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The growing microbial resistance to traditional medicines necessitates in-depth
analysis of medicine-microbe interactions (MMIs) to develop new therapeutic
strategies. Widely used artificial intelligence models are limited by sparse
observational data and prevalent noise, leading to over-reliance on specific
data for feature extraction and reduced generalization ability. To address
these limitations, we integrate Kolmogorov-Arnold Networks (KANs),
independent subspaces, and collaborative decoding techniques into the
masked graph autoencoder (Mask GAE) framework, creating an innovative
MMI prediction model with enhanced accuracy, generalization, and
interpretability. First, we apply Bernoulli distribution to randomly mask parts of
the medicine-microbe graph, advancing self-supervised training and reducing
noise impact. Additionally, the independent subspace technique enables graph
neural networks (GNNs) to learn weights independently across different feature
subspaces, enhancing feature expression. Fusing themulti-layer outputs of GNNs
effectively reduces information loss caused bymasking. Moreover, using KANs for
advanced nonlinear mapping enhances the learnability and interpretability of
weights, deepening the understanding of complex MMIs. These measures
significantly enhanced the accuracy, generalization, and interpretability of our
model in MMI prediction tasks. We validated our model on three public datasets
with results showing that our model outperformed existing leading models. The
relevant data and code are publicly accessible at: https://github.com/
zhuoninnin1992/MKAN-MMI.
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1 Introduction

Traditional medicines have historically played a crucial role in
safeguarding life and health. Its primary mechanisms involve
inhibiting harmful bacteria, viruses, and other microorganisms,
or promoting the growth of beneficial microorganisms. Microbes,
including bacteria, viruses, fungi, and protozoa, are ubiquitous on
Earth and have a profound impact on human life and health
(Consortium, 2012). They play crucial roles in digestion and
immune processes (Flint et al., 2012; Hooper et al., 2012),
produce essential vitamins (LeBlanc et al., 2013), and defend
against pathogens (Buffie and Pamer, 2013). While many
microbes benefit the environment and human health, some can
cause disease. For instance, bacteria like Staphylococcus aureus and
Escherichia coli, typically harmless in the human body, can under
certain conditions cause skin infections (Liu A. et al., 2024), food
poisoning (Gencay et al., 2016; Glavin, 2003), and more serious
diseases. Therefore, understanding the relationship between
microbes and medicines is crucial in precision medicine.
Traditionally, microbial resistance has been studied through
clinical observations and laboratory experiments that identify
resistant strains by exposing bacteria to antibiotics and observing
their survival. However, these methods are time-consuming, costly,
and limited in detection range. This limitation has driven the
adoption of computational methods in studying microbial
resistance. Currently, the core technologies for inferring
microbial resistance include systems biology and network
analysis, machine learning and deep learning, and graph
neural networks.

The first strategy integrates bioinformatics technologies and
theories to construct and analyze biological network models,
studying potential interactions between microbes and antibiotics.
This approach helps scientists understand the complex regulatory
mechanisms of microbial resistance. Sara Green et al. used graph
theory and dynamic systems theory to simulate biological networks,
gaining deeper insights into the mechanisms of microbial resistance
to antibiotics (Green et al., 2018). Roberta Bardini et al. utilized a
multi-level Petri net (Nets-Within-Nets, NWN) computational
model to simulate the effects of various antibiotic management
rules on microbial resistance (Bardini et al., 2018). Liu et al.
constructed and analyzed complex network models using high-
throughput multi-omics data, revealing key interactions and
functions in microbial communities and mechanisms affecting
community structure and resistance (Liu et al., 2021).
Additionally, network topology analysis identified microbes with
decisive roles in microbial networks, offering new perspectives on
the functions and interactions of microbes in biological systems.
Wang et al. investigated the structure and function of Cladophora’s
microbial community at different life cycle stages using high-
throughput 16S rRNA gene sequencing and network analysis,
and analyzed the key ecological processes these communities may
participate in through a functional prediction database (Wang et al.,
2023b). Network-based methods employs biological network
models and graph theory to assist research in deciphering the
complex regulatory mechanisms underlying microbe resistance.
Network topology analysis enables the identification of microbes
that play pivotal roles in medicine-microbe networks, providing
insights into their functions and interactions within biological

systems. James et al. summarized current challenges, including
incomplete data, prediction errors, noise in network analysis, and
limitations in experimental verification (James and Muñoz-Muñoz,
2022). These challenges limit the broader application of network
analysis-based technologies.

