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Scutellaria baicalensis has been used for the treatment of digestive system
disorders for thousands of years in China and other regions. Modern research
have revealed its therapeutic efforts in digestive system tumors. Thus, to review
the updated progress of S. baicalensis and its main flavonoids in the treatment of
digestive system tumors in the past 10 years, this article summarized the
therapeutic effect and molecular mechanisms of S. baicalensis and its
5 flavonoids on tumors in oral cavity, esophagus, stomach, colon, liver,
pancreas by inhibiting tumor cell proliferation, inducing autophagy, stimulating
immune response, and increasing drug sensitivity. In conclusion, S. baicalensis
and its flavonoids could be applied to treat digestive system tumors with different
type of methods.
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1 Introduction

Digestive system tumors, such as oral squamous cell carcinoma (OSCC), laryngeal
cancer, esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC) occurring in
the tract and hepatocellular carcinoma (HCC), pancreatic cancer (PC) occurring in the
glands, are a series of tumors with high morbidity and mortality worldwide. Statistically,
CRC (1,880,725/915,880), GC (1,089,103/768,793), and HCC (905,677/830,180) rank the
3rd, 5th, and 6th of the number of new cases and the 2nd, 4th, and 3rd of the number of
deaths of cancers per year globally, respectively (Sung H et al., 2021). The related cases
accounted for 26% of global cancer incidence yet at least 35% of mortality in 2018, which
suggests poor survival outcomes (Arnold M et al., 2020). After years of development, many
treatment modalities such as chemotherapy, radiotherapy and surgery are now available.
However, these tumors are very unremarkable in the early stages due to the depth of the
organs, insensitivity of the visceral nervous system, etc., which makes their timely diagnosis
difficult, leading to late treatment and plagues clinical care. In recent years the adjuvant role
of traditional Chinese medicines (TCMs) such as Scutellaria baicalensis in the treatment of a
variety of tumors has been increasingly validated, bringing more opportunities for the
improvement of clinical efficacy and the development of novel drugs (Ganguly R
et al., 2022).

Scutellaria baicalensis (Huang qin), the dried root of S. baicalensis Georgi, family
Labiatae, is one of the most commonly used herbs for the treatment of digestive disorders in
East Asia, South Asia, and Turkey accompanied with a long history of application and
increasing use (Cheng CS et al., 2018). In ancient China, many medical texts classified it in
the treatment of lung and stomach diseases, stating that it can “clear heat and dry dampness,
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diarrhea and detoxification, stop bleeding, and protect the foetus”
and is often used to ameliorate fever, diarrhea, vomiting, and
jaundice, which are also the symptoms of many malignant
tumors, hinting at its excellent role in respiratory and digestive
disorders (Lin HH et al., 2024). In particular, the use of S. baicalensis
in the treatment of COVID-19 proved its unique effect (Liu J et al.,
2022; Dinda B et al., 2023; Zhang et al., 2021a). With reference to the
ancient literature on its indications, the role of S. baicalensis and its
bioactive ingredients in digestive tumors is gradually being clarified
through modern pharmacological studies. However, within our
knowledge, its interventional role in digestive tumors has not
been specifically summarized in recent years. Therefore, this
review is based on the search in electronic databases such as
PubMed, Web of Science, Google Scholar and China National
Knowledge Infrastructure (CNKI),whose keywords are “S.
baicalensis”, “baicalein”, “baicalin”, “wogonin”, “wogonin”,
“wogonin” and “wogonin”. “wogonin”, “wogonoside”, “oroxylin-
A″, “cancer” and others. The experimental studies of S. baicalensis
and its flavonoids in the treatment of digestive system tumors were
compiled and summarized from 2014 to 2024, in an attempt to show
the research trends in this field in recent years, and thus provide
reference for the experimental research and clinical application of
TCM in the prevention and treatment of digestive system tumors. As
can be seen, most of the relevant studies are experiments with
different doses of flavonoids and cultured tumor cells, using pooled
colony assay to study the proliferative ability of tumor cells and
Transwell assay to measure the invasive ability of the cells. Few in
vivo experiments were performed on animals transplanted with
tumor cells by oral administration or injection of the ingredients to
measure changes in tumor volume and molecular expression.
Techniques such as Western blot and ELISA are used to detect
the expression of relevant proteins and molecules.

2 Application of Scutellaria baicalensis
and its flavonoids in digestive
system tumors

First recorded in the Shennong Ben Cao Jing (Classic of the
Materia Medica of the Divine Husbandman) in China in the 2nd
century B.C., S. baicalensis is said to have the efficacy of “treating all
kinds of fever, jaundice, diarrhea, edema, and sores”. Numerous
subsequent medical texts distinguish between “solid one (Ku qin,
growth years >3)” and “hollow one (Zi qin, growth years ≤3)”. The
latter has been documented to be more effective in digestive
complaints and dominates the current market distribution (Zhan
X et al., 2021).

