AUTHOR=Liu Qian , Cui Zhiwei , Deng Chao , Yang Chao , Shi Tao TITLE=A real-world pharmacovigilance analysis of adverse events associated with irbesartan using the FAERS and JADER databases JOURNAL=Frontiers in Pharmacology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1485190 DOI=10.3389/fphar.2024.1485190 ISSN=1663-9812 ABSTRACT=Objective

Hypertension is a leading global risk factor for disability and death. Irbesartan, a potent angiotensin II receptor blocker, requires continuous safety monitoring. We conducted a disproportionality analysis of irbesartan-related adverse drug events (ADEs) using the FDA’s FAERS and Japan’s JADER databases.

Methods

We extracted irbesartan-related ADE reports from FAERS (Q1 2004 to Q1 2024) and JADER (Q2 2008 to Q4 2023). We used Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM) for signal detection. Sensitivity analyses were conducted to exclude comorbid medications, and subgroup analyses by age and gender were performed to explore ADE occurrence in specific populations. Th time to onset (TTO) of ADEs was assessed using Weibull distribution test and Kaplan-Meier curves.

Results

A total of 5,816 (FAERS) and 366 (JADER) reports were analyzed, with irbesartan-related preferred terms (PTs) involving 27 System Organ Classes (SOCs) in FAERS and 22 in JADER. Three SOCs met detection thresholds in both databases: “metabolism and nutrition disorders,” “cardiac disorders,” and “renal and urinary disorders.” We identified 219 positive signals in FAERS and 20 in JADER, including known signals like hyperkalemia, hypotension, and acute kidney injury. Notably, newly identified signals such as acute pancreatitis (n = 50, ROR: 7.76 [5.88–10.25]) and rhabdomyolysis (n = 50, ROR: 7.76 [5.88–10.25]) in FAERS and respiratory failure (n = 7, ROR: 6.76 [3.20–14.26]) in JADER could have significant clinical implications, as they may lead to severe outcomes if not recognized and managed promptly. Subgroup analyses revealed both similarities and differences in signal detection across gender and age groups. Sensitivity analyses, excluding concomitant medications, confirmed the persistence of key positive signals, including hyperkalemia, angioedema, acute pancreatitis, and agranulocytosis. ADEs mainly occurred within 1 month (34.14%) and after 1 year (32.32%) after dosing, with a median onset of 107 days.

Conclusion

This study provides valuable real-world evidence on the safety profile of irbesartan. The identification of new safety signals underscores the necessity of updating drug labels, particularly for assessing and managing high-risk patients. Additionally, the TTO analysis emphasizes the importance of sustained vigilance for adverse events over time. In conclusion, our findings contribute to a more comprehensive understanding of irbesartan’s safety, aiding healthcare professionals in optimizing its use in clinical practice.