The second strategy leverages the similarity networks of microbes
and medicines, employing machine learning (Li et al., 2021) and deep
learning (Guthrie et al., 2017; Bardini et al., 2018) methods to identify
potential MMIs. With significant improvements in computing
performance and data storage capacity, numerous databases relevant
to MMI have been established. This offers a fundamental resource for
exploring new interactions between microbes and medicines through
machine learning technology. For instance, Zhu et al. calculated the GIP
core similarity of microbes and medicines, analyzed the chemical
structure similarity of medicines, constructed similarity networks
and medicine-microbe interaction networks, and employed KATZ
technology to identify unknown MMIs (Zhu et al., 2019). However,
the KATZ method exhibits significant limitations, including poor data
adaptability, high computational complexity, and parameter sensitivity.
These issues may challenge the KATZmethod, particularly with sparse,
large-scale, and new datasets. Consequently, HeteSim was developed.
HeteSim, designed for heterogeneous networks, minimizes
computation and data dependence by focusing on specific and
related paths, performing well in sparse situations (Shi et al., 2014).
Long et al. integrated metapath2vec with bipartite network
recommendation technology and devised a biased bipartite network
projection algorithm to enhance MMI prediction accuracy (Long and
Luo, 2020). Zhu et al. constructed a medicine similarity matrix and
applied the Laplace regularized least squares technique to identify
unknown MMIs (Zhu et al., 2021). Similarity network-based
methods focus on extracting similarity data from multiple sources,
significantly addressing the limitations of medicine-microbe network
data. Additionally, they often propose more efficient feature fusion
techniques to improve the representation of medicines and microbes.
However, their strong reliance on specific feature extraction may limit
these methods’ adaptability.

The third strategy employs GNN technology to capture complex
interactions between microbes and medicines by extracting node
representations from the medicine-microbe graph. Huang et al.
proposed the Graph2MDA model, based on the variational graph
autoencoder (VGAE), which integrates multi-source data and
network topology to accurately identify unknown MMIs (Deng
et al., 2022). This marks the first application of VGAE
technology to MMI prediction, achieving notable results. Tian
et al. proposed the SCSMDA model, which is based on the graph
convolutional network (GCN) and self-supervised learning strategy
and enhances node representation using meta-path technology,
yielding positive results (Tian et al., 2023). Additionally, the
model incorporates contrastive learning and adaptive negative
sampling strategies to further enhance performance. Long et al.
introduced the EGATMDA model, leveraging GCN and the graph
attention network (GAT) to extract and dynamically optimize node
representations by adjusting the importance of various nodes and
network types (Long et al., 2020b). Wang et al. proposed the
TNRGCN model, which begins by constructing a medicine-
microbe-disease heterogeneous network and then employs the
relational graph convolutional network (RGCN) to identify
unknown MMIs (Wang et al., 2023a). The model also utilizes
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principal component analysis (PCA) to extract key information
from multi-source similarity data. GNN-based methods effectively
capture network topology information through message
propagation and update operations on medicine-microbe
networks, enabling accurate prediction of potential MMIs.
However, these methods typically depend on uniform and dense
topological networks, which are rarely encountered in real-world
scenarios. Furthermore, the initial representation of medicines and
microbes often fails to significantly enhance the performance of
GNN-based methods.

Despite the considerable success of current MMI inference
methods based on deep learning or GNN, significant challenges
remain. First, the model’s generalization ability is constrained by
complex feature extractors and classifiers, with limited
interpretability. Second, the observed data is vastly outnumbered
by unknown drug-microbe pairs, leading to severe imbalance. Third,
noisy data is inevitably introduced during the data collection
process. To address these issues, we have integrated KAN,
independent subspace, and collaborative encoding technologies
into the Mask GAE framework to develop the new MMI
prediction model MKAN-MMI. First, we mask portions of the
input medicine-microbe graph to decrease the model’s noise
sensitivity. Second, we employ independent subspace technology,
allowing GNNs to independently learn weights within their
respective feature subspaces during feature extraction.
Specifically, we utilize polynomial technology to divide node
features into distinct subspaces and allocate specific biases and
weights to each, optimizing them independently. This avoids
linear dependencies and improves the model’s adaptability to
unknown data, thereby enhancing feature expression.
Additionally, we collaboratively decode the outputs from multi-
layer GNNs to minimize losses from masking operations.
Subsequently, we incorporate KAN technology in the linear
output layer to enhance weight learnability and interpretability,
improving the model’s understanding of the complex interactions
between microbes and medicines. These measures have significantly
improved the model’s prediction accuracy, generalization ability,
and interpretability. Our contributions can be summarized
as follows:

1. Under the Mask GAE framework, we integrated KAN,
independent subspace, and collaborative decoding
technologies to develop a new MMI prediction model that
achieved stable and reliable results.

2. We implemented independent subspace technology, enabling
each feature subspace to independently learn weights and
enhance expression capability.

3. We employed KAN technology to improve the learnability and
interpretability of weights, thus enabling the model to capture
detailed interactions between microbes and medicines.

4. We adopted collaborative decoding technology to integrate
GNN’s multi-layer outputs, minimizing loss from masking.

2 Methods

The aim of this study is to identify potential MMIs among
numerous unobserved medicine-microbe pairs, using observed

MMIs as a basis. Since traditional biochemical or clinical
experiments are often costly and time-consuming, developing
efficient computational methods is crucial for rapidly identifying
these unknown associations. The current research employs three
main strategies: 1) integrating systems biology and network analysis,
along with bioinformatics methods and mathematical modeling, to
analyze the response mechanisms of microbes to drugs; 2) utilizing
machine learning and deep learning techniques to extract similar
features between microbes and drugs for predicting potential
unknown interactions; and 3) applying GNN to extract
topological features from known interactions, enhancing the
representation of microbe and drug nodes. These strategies
significantly enhance research efficiency for unknown MMIs and
provide substantial support for understanding the complex
interaction networks between microbes and drugs. However,
these methods face practical challenges, particularly in terms of
model generalization, which is often limited by the complexity of
feature extractors and classifiers.