The vigorous development of modern pharmacology in recent
years, especially the gradual clarification of disease pathology and
bioactive ingredients of herbs, has also provided new references
beyond clinical experience for the application of TCM including S.
baicalensis. So far, there have been at least 132 flavonoids,
17 hydrocarbons, 17 terpenoids, 18 amino acids, 30 organic
acids, 6 esters, 7 aldehydes and ketones, 8 phenylpropanoids,
9 alkaloids, 10 sugars, 11 alcohol components, and 3 steroidal
components were identified from more than 2000 compounds of
S. baicalensis (Huang LY et al., 2023). Among them, flavonoids such
as baicalein, baicalin, wogonin, wogonoside and oroxylin-A

attracted the most attention because of their high concentration
and excellent effects. Studies have confirmed that S. baicalensis and
its flavonoids have different degrees of interfering effects on various
pathways of the digestive system, which are closely related to tumor
development (Dmitrieva A et al., 2023; Tuli HS et al., 2023; Jang JY
et al., 2023; Chmiel and Stompor-Gorący, 2023).

Baicalein (5,6,7-trihydroxyflavone, C15H10O5), the flavonoid
that has been studied most, is widely known for its function
against COVID-19 (Su HX et al., 2020). In addition, it has been
used for cardio protection and to help overcome chemotherapeutic
drug resistance in tumors successfully (Yang Q. et al., 2024; Wang T.
et al., 2024; Chen T. et al., 2024).

Baicalin (baicalein-7-O-glucuronide, C21H18O11) is metabolized
to baicalein in animals (Kang MJ et al., 2014). The Chinese
Pharmacopoeia sets baicalin content of not less than 8% as the
standard for qualification of herbs. It has been shown to have good
antioxidant, anti-inflammatory and antitumor effects, especially in
the nervous system (Liu K. et al, 2024; Liu ZSJ. et al, 2024; Wang H.
et al, 2024; Noor S et al., 2024).

Wogonin (5,7-dihydroxy-8-methoxyflavone, C16H12O5), has
demonstrated its value in improving hepatic metabolism and
treating colitis (Yamada Y et al., 2022; Ye Q et al., 2024).

Wogonoside (5,7-dihydroxy-8-methoxyflavone, C22H20O11) has
previously received widespread attention for its therapeutic effects
on respiratory and cardiac inflammation (Feng W et al., 2023; Yu X
et al., 2024).

Oroxylin-A (5,7-dihydroxy-6-methoxyflavone, C16H12O5) is a
potent antioxidant capable of exerting anti-inflammatory and
hepatoprotective effects (Liu T. et al., 2024; Cho W et al., 2023;
Zhu J et al., 2023).

Besides, other flavonoids of S. baicalensis, such as Scutellaria
flavone Ⅰ and Scutellarin, functions in the treatment of digestive
system tumors as well. The (Figure 1) showed the characteristics of
S. baicalensis and structures of the main flavonoids, along with the
mechanisms involved in the treatment of digestive system tumors.

3 Current production of Scutellaria
baicalensis

Botanical sources of S. baicalensis and substitutes include
primarily northern S. baicalensis (such as Scutellaria viscidula
Bge., Scutellaria rehderiana Diels) and southwestern S. baicalensis
(such as Scutellaria amoena C.H. Wright, Scutellaria hypericifolia
Levl., Scutellaria likiangensis Diels and Scutellaria tenax W.W.
Smith var. patentipilosa (Hand.-Mazz.) C.Y. Wu). Metabolomics
studies have shown that the accumulation of primary metabolites,
such as flavonoids, of S. baicalensis showed significant
differentiation depending on the latitude and longitude of the
growing site (Sun et al., 2023b). Using MaxEnt and ArcGIS
systems to predict the ecological suitability of S. baicalensis, it
was found that the main suitability zones in China were
distributed in subalpine evergreen coniferous scrub, norm
temperate and temperate montane coniferous forests, as well as
temperate steppe-zed shrub deserts (Xu et al., 2024). However, the
analysis of S. baicalensis and wined S. baicalensis using HPLC
fingerprinting technique showed that the contents of the main
components of several dried herbs of the same herb originating
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from different places were basically the same, and the large-scale
application of S. baicalensis was still secured (Xiong Y et al., 2018). In
addition, it was experimentally confirmed that SSR molecular marker
technology based on the combination of 3 groups of primers could
reliably identify the genetic material of S. baicalensis from different
origins (Liu et al., 2021). Due to its wide geographical distribution and
different concoctions, the pharmacological effect of S. baicalensis dried
herbs has obvious differences. For example, one study reported that the
constituents of the dried herbs had high similarity but significant
geographic variations among homologous Chinese herbs (Liu et al.,
2023c). Another recent study found that S. baicalensis from Gansu,
Shandong and Henan provinces had the highest flavonoid content and
best quality after HPLC determination in various genuine producing
areas in China (Zheng Y. et al., 2023). Interestingly, besides baicalein,
oroxylin-A and baicalin, differences in antioxidant activity in vitro can
also be a useful way to differentiate between different sources of
S. baicalensis (Yuran et al., 2024). From these, it can be seen that
there are already clear criteria for its botanical sources, which creates a
convenient way for subsequent research and use.

