated and interactions between SIRT3 and OPA1 remains
unclear; whether there are other molecules involved in these
actions requires further study. Moreover, we focused on
observing the effects of HKL on retinal microvascular
abnormalities in this study. As HKL has demonstrated
possible neuroprotective effects in several studies (Hu M.
et al., 2023; Bibi et al., 2023; Zhou et al., 2023; Hu Y. et al.,
2023), further studies of its efficacy on retinal neurologic function
are required.

5 Conclusion

Our findings suggest that HKL attenuates HG-induced vascular
injury in DR, possibly through SIRT3-mediated mitochondria
fusion. These results suggest that HKL may have potent
therapeutic usefulness in the treatment of microvascular damage
during the early stages of DR.
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