We integrated KAN, independent subspace, and collaborative
decoding techniques into the Mask GAE framework to propose the
MMI prediction model MKAN-MMI. Compared to traditional
GNN-based MMI prediction models, our approach exhibits three
main differences. First, we employ independent subspace
technology, enabling subspaces to autonomously learn weights.
This prevents weight sharing among subspaces and reduces linear
correlations, thereby enhancing their expressiveness. Second, we
apply collaborative decoding technology to conduct cross-
Hadamard product operations on GNN’s multi-layer outputs,
improving data utilization and the model’s adaptability to sparse
data. Third, we utilize KAN technology to enhance the learnability
and interpretability of weights, deepening our understanding of the
complex interactions between medicines and microbes.

2.1 Model overview

Figure 1 illustrates the architecture of the MKAN-MMI model.
In module (A), we gather observed MMIs along with original
microbe and medicine information from the database to
construct the initial medicine-microbe graph. Subsequently, we
mask traversed MMIs by sampling nodes, employing a random
walk strategy. In module (B), independent subspace technology is
applied to learn weights for each subspace independently, facilitating
the extraction of multi-layer representations of microbes and
medicines. In module (C), the cross-Hadamard product is
applied to the multi-layer output from module (B) to produce
the final medicine-microbe pair representation. Subsequently,
KAN technology predicts the score and reconstructs the
medicine-microbe graph. Module (D) encapsulates the operating
rules of KAN.

2.2 Masked graph autoencoders

Recently, GAE technology has achieved significant success due
to its self-supervised nature. The architecture of GAE is
straightforward, comprising only two main components: a GNN
encoder and a decoder. The GAE process is well-defined: the GNN

Frontiers in Pharmacology frontiersin.org03

Ye et al. 10.3389/fphar.2024.1484639

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1484639


encoder extracts node embeddings from the input graph, and the
decoder is trained to reconstruct based on known links. The
objective function is defined as Equations 1–3:

L1 � 1
E+ ∑

<m,d>∈E+
logI hm, hd( ), (1)

L2 � 1
E− ∑

<m̂,d̂>∈E−
logI hm̂, hd̂( ), (2)

LGAE � − L1 + L2( ) (3)
where L1(L2) denotes the loss on positive (negative) links, E+(E−)
represents the sets of positive (negative) links, I(·) is the decoder
function, and hm and hd are the embeddings of nodes m and d,
respectively.

Numerous studies have demonstrated that GAE exhibits
enhanced performance following appropriate masking of the
input graph (Devlin et al., 2019; He et al., 2022; Hou et al.,
2022). Similarly, this study aims to identify potential MMIs from
unknown medicine-microbe pairs using a self-supervised strategy
within the Mask GAE framework. The observed medicine-microbe
graph is represented as G � <V, E,X> , where V includes all
microbes and medicines, E denotes the observed MMIs, and X is
defined as the initial node representation. Inspired by previous
research (Tan et al., 2023), we sampled the starting nodes from
the observed medicine-microbe graph according to Equation 4:

S � Bernoulli G, γ( ), (4)

where S denotes the set of starting nodes, and γ indicates the
sampling rate. Then, following the random walk rule, the MMIs
traversed from the starting node are masked as Equations 5 and 6:

Emasked � RandomWalk S, l( ), (5)
Greserved � <VM,VD, Ereserved, X> , Ereserved � E − Emasked, (6)

where Emask denotes the masked MMIs, while the reserved MMIs
are referred to as Ereserved. Additionally, Greserved represents the
reserved medicine-microbe graph. Subsequently, Greserved is fed
into the GNN encoder to extract embeddings of microbes
and medicines.

2.3 Independent subspace

The GNN model accurately extracts node representations from
the graph’s topological information, excelling in various graph tasks
and attracting significant attention. The GNN model operates by
performing multiple aggregation and update operations using the
adjacency and feature matrices to extract features. Aggregation and
update operations can be modified to create GNN variants suitable
for various scenarios. While this model offers convenience, it also
presents some challenges. Studies indicate that during the iteration
of GNN models, feature subspaces are likely to exhibit approximate
linear correlations (Sun et al., 2023). This significantly diminishes
the subspace’s expressive power. The primary cause is the shared
weights across multiple layers of feature subspaces (Sun et al., 2023).

FIGURE 1
The MKAN-MMI model’s architecture comprises: (A) constructing and masking the medicine-microbe graph, (B) extracting microbe and medicine
representations using independent subspace technology, (C) reconstructing the masked graph with collaborative decoding, and (D) employing KAN
technology.
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Inspired by these findings, we have integrated independent subspace
technology into the Mask GAE framework to enhance the model’s
feature extraction capabilities.

Specifically, we introduce a new GNN architecture centered on
using polynomial technology to deshare weights in feature
subspaces. According to Chebyshev’s theorem, the aggregation
function is expressed as Equation 7:

H � ∑C
c�0

Qc L̂( )XWc, (7)

where H represents the representation of microbes (medicines),
Qc(·) denotes the c-order term of a polynomial, X is the initial
representation of microbes (medicines), and Wc is the weight
learned in the c-th feature subspace.