4 Therapeutic role of Scutellaria
baicalensis in digestive system tumors

4.1 Oral squamous cell carcinoma and
laryngeal cancer

OSCC is the most common and fatal malignant tumor in the
head and neck region, which is prone to metastasis through the
lymphatic system to become a systemic cancer (Tandon A et al.,

2023). And the incidence of laryngeal cancer is increasing worldwide
(Nocini R et al., 2020). The therapeutic effects of flavonoids from S.
baicalensis on them have been recognized recently (Table 1).

4.1.1 Baicalein
Recent studies illustrate that baicalein directly inhibits OSCC

growth in several methods. Specificity protein 1 (Sp1), a zinc finger
type-transcription factor, is involved in multiple behaviors of tumor
cells such as growth, survival and apoptosis (Pan J et al., 2024).
Compared with that cells treated with DMSO, Western blot analysis
showed that G0/G1 phase cycle arrest and apoptosis induced by
baicalein in OSCC cell lines SCC25, CAL27, and HSC3 cells was
accompanied by elevated levels of cleaved caspase-9, cleaved
caspase-3, cleaved PARP-1 and decreased levels of Sp1, p50, and
p65. In addition, silencing Sp1 was able to inhibit NF-κB activity.
Anatomical and immunohistochemical analyses of baicalein-treated
xenograft mice showed the same changes of SCC25 cells. This study
provides a more comprehensive reference for the inhibitory
proliferative and pro-apoptotic effects of baicalein on OSCC cells
through Sp1 (Gao Z et al., 2020). Besides, baicalein induced S-phase
arrest and apoptosis in tongue squamous cell carcinoma CAL27 cells
through dose-dependent upregulation of reactive oxygen species
(ROS) and downregulation of MMP, which could be reversed by
ROS inhibitors, suggesting a role for activation of mitochondrial
oxidative stress pathway (Shi NX et al., 2023). Consistent with this,
baicalein induced autophagy and apoptosis in CAL27 cells through
dose-dependent upregulation of ROS, Bax, cleaved PARP and
downregulation of Bcl-2, which could be reversed by the ROS
inhibitor NAC as well. Interestingly, pharmacological or genetic
blockade of autophagy enhanced baicalein-induced apoptosis. It is

FIGURE 1
Mechanisms of Scutellaria baicalensis and the main flavonoids in the treatment of digestive system tumors.
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reasonable to assume that inhibiting ROS-dependent autophagy and
thereby enhancing baicalein effects is a viable therapeutic strategy
for OSCC (Li B et al., 2017).

Baicalein is also known to be therapeutic for laryngeal cancer.
MicroRNAs (miRNAs) are a class of endogenous non-protein-
coding RNAs, among which miRNA-125b-5p and miRNA-499
widely regulate the growth and apoptosis of a variety of tumors
such as neck squamous cell carcinoma, chordoma, and HCC. Many
studies have shown that they can act as valuable tumor suppressors
(Yuan L. et al., 2023; Huo X et al., 2023; Jiang JK et al., 2023). In
connection with this, HDAC1 has been confirmed to be a
downstream target of miRNA- 499a against malignant tumors
and upregulated in laryngeal cancer cells (Ishikawa D et al., 2019;
Chistiakov DA et al., 2017). Wang et al. (2023c) found that baicalein
dose-dependently inhibited the proliferation and invasion of
laryngeal carcinoma AMC-N-8 cells, inducing apoptosis by
inhibiting interferon regulatory factor 4 (IRF4) thereby activating
pro-apoptosis-related proteins Cyto-c, Bax, cleaved caspase-3 and
inhibiting apoptosis inhibitory protein Bcl-2 in laryngeal cancer
cells. Then, miR-125b-5p inhibitor reversed the inhibitory effect of
baicalein, which confirmed the target (Wang et al., 2023a). Another
study of them showed that autophagy induced by baicalein is
accompanied with upregulated miR-449a and downregulated
HDAC1 expression in Hep2 cells. The autophagy inhibitor 3-MA
partially deregulated the inhibitory effect, confirming that baicalein
inhibits laryngeal cancer development via autophagy in the miR-
499a/HDAC1 axis (Wang J et al., 2023b). Together, these
experiments demonstrate the role of miRNA-mediated autophagy
and apoptosis in baicalein’s anti-laryngeal cancer process.