From the above equation, it is evident that the feature subspace
is closely linked to the initial representation of microbes (medicines).
In the medicine-microbe graph, the dimensionality of the initial
representation may limit the formation of the feature space.
Consequently, we apply singular value decomposition to the
adjacency matrix as Equation 8:

M � UV, Â � UVΣT, (8)
where U and V represent the principal components and its
corresponding singular values, respectively. The aim of this
procedure is to expand the feature subspace, thereby enhancing
the data. This subspace independently learns the weight WM, and
the aggregation function is derived as follows as Equation 9:

H � ∑C
c�0

Qc L̂( )XWc +MWM, (9)

As illustrated in Figure 1, with C equal to 2, the GNN
architecture comprises four independent subspaces: Q0(L̂)X,
Q1(L̂)X, Q2(L̂)X, and M. This study introduces independent
subspace technology to segregate these subspaces and facilitate
independent weight learning within them. This approach
prevents the approximate linear correlation among multiple
GNN subspaces during the iteration process, thereby enhancing
their expressive power.

2.4 Collaborative decoding

Given a microbe m and a medicine d, the GNN extracts
representations htm and htd from the input graph. Typically, the
current GAE framework employs cosine similarity or MLP
operations during the decoding stage as Equation 10:

s m, d( ) � < hCm, hCd > or s m, d( ) � MLP hCm ‖ hCd( ), (10)

where s represents the predicted score. While these methods appear
simple, they are effective. However, applying these operations
presents challenges for MMI prediction tasks. The primary
challenges are twofold. First, within the Mask GAE framework,
masking some MMI may result in the loss of crucial topological
information. Second, in the medicine-microbe dataset, the number
of observed MMI is significantly lower than that of unknown pairs,
contributing to data sparsity.

Research indicates that connecting, adding, or multiplying the
multi-layer outputs of GNNs can enhance the data processing.
However, a major drawback of this strategy is the introduction of
significant noise, which impacts the final microbe (medicine)
representation. Drawing inspiration from prior research (Tan
et al., 2023), we have implemented collaborative decoding
technology and the cross-Hadamard product to integrate
representations of microbes and medicines across each GNN
layers as Equation 11:

h<m,d> � ‖La,b�1ham ⊙ hbd, (11)

where h<m,d> denotes the final representation of the medicine-
microbe pair <m, d> . The terms ⊙ and ‖ refer to the
“Hadamard product” and “concatenation” operations, and L
indicates the number of encoder layers. The cross-Hadamard
product operation effectively integrates multi-layer information,
promoting similarity while reducing differentiation between
microbes and medicines. This ensures that the output
representation of the medicine-microbe pair retains essential
information.

2.5 Kolmogorov-arnold networks (KANs)

MLP is capable of describing nonlinear functions; its simplicity
and feasibility have made it the most popular neural network
currently. The core of MLP involves performing linear mapping
on the input, often incorporating nonlinear activation functions.
MLP has been integrated into various network architectures,
including GNNs and convolutional neural networks. However,
recent studies have highlighted significant challenges facing MLP
that cannot be ignored. For instance, MLP often requires stacking,
and typically has a large parameter scale. Moreover, MLP’s
functionality relies entirely on the interplay of neurons, resulting
in limited interpretability. Initially, MLP places the activation
function at the neuron level, whereas KAN applies univariate and
spline functions to the weights. This approach allows KAN to
improve weight learnability and interpretability. KAN theory
originates from the concept that multivariate continuous
functions can be derived by combining univariate functions via
binary addition, as Equation 12:

f t( ) � f t1, t2, . . . , tn( ) � ∑2n+1
v�1

φv ∑n
u�1

φv,u tu( )⎛⎝ ⎞⎠, (12)

where t1, t2, . . . , tn are binary univariate variables; φv,u are binary
functions, where n represents the number of neurons, and φv is a real
function. However, some studies have indicated that these univariate
functions are occasionally non-smooth, limiting the applicability of
KAN theory (Poggio et al., 2020; Girosi and Poggio, 1989).
Fortunately, Liu et al. have observed that functions commonly
used in daily life are smooth, reigniting interest in KAN theory
(Liu Z. et al., 2024).

To achieve arbitrary depth with KAN, a straightforward
approach is the integration of MLP with KAN theory, as
Equation 13:

KAN t( ) � φK−1◦φK−2 . . .φ1◦φ0( )t, (13)
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where K denotes the number of KAN layers.
As depicted in Figure 1B, theMKAN-MMImodel employs KAN

to process the final representation of the medicine-microbe pair for
predicting the final score. Subsequent experiments demonstrate that
integrating KAN technology significantly enhances the model’s
prediction performance.

3 Results

3.1 Data preparation

To verify the accuracy of the MKAN-MMI model in MMI
prediction, we conducted evaluations across several publicly
accessible MMI databases. Drawing on prior research (Long
et al., 2020a), we selected three databases for evaluation:
MDAD (Sun et al., 2018), DrugVirus (Andersen et al., 2020),
and aBiofilm (Long et al., 2020a). The MDAD database comprises
1,373 medicines, 173 microbes, and 2,470 MMI in total. The
aBiofilm database includes 1,720 medicines, 140 microbes, and
2,884 MMIs in total. The DrugVirus database contains
175 medicines, 95 microbes, and 933 MMIs in total.

Additionally, we gathered similarity data for microbes and
medicines from previous studies (Tian et al., 2023). For
microbes, we gathered functional similarity (F1MS) and Gaussian
interaction kernel similarity (GIP1MS) data. Detailed calculations
for F1MS are available in the works of Kamneva (2017). The
calculation of GIP1MS and the integration of F1MS and GIP1MS

are discussed in previous work (Tian et al., 2023). For medicines, we
collected structural similarity (F2MS) and Gaussian interaction
kernel similarity (GIP2MS) data. Hattori’s work (Hattori et al.,
2010) details the calculation of F2MS, while the process of
calculating GIP2MS and integrating it with F2MS can be found in
earlier studies (Tian et al., 2023). We used the integrated similarity
features of microorganisms and drugs as the model’s initial
representation. Negative samples were generated via random
sampling. Known MMIs were treated as positive samples, while
the remaining unknown drug-disease pairs were considered
negative samples.

3.2 Experiment setting

We compared the MKAN-MMI model against eight models,
encompassing classic GNNmodels such as GCN (Li et al., 2018) and
GAT (Veličković et al., 2018), as well as advanced models like DTI-
CNN (Peng et al., 2020), NIMCGCN (Li et al., 2020), MMGCN
(Tang et al., 2021), and DTIGAT (Wang et al., 2021), Graph2MDA
(Deng et al., 2022), SCSMDA (Tian et al., 2023), and GCNMDA
(Devlin et al., 2019). Notably, DTI-CNN (Peng et al., 2020),
NIMCGCN (Li et al., 2020), MMGCN (Tang et al., 2021), and
DTI-GAT (Wang et al., 2021) were not originally designed for MMI
prediction tasks. Consequently, these models required
modifications, including adjusting the input to the initial
representation of microbes and medicines, and to the medicine-
microbe graphs. To ensure fairness, the study maintained a
consistent data partitioning ratio and conducted uniform 5-fold
cross-validation across all experiments. The proposed MKAN-MMI

model primarily considers the root node sampling rate, random
walk length, and number of feature subspaces. Empirically, these
parameters are set to 0.5, 3, and 3 by default. The training-to-test set
ratio is set to 4:1, and the positive-to-negative sample ratio is also set
to 1:1. The primary evaluation metrics employed were AUC (area
under the ROC curve) and AUPR (area under the precision-recall
curve). Additionally, for a comprehensive assessment, accuracy
(ACC), precision (PRE), F1-score, and Matthews correlation
coefficient (MCC) served as auxiliary metrics, similar to previous
practice (Zhou et al., 2024; Wei et al., 2024; Wang et al., 2024; Ma
et al., 2024; Xu et al., 2023).

3.3 Performance comparison

Under identical data partitioning conditions, we assessed
the performance of the proposed model alongside that of
existing comparison models. Table 1 displays the AUC and
AUPR performance metrics of all models across the MDAD,
DrugVirus, and aBiofilm datasets. Significantly, the MKAN-
MMI model achieved the highest performance in both AUC and
AUPR metrics across all datasets, ranking first. The SCSMDA
model followed closely, securing the second rank. The DTI-
CNN model, ranking third in the AUC metric, underscored the
autoencoder’s advantage in feature extraction. However, it
exhibited slightly inferior performance in the AUPR metric
within the DrugVirus and aBiofilm datasets. The
underperformance of other GNN models highlights the
challenges of strategies relying solely on observed MMIs.
GNN model designs heavily depend on network topology
during aggregation and updates, often neglecting the nodes’
initial representations. Specifically, in the MDAD, DrugVirus,
and aBiofilm datasets, the observed MMIs are significantly
fewer than the unknown medicine-microbe pairs, suggesting
the initial representation could play a crucial role in MMI
prediction.

The SCSMDA model utilizes GCN technology and self-
supervised learning strategies, incorporating meta-path and graph
contrast learning techniques to enhance node representations,
resulting in positive outcomes. However, the increased
complexity of its architecture may hinder the model’s
generalization. The proposed model adopts the encoder-decoder
framework of GAE to reconstruct the medicine-microbe graph,
demonstrating greater efficiency and accuracy in identifying
unknown MMIs compared to the SCSMDA model. This
improvement can be attributed to several factors. First,
independent subspace technology is employed to enhance
subspace representation capabilities. Second, collaborative
decoding technology integrates multi-layer GNN outputs to
improve node representations of medicines and microbes. Finally,
the proposed model applies KAN technology to enhance its
flexibility and generalization capabilities.

3.4 Parameter experiments

The proposed model incorporates several customizable
parameters, including GNN encoder type, node sampling rate,
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and masked path length. We assessed the impact of different
parameter settings on the MKAN-MMI model’s performance
across three databases, confirming its adaptability to these
parameters.