4.1.2 Baicalin
Dysregulation of the JAK2/STAT3 pathway, an important

intracellular cascade, promotes tumor development (Kohal et al.,
2024). A recent study measured IL levels by using ELISA and JAK2/
STAT3 pathway-associated proteins’ level by using Western blot.
Baicalin induced apoptosis and inhibited cell proliferation, invasion
in CAL27 cells, accompanied by BAX upregulation and IL-18, IL-1β,
p-JAK2/JAK2, p-STAT3/STAT3, PCNA, and MMP-9
downregulation. It can be seen that baicalin also counteracts
OSCC by inhibiting the JAK2/STAT3 pathway, which works
both in OSCC and CRC. Unfortunately, these inferences were
not verified by further animal experiments (Dai Q et al., 2024).
The Notch signaling pathway is an intercellular communication
pathway that regulates organ development and intracellular
homeostasis,whose abnormality has been associated with tumors
in the oral cavity (Ogi K et al., 2024). Flow cytometry and transwell
indicate that treatment in mice showed that baicalin exhibited a
dose-dependent inhibitory effect on the viability, proliferation and
invasion of tongue cancer cells CAL27 accompanied by a reduction
in the expression of Notch and JAG1 proteins as well as suppressed
EMT, not accompanied by significant toxicity to normal human oral
epithelial cells HOEC by MTT assay. In contrast, the Notch/
JAG1 pathway activator VPA was able to reverse the above
effects, confirming that baicalin exerts its antitumor effects
through inhibition of the Notch/JAG1 pathway (Wang et al.,
2023a). Knockdown of FTH1, a vital constituent of ferritin that
is negatively correlated with OSCC differentiation, resulted in the
upregulation of E-cadherin and downregulation of vimentin, snail,
slug, MMP2, MMP9 in Cal27 and SCC25 cells, suggesting that

TABLE 1 Flavonoids of Scutellaria baicalensis in the treatment of oral squamous cell carcinoma and laryngeal cancer.

Name Dose Subjects Mechanism Effect Reference

Baicalein 30, 60, 120 μM 24, 48, 72h;
30 mg/kg/2 days ip for 21 days

SCC25 cells; SCC25 cells
xenograft BALB/c mice

cleaved caspase-9↑ cleaved caspase-3↑
cleaved PARP-1↑
Sp1↓ p50↓ p65↓

Promote apoptosis
Induce cell cycle arrest at
G0/G1 phase

Gao Z et al. (2020)

12.5, 25, 50, 100, 200 μmol/L
for 48 h

CAL27 cells ROS↑MMP↓ Promote apoptosis
Induce cell cycle arrest at S
phase

Shi NX et al.
(2023)

25, 50, 100 μM for 4 h CAL27 cells ROS↑ Bax↑ cleaved PARP↑ Bcl-2↓ Promote autophagy ang
apoptosis

(Liu B et al., 2017)

10, 30, 100, 300 μmol/L for 48 h AMH-HN-8 cells Cyto-c↑ Bax↑ cleaved caspase-3↑Bcl-2↓ Inhibit proliferation and
invasion
Promote apoptosis

Wang et al.
(2023a)

200 μmol/L for 24 h Hep-2 cells Beclin-1↑ LC3Ⅱ↑ miR-449a↑ p62↓ LC3Ⅰ↓
HDAC1↓

Inhibit proliferation
Promote apoptosis

Wang et al.
(2023b)

Baicalin 100, 150, 200 mg/L for 1 w CAL27 cells BAX↑ IL-18↓ IL-1β↓ p-JAK2/JAK2↓
p-STAT3/STAT3↓ PCNA↓ MMP-9↓

Inhibit proliferation and
invasion
Promote apoptosis

Dai Q et al. (2024)

10, 20, 30, 40, 50, 100 μ for 24 h CAL27 cells E-cadherin↑ vimentin↓ Snail↓ Notch↓
JAG1↓

Inhibit EMT, cell viability
and proliferation
Promote apoptosis

Wang et al.
(2023a)

5, 10, 20, 40, 60 μM for 24 h CAL27 cells Fe2+↑ MDA↑ ROS↑ GSH↓ Inhibit EMT
Promote ferroptosis

Wen Z et al.
(2024)

Wogonin 25, 50, 100, 200, 400 mg/L for
24, 48, 72 h

HN-6 cells Bax↑ Bel-2↓ Inhibit proliferation
Promote apoptosis
Induce cell cycle arrest at
G0/G1 phase

Dong WX et al.
(2017)
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FTH1 favors EMT, invasion and migration of OSCC cells. In
contrast, baicalin was able to lead to upregulation of Fe2+, MDA,
ROS and downregulation of GSH, reversing EMT induced by
FTH1 overexpression and promoting ferroptosis (Wen Z et al.,
2024). These above studies reflect a growing interest in the
baicalin recently.