3.4.1 Node sampling rate analysis
The MKAN-MMI model offers a broad spectrum of node

sampling rate settings to accommodate data of varying densities.
Typically, dense data necessitates a higher sampling rate to
mitigate overfitting, whereas sparse data benefits from a lower
rate to minimize information loss. Prior to inputting the
medicine-microbe graph into the MKAN-MMI model, we
sampled nodes using a Bernoulli distribution at rates between
0.3 and 0.7. From the selected nodes, masked paths (MMIs) are

established using a random walk strategy. In the experiments, the
path length was consistently set to 3. Figure 2 displays the results,
showing that the model’s performance improves with higher
node sampling rates. This suggests that suitably masking
observed MMIs can alleviate issues related to overfitting or
noise. However, excessive sampling of nodes results in a
correspondingly higher number of masked MMIs. The results
indicate a noticeable decline in model performance. This suggests
that excessive masking of key nodes or MMIs contributes to
performance degradation.

3.4.2 Walk length analysis
After sampling nodes at a predefined ratio, we mask the

MMIs starting from these nodes using a pre-set length dictated

TABLE 1 Comparison of MKAN-MMI with other outstanding models (%).

Models/Datasets metrics MDAD
AUC

AUPR DrugVirus
AUC

AUPR aBiofilm
AUC

AUPR

GCN Li et al. (2018) 86.85 87.35 81.36 79.61 89.51 89.91

GAT Veličković et al. (2018) 87.78 88.68 81.80 80.01 90.37 89.60

DTI-GAT Wang et al. (2021) 89.56 90.12 78.73 79.32 85.15 87.16

NIMCGCN Li et al. (2020) 90.53 91.47 84.65 84.62 91.48 92.31

NMGCN Tang et al. (2021) 89.38 90.61 78.69 76.64 90.81 91.71

DTI-CNN Peng et al. (2020) 93.32 92.63 84.90 83.3 94.67 94.14

Graph2MDA Deng et al. (2022) 87.22 90.93 77.14 79.48 92.75 94.85

GCNMDA Devlin et al. (2019) 91.79 90.38 83.11 79.45 94.14 93.29

SCSMDA Tian et al. (2023) 95.76 94.76 88.81 86.30 96.39 95.39

MKAN-MMI 99.58 99.60 94.54 92.32 99.50 99.63

The results of the comparison method are sourced from prior studies (Tian et al., 2023).

FIGURE 2
Results of MKAN-MMI model using different node sampling rates.
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by the random walk strategy. The MKAN-MMI model
accommodates custom walk lengths to suit various data
types. In the experiments, the sampling rate was consistently
maintained at 0.5. Figure 3 illustrates that the model’s overall
performance exhibits minimal fluctuations. The model achieves
optimal performance when the walk length is set to 3. We
deduce that the model’s performance is correlated with the
walk length. A shorter masking length, such as 2, may lead to
fewer masked MMIs, potentially limiting the model’s training
effectiveness. Conversely, a longer masking length, such as 4,
could result in more masked MMIs, risking significant loss of
key information.

3.4.3 GNN encoder analysis
Within the Mask GAE framework, the GNN encoder can be

customized. In our experiments, we evaluated the performance of
various GNN encoders integrated into the model. Figure 4
demonstrates that encoders based on independent subspaces
significantly outperform other GNN models. Additionally, the
GCN, GIN, and SAGE models generally outperform the GAT
model. This could be attributed to GAT’s focus on edge weight
information, which may be significantly lost when masking
MMIs. These traditional GNN models employ a weight-
sharing mechanism that leads to linear correlations among
subspaces during iterations, severely constraining their
expressive capabilities. We have integrated independent
subspace technology into the model to enhance the
autonomous learning capabilities of subspaces, thereby
boosting model performance.

3.4.4 Feature subspace number analysis
Another key parameter in this study is the number of feature

subspaces. We conducted experiments to explore the impact of this
parameter on model performance. In these experiments, the
sampling rate was fixed at 0.5 and the walk length at 3. As
shown in Figure 5, the model’s overall performance exhibited
little fluctuation on aBiofilm, DrugVirus, and MDAD datasets,
sequentially. When the number of feature subspaces was set to 3,
the model achieved optimal performance. We infer that the model’s
performance is correlated with the number of feature subspaces. A
smaller number, such as 2, may result in insufficient feature
extraction, limiting the model’s training effectiveness, while a
larger number, such as 4, may introduce redundant information,
reducing performance.

3.5 Ablation study

We anticipate that the proposed model will excel in the MMI
prediction task, primarily due to the integration of independent
subspace, collaborative decoding, and KAN techniques within
the Mask GAE framework. To test this hypothesis, we conducted
multiple experimental series on the MDAD database. Table 2
displays the outcomes of these experiments. “GCN” and “DG”
signify that the MKAN-MMI model’s encoder employs GCN
and independent subspace techniques, respectively. “CD”

denotes that the MKAN-MMI model’s decoder utilizes
collaborative decoding technology. “ID” represents that the
model extracts the output of the last layer of the microbe and

FIGURE 3
Results of MKAN-MMI model using different walk lengths.