4.1.3 Wogonin
Previous studies reported a direct inhibitory effect of wogonin

concentration- and time-dependent on the proliferation of HN-6
cells, which was associated with cell arrest in the G0/G1 phase and
apoptosis (Dong WX et al., 2017).

4.2 Esophageal cancer

EC, mainly consisting of two subtypes called esophageal
squamous cell carcinoma (ESCC) and esophageal
adenocarcinoma (EAC), is most common in East Asia and is
becoming younger (Arnold M et al., 2020). Currently, the
inhibitory effect of several flavonoids from S. baicalensis on EC
has been demonstrated yet calls for more research (Table 2).

4.2.1 Baicalein
p21-activated kinase 4 (PAK4) is a serine threonine kinase, the

levels of which correlate with the progression of a variety of cancers
and could serve as a prognostic marker (Tang et al., 2023).
Experiments in vivo showed that baicalein dose-dependently
inhibited the growth of EC in mice with a decrease in
PAK4 protein (Liu et al., 2023d).

Another study demonstrated that baicalein triggered G1 phase
arrest and upregulation of L-phenyl propionamide, time- and dose-
dependently inhibiting KYSE150 cell proliferation, migration and
invasion. Furthermore, pretreatment of baicalein increased the
sensitivity of tumor cells to 6Gy ray by down-regulating HIF-1A
and PKM2, the key regulators of glycolysis. In conclusion, by
interfering with the cellular glycolysis process, baicalein not only
exerts a direct anti-EC effect, but also synergizes radiation therapy
(Guo D et al., 2022).

4.2.2 Baicalin
Time- and dose-dependent inhibition of ECA109 cell

proliferation induced by baicalin is accompanied by upregulation

of Bad, one of the major pro-apoptotic proteins of the Bcl-2 family,
and downregulation of cIAP1, an apoptosis inhibitory protein
belonging to the mitochondrial pathway in apoptosis, implying
that baicalin can inhibit EC development through enhancing
apoptosis (Liu SS et al., 2019).

4.2.3 Wogonin
It was found that wogonin was able to block KYSE150 cells in the

G0/G1 phase, directly inhibiting tumor cell proliferation and
inducing apoptosis (Huang WF et al., 2018).

4.3 Gastric cancer

GC are malignant tumors with highly heterogeneous and
invasive properties and young-onset has been on the rise in the
last decade (Li Y et al., 2024). Early detection rates are low therefore
often treated after complications in mid to late stages, which leads to
dismal overall survival (Ren LF et al., 2024). The treatment of GC by
S. baicalensis and its flavonoids in vitro and in vivo has been the
focus of research in the last decade (Table 3).

4.3.1 Scutellaria baicalensis
Network pharmacological analysis predicted that the major

components of S. baicalensis for the treatment of GC include
wogonin, baicalein, acacetin, moslosooflavone, and oroxylin A,
and that the major pathways are the PI3K-Akt, P53, and VEGF
pathways. Subsequent experiments confirmed that S. baicalensis
extract concentration-dependently inhibited the growth and
migration of AGS and MGC-803 cells, accompanied by a
decrease in the phosphorylation level of Akt proteins and an
upregulation of the expression of p53 proteins. However, other
mechanisms uncovered in this study still need to be further validated
(Cui Y et al., 2023).

4.3.2 Baicalein
Baicalein was reported to time- and dose-dependently inhibited

proliferation and induced apoptosis in SGC-7901 cell, accompanied
by S-phase arrest, which was consistent with the results of treatment
in vivo (Mu J et al., 2016). Likewise, baicalein inhibit the
proliferation and migration of GC cells SGC-7901 by down-
regulating matrix metalloproteinase (MMP)-2 and −9 expression.
While the p38 inhibitor SB203580 and activator chemical

TABLE 2 Flavonoids of Scutellaria baicalensis in the treatment of EC.