FIGURE 4
Results of MKAN-MMI model using different GNN encoders.
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medicine, performs the Hadamard product, and predicts the
medicine-microbe pair score. “KAN” and “MLP” show that the
MKAN-MMI model employs KAN and MLP, respectively, to
predict the medicine-microbe pair score. Observations reveal
that the absence of independent subspace, collaborative
decoding, or KAN technology in the MKAN-MMI model
leads to reduced performance. This indicates that all three
technologies contribute significantly to enhancing MMI
prediction. The model’s performance is poorest when it lacks
collaborative decoding technology. This suggests that
collaborative decoding technology effectively mitigates data
sparsity issues, thereby enhancing the model’s robustness.
Performance slightly declines when the model operates
without independent subspace technology. Performance
significantly deteriorates when the model employs MLP
technology in place of KAN.

3.6 AUC-based statistical
significance analysis

In this study, we employed one-way analysis of variance (ANOVA)
(St and Wold, 1989) to systematically assess whether significant
differences exist in the AUC performance of various MMI
prediction models across the aBiofilm, DrugVirus, and MDAD
datasets, as shown in Figures 6–8, respectively. The results indicate
that on the MDAD dataset, our model demonstrates a significant
advantage, with p-values below 1.0e-07 compared to most models,
underscoring its statistical significance. Notably, when compared to the
Graph2MDA and DTI-CNN models, our model achieved p-values of
1.00e-04 and 3.20e-03, respectively. While the differences are subtle,
they remain statistically significant. On the DrugVirus dataset, our
model also showed significance in most comparisons. However, when
compared to the NIMCGCN model, the two models performed

similarly, with p-values as high as 0.99, indicating their comparable
predictive ability on this dataset. Nonetheless, in other comparisons, our
model consistently demonstrates significant superiority, with p-values
mostly below 1.0e-07. On the aBiofilm dataset, our model also
maintains a significant performance advantage. In comparisons with
NIMCGCN and Graph2MDA, p-values were 0.66 and 0.98,
respectively, indicating that our model performs similarly to these
models on some evaluation metrics. Overall, the p-values between
our model and all comparison models remain well below the
significance threshold of 0.05, further validating its superior
performance.

The analysis results not only confirm the performance
advantage of our model but also emphasize its stability and
reliability across various data environments. Additionally, the
results strongly support the application value of decoupled
representation learning and multi-scale fusion technology in
enhancing model generalization and addressing complex
interaction prediction challenges.

3.7 Performance evaluation

This study employed a five-fold cross-validation method to
assess the performance of the MKAN-MMI model across the
MDAD, DrugVirus, and aBioFilm databases. As detailed in
Table 3, the proposed model demonstrated stable performance
on the MMI prediction task, surpassing the current state-of-the-
art SCSMDA model. Specifically, the proposed model achieved an
average AUC of 99.58% on the MDAD dataset, which is 4.43%
higher than SCSMDA’s 95.15%. On the DrugVirus dataset, the
proposed model recorded an average AUC of 94.54%, 0.87% higher
than SCSMDA’s 93.67%. On the aBioFilm dataset, our model
excelled with an average AUC of 99.50%, marking an increase of
1.27% over SCSMDA’s 98.23%. Additionally, for the AUPR metric,
the proposed MKAN-MMI model significantly outperforms the
SCSMDA model. These results underscore the model’s
effectiveness and its robust generalization capability across
various settings.

3.8 Case analysis

We conducted a series of case studies to assess the model’s
performance under isolation. We chose the medicine Berberine

FIGURE 5
Results of MKAN-MMI model using different subsapce numbers.

TABLE 2 Results of ablation study (%).

GCN SG CD ID KAN MLP AUC AUPR

√ √ √ 96.67 97.63

√ √ √ 98.85 98.74

√ √ √ 99.58 99.60

√ √ √ 97.77 97.18

Frontiers in Pharmacology frontiersin.org09

Ye et al. 10.3389/fphar.2024.1484639

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1484639


FIGURE 6
AUC-based statistical significance analysis on aBiofilm dataset.

FIGURE 7
AUC-based statistical significance analysis on DrugVirus dataset.
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FIGURE 8
AUC-based statistical significance analysis on MDAD dataset.

TABLE 3 Results of ablation study (%).