Name Dose Subjects Mechanism Effect Reference

Baicalein 1, 1.5, 2 mg/kg/d ip OE19 cells xenograft NOG mice PAK4↓ Inhibit proliferation Liu et al. (2022)

6.7, 20 μM KYSE150 cells HIF-1A↓PKM2↓ Inhibit proliferation, migration and invasion
Promote apoptosis
Induce cell cycle arrest at G1 phase
Enhance sensitivity to chemotherapy

Guo D et al. (2022)

Baicalin 25, 50, 100, 200 μmol/L ECA109 cells Bad↑cIAP1↓ Inhibit proliferation
Promote apoptosis

Liu SS et al. (2019)

Wogonin 10, 25, 50, 100, 150, 200 μM KYSE150 cells ---- Inhibit proliferation
Promote apoptosis
Induce cell cycle arrest at G0/G1 phase

Huang WF et al. (2018)
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TABLE 3 Scutellaria baicalensis and flavonoids in the treatment of GC.

Name Dose Subjects Mechanism Effect Reference

Scutellaria
baicalensis

20, 40, 80, 120,
160, 200 μg/mL

AGS and MGC-803
cells

p53↑p-Akt↓ Inhibit growth and
proliferation

Cui et al. (2023)

Baicalein 30, 60,
120 μmol/L

SGC-7901 cells Bax↑cleaved PARP↑Bcl-2↓ Inhibit proliferation,
migration and invasion
Promote apoptosis
Induce cell cycle arrest at S
phase

Mu J et al.
(2016)

10, 20, 40, 80, 120,
160, 200, 400 μM

SGC-7901 cells MMP-2↓MMP-9↓ Inhibit proliferation,
migration and invasion
Promote apoptosis

Yan X et al.
(2015)

5, 15, 25 μmol/L HGC-27cells E-cadherin↑Vimentin↓ Inhibit proliferation, EMT
Induce cell cycle arrest atG0/
G1 phase

Duan YX et al.
(2023)

10, 50 μmol/L MGC80-3, HGC-27,
BGC-823 cells

GRP109A↑ Inhibit proliferation,
migration and invasion

Hua WF et al.
(2020)

25, 50 μM AGS cells TGF-B↓Smad4↓N-cadherin↓vimentin↓ZEB1↓ZEB2↓ Inhibit migration and
invasion

Chen F et al.
(2014)

15, 30, 60, 120 μM
48 h; 15,
50 mg/kg/d ig

AGS cells; AGS cells
xenograft BALB/c
mice

GRP78↑CHOP↑BTG3↑ Inhibit proliferation
Promote apoptosis
Induce cell cycle arrest at G0/
G1 phase

Shen J et al.
(2023)

5, 15, 25 μmol/L HGC-27 and SGC-
7901 cells

E-cadherin↑cleaved Caspase-
3↑Vimentin↓Snail↓MMP2↓MMP9↓Bcl-2↓p-PI3K↓p-
AKT↓p-mTOR↓

Inhibit proliferation and
migration
Promote apoptosis

Qiao D et al.
(2021)

10, 20, 40, 60,
80 μM

AGS cells PTEN↑p-Akt↓HIF-1α↓HK2↓LDHA↓PDK1↓ Inhibit proliferation
Increase sensitivity to 5-FU

Chen F et al.
(2015)

2.5, 5, 10, 20,
40 μmol/L

SGC-7901 cells ---- Inhibit proliferation
Promote apoptosis
Increase sensitivity to
oxaliplatin

Yang (2016)

12.5, 25, 50,
100 μM

SGC-7901 cells LC3 B↑p-IκBα↑p62↓p-mTOR↓p-Akt↓ Increase sensitivity to
cisplatin

Li et al. (2020a)

Baicalin 40, 80, 120,
160 μmol/L

BGC-823 and MGC-
803 cells

caspase-3↑caspase-9↑Bax↑Bcl-2↓ Inhibit proliferation
Promote apoptosis

Wang et al.
(2017b)

10, 20, 40, 80, 160,
320 μmol/L

SGC-7901 cells TLR8↑HIF-1α↑PDGF-β↑pten↑ Inhibit proliferation Bai ZQ et al.
(2017)

50, 100,
200 μmol/L

SGC-7901 cells Bax↑Bcl-2↓cyclinD1↓cyclinA1↓PI3K↓ Inhibit proliferation Zheng XK et al.
(2016)

10, 20, 40, 80, 160,
320 μmol/L

MGC-803 and BGC-
823 cells

FAS↑FASL↑TRAIL↑caspase-3↑caspase-8↑ Inhibit proliferation
Promote apoptosis

Chen et al.
(2015)

40, 80, 120,
160 μmol/L

SGC-803 and BGC-
823 cells

p53↑PTEN↑TIMP3↑MMP3↓ Inhibit migration Wang et al.
(2016a)

100, 200,
400 μmol/L

SGC-7901 cells PTGS2↑MDA↑p53↑GPX4↓SLC7A11↓ Inhibit viability Yuan et al.
(2023c)

6.25, 12.5, 25, 50,
100 μM/mL

AGS cells LDH↑GSDMD-N↑IL-18↑IL-1β↑Caspase-1↑ROS↑ Promote pyroptosis Liu et al. (2024a)

5, 10, 20, 40, 60,
80 μmol/L

SGC-7901 cells PCNA↓ Inhibit proliferation
Increase sensitivity to
paclitaxel

Li et al. (2022a)

30, 60, 90, 120,
150 ng/mL

AGS and SGC-7901
cells

TFR1↑NOX1↑COX2↑ROS↑FTH1↓FTL↓GPX4↓ Inhibit proliferation,
migration and invasion

Yuan et al.
(2023a)

Wogonin 20, 200 μmol/L SGC-7901, BGC-
823, MKN-45 cells

β-catenin↓C-myc↓Cyclin D1↓ Inhibit proliferation
Promote apoptosis

Wang et al.
(2016b)

(Continued on following page)
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anisomycin were able to enhance and attenuate this anticancer
effect, respectively, demonstrating that baicalein inhibits GC cell
invasion and metastasis through the p38 signaling pathway (Yan X
et al., 2015). Baicalein inhibited the proliferation, migration and
invasion of MGC80-3, HGC-27 and BGC-823 cells, which was
positively correlated with the expression of the nicotinic acid
receptor GPR109A protein, a G-protein-coupled receptor with
tumor-suppressive effect. Silencing this protein partially reversed
the inhibitory effect of baicalein, suggesting that GRP109A is one of
the targets of baicalein to inhibit the proliferation of GC (Hua et al.,
2020). Transforming growth factor-B (TGF-B) is a multifunctional
cytokine that regulates tumor cells (Rodrigues-Junior et al., 2024).
Study have shown that baicalein reduces the expression of TGF-B,
Smad4 and its downstream N-cadherin, vimentin, ZEB1, ZEB2,
inhibiting AGS cell migration and invasion (Chen F et al., 2014). In
addition, the role of baicalein in triggering cell cycle arrest and
inhibiting EMT and proliferation in HGC-27 cells was also
recognized (Duan YX et al., 2023). Endoplasmic reticulum stress
(ERS), a universal cellular stress response, plays a very important
role in the early adaptive survival and subsequent development of
GC cells (Mommersteeg MC et al., 2022). Expression of B-cell
translocation gene 3 (BTG3) regulates multiple life processes in
GC cells by blocking the PI3K/AKT/mTOR pathway (Cheng YC
et al., 2020). Baicalein inhibits cell proliferation and induced cellular
G0/G1 cycle arrest and apoptosis in HGC-27 and AGS cells
accompanied by an increase in ERS-associated GRP78, CHOP
protein and BTG protein. Further treatment experiment by ERS
blocker 4-PBA and PI3K inhibitor LY294002 reversely demonstrated
that baicalein triggered ERS-induced apoptosis by blocking the PI3K/
AKT pathway through activation of BTG3. Treatment in xenograft
mice verified the above effect as well (Shen J et al., 2023). Focal adhesion
kinase (FAK), which is often overexpressed in GC cells, is involved in
the proliferation, survival and migration of tumor cells (Gao J et al.,
2023). Baicalein dose-dependently upregulated E-cadherin, the cleaved
Caspase-3 and downregulated the expression of Vimentin, Snail,
MMP2, MMP9, Bcl-2, p-PI3K, p-AKT, and p-mTOR in HGC-27
and SGC-7901 cells, which appeared to inhibit tumor growth in
vivo and in vitro. This indicates that baicalein inhibits cell migration
and induces apoptosis by suppressing EMT. In addition, baicalein
downregulates FAK expression, which inhibits the PI3K/AKT/
mTOR signaling pathway and reduces cell viability, suggesting that
FAK is one of the targets for baicalein to exert its therapeutic effects
(Qiao D et al., 2021).