Datasets/Metrics Folds AUC AUPR ACC PRE F1 MCC

MDAD 1 99.69 99.69 96.40 98.13 96.33 92.85

2 99.48 99.38 97.96 97.76 97.96 95.92

3 99.75 99.75 97.49 97.75 97.47 94.97

4 99.41 99.44 96.82 96.10 96.85 93.37

5 99.57 99.73 98.28 99.53 98.25 96.59

Average 99.58 99.60 97.39 97.85 97.37 94.74

DrugVirus 1 94.62 92.24 86.22 91.18 85.23 73.10

2 94.55 92.38 86.42 90.75 85.65 73.50

3 94.3 92.26 85.43 89.47 84.65 71.24

4 94.62 92.34 86.02 91.03 85.12 72.59

5 94.59 92.39 86.61 91.15 85.83 73.68

Average 94.54 92.32 86.14 90.72 85.30 72.82

aBIoFIlm 1 97.89 98.56 95.87 97.03 95.59 91.91

2 99.98 99.98 99.19 98.52 99.20 98.40

3 99.81 99.77 98.71 97.55 98.72 97.46

4 99.86 99.84 98.64 97.87 98.65 97.30

5 99.98 99.98 98.97 98.11 98.98 97.95

Average 99.50 99.63 98.28 97.82 98.23 96.60
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from the DrugVirus database for analysis and validation.
Berberine, an alkaloid derived from plants like Coptis
chinensis and Phellodendron chinense, has been used
historically to treat various diseases (Song et al., 2020). This
medicine exhibits multiple biological activities, including
antimicrobial, anti-inflammatory, antioxidant properties, and
the regulation of blood sugar and lipids. Berberine inhibits
protein synthesis in microbial cells, reduces inflammatory
factor expression, enhances the antioxidant enzyme system,
and activates AMP-activated protein kinase (AMPK).
Consequently, it holds potential for treating type 2 diabetes,
cardiovascular diseases, and gastrointestinal disorders.
Although considered relatively safe, Berberine may interact
with specific microbes. Thus, studying Berberine and its
associated microbes is essential.

Epstein–Barr virus (EBV) is a γ-herpesvirus prevalent across
various human populations (Young and Rickinson, 2004). EBV
exhibits tumorigenic properties and is implicated in diseases like
infectious mononucleosis and Hodgkin’s disease, which affect ENT
regions such as the throat and lymph nodes (Macsween and
Crawford, 2003). Cohen et al. explored EBV-associated
lymphoproliferative diseases, including aggressive T-cell and
NK-cell diseases that may impact the nasal cavity and other
ENT regions, as well as ENT-related conditions like
vesiculoderma-like lymphoma (Macsween and Crawford, 2003).
Green et al. highlighted the role of EBV in post-transplant
lymphoproliferative diseases, particularly in ENT areas like the
oropharynx, with clinical presentations ranging from
asymptomatic infections to aggressive lymphomas in solid
organ transplant recipients (Cohen et al., 2009). Thus,
investigating EBV-related drugs may aid in developing new
ENT-related therapeutic strategies.

Specifically, we excluded Berberine, EBV and their associated
MMIs from the dataset during model training. Subsequently, the
trained model predicted the likelihood of interactions between
all microbes (medicines) and Berberine (EBV). Following
analysis, the top 10 microbes were identified, with results
detailed in Table 4. It was confirmed that nine microbes
interact with Berberine, as documented in the DrugVirus
database. The results in Table 5 indicate that all 10 medicines
predicted by the trained model interact with EBV and have been
verified in DrugVirus. Therefore, the proposed model is
demonstrably effective in independently identifying
potential MMIs.

4 Conclusion

Microbes, existing in diverse forms across plants and animals,
are integral to numerous life processes. Accurate identification of
potential MMIs facilitates exploration of medicine resistance and
side effects, and aids in developing new treatment strategies. This
study examined various MMI prediction models and identified
their key challenges. For instance, the often sparse and noisy
observational data causes these models to overly rely on complex
feature extraction, rendering them susceptible to overfitting and
other issues. Consequently, we integrated independent
subspaces, collaborative decoding, and KAN technologies into
the Mask GAE framework, resulting in the proposed MMI
prediction model, MKAN-MMI. Operating under the Mask
GAE framework, this model mitigates the risks of overfitting
and noise via masking rules. Simultaneously, the model employs
independent subspace technology to prevent asymptotic
correlation among subspaces, thereby enhancing their
expressiveness. Furthermore, the model utilizes collaborative
decoding technology to mitigate the impact of data sparsity. A
series of designed experiments demonstrated the effectiveness of
these measures in MMI prediction. Additionally, these results
indicate that the proposed MKAN-MMI model is likely to be a
valuable tool in studying microbes and medicines.

However, the proposed model faces challenges that cannot be
overlooked. First, the known MMI data are too limited and highly
imbalanced compared to the unknown medicine-microbe pairs.
Second, there is currently no effective method to characterize
microbes and medicines. Third, significant differences may exist
between the newly generated data and the original dataset. To
overcome these challenges, we propose the following approaches.
First, leveraging large language models or pre-trained models to
learn general knowledge about drugs and microorganisms to
enhance node representation. Second, incorporating text
descriptions, such as properties and functions of medicines and
microbes, and multimodal methods like SMILES sequences, to
integrate information. Third, applying transfer learning to
capture the differences between new and old data, thereby
improving model adaptability.
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to the corresponding authors.

TABLE 4 The top 10 predicted microbes interacted with Berberine with the
highest scores.

Microbes DrugVirus Microbes DrugVirus

Chikungunya
virus

confirmed Human papillomavirus confirmed

Cytomegalovirus confirmed Herpes simplex virus 1 confirmed

Influenza A virus confirmed Respiratory syncytial
virus

confirmed

Hepatitis C virus confirmed Enterovirus A confirmed

Sindbis virus confirmed Hendra virus unconfirmed

TABLE 5 The top 10 predicted medicines interacted with EBV with the
highest scores.

Medicines DrugVirus Medicines DrugVirus

Camptothecin confirmed Foscarnet confirmed

Cidofovir confirmed Chlorpromazine confirmed

Artesunate confirmed N-MCT confirmed

Filociclovir confirmed Ganciclovir confirmed

Luteolin confirmed Novobiocin confirmed
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