In addition to direct inhibitory effects, baicalein also enhances
the effects of chemotherapeutic drugs at multiple targets. For
example, rapid growth of malignant tumors tends to create a
hypoxic microenvironment, which in turn can increase the
resistance of tumor cells to chemotherapeutic drugs (Fu J et al.,
2024). Hypoxia inducible factor-1α (HIF-1α) intensively participate
in hypoxia-induced drug resistance in tumor cells, and its expression
is inhibited by the oncogene PTEN (Shen G et al., 2022). A previous
study found that baicalein concentration-dependently enhanced
PTEN expression and attenuated HIF-1α, p-Akt, and glycolysis-
associated enzymes hexokinase-2 (HK2), lactate dehydrogenase A
(LDHA), pyruvate dehydrogenase kinase-1 (PDK1) expression,
inhibited proliferation of AGS cell and reversed hypoxia-induced
5-FU resistance. This suggests that inhibition of glycolysis via the
PTEN/Akt/HIF-1α pathway is one of the mechanisms underlying
the anticancer effects of baicalein (Chen F et al., 2015). Baicalein was
able to concentration-dependently increase the inhibitory effect of
oxaliplatin on the proliferation of SGC-7901 cells and induce
apoptosis (Yang CL, 2016). Similarly, baicalein would increase
the sensitivity of cisplatin-resistant cells SGC-7901 cells to
chemotherapeutic drugs accompanied by the upregulation of
LC3 B, p-IκBα and the downregulation of p62, p-mTOR, and
p-Akt as well as the regulation of Nrf2/Keap1 pathway (Li
et al., 2020a).

4.3.3 Baicalin
Time- and dose-dependent inhibition of BGC-823 and MGC-

803 proliferation and induction of apoptosis by baicalin was
previously reported (Wang et al., 2017b). The oncogene PTEN
also inhibits the malignant behavior of tumor cells by negatively
regulating the activation of the PI3K/Akt/mTOR pathway (Bao Y
et al., 2024). Baicalin induces time- and dose-dependent inhibition
of cell proliferation in SGC-7901 cells by upregulation of protein of
TLR8, HIF-1α, PDGF-β and PTEN expression (Bai et al., 2017).
Another study showed that baicalin (50–200 μmol/L 48 h) inhibited
SGC-7901 cells with the upregulation of Bax and the
downregulation of Bcl-2, cyclinD1, cyclinA1, and PI3K,
suggesting that baicalin inhibits GC cell proliferation by blocking
PI3K/Akt and its downstream pathway (Zheng et al., 2016). Factor
associated suicide (FAS) and the corresponding factor associated
suicide ligand (FASL) co-activate apoptosis (Li et al., 2017). TNF-
related apoptosis-inducing ligand (TRAIL) has the potential to
induce apoptosis in tumor cells too (Guerrache and Micheau,

TABLE 3 (Continued) Scutellaria baicalensis and flavonoids in the treatment of GC.

Name Dose Subjects Mechanism Effect Reference

10, 20, 40, 80,
160 μM

MGC-803 cells E-cadherin↑Vimentin↓ZEB1↓ Inhibit proliferation,
migration and invasion
via EMT

Dai JF et al.
(2020)

5, 10, 15, 20, 25,
30 μg/mL

SGC-7901 cells LDH↓SDH↓ATP↓HIF-1α↓MCT4↓ Inhibit proliferation Wang et al.
(2019a)

5, 10, 15, 20, 25,
30 μg/mL

SGC-7901 cells HIF-1α↓MCT-4↓ Inhibit proliferation Wang et al.
(2019b)

10, 50, 200 μM BGC-823cells; BGC-
823 cells xenograft
zebrafish

p-JNK↑ Promote apoptosis Hong ZP et al.
(2018)
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2024). Experiment showed that baicalin time- and concentration-
dependently inhibited MGC-803 and BGC-823 cell proliferation
and induced apoptosis accompanied by upregulation of FAS, FASL,
TRAIL, caspase3 and caspase8 expression. It is reasonable to
speculate that the antitumor effects of baicalin may be related to
apoptosis mediated by the death receptor pathway (Chen FQ et al.,
2015). MMPs disrupt the histological barrier to accelerate tumor cell
migration and, together with their inhibitors TIMPs, play a key role
in tumor invasion and metastasis (Dibdiakova K et al., 2024).
Migration of MGC-803 and SGC-823 cells inhibited by baicalin
was accompanied by upregulation of p53, PTEN, and
TIMP3 proteins and downregulation of MMP3 proteins (Wang
et al., 2016a). Baicalin time- and concentration-dependently
inhibited the activity of SGC-7901 cells without affecting normal
cells GES-1, which could not be alleviated by apoptosis inhibitor
Z-VAD-FMK and necrosis inhibitor Necrostatin-1. Following study
revealed that the inhibition of cellular viability was accompanied by
elevated levels of PTGS2, MDA, and p53, decreased levels of GPX
and SLC7A11, and decreased activity of the antioxidant GSH. The
above effects were attenuated by the addition of Fer-1, an ferroptosis
inhibitor. It is evident that baicalin-induced p53-triggered
downregulation of SLC7A11 is an important pathway of
ferroptosis in GC cells (Yuan L. et al., 2023). It was found that
baicalin upregulated LDH, GSDMD-N, IL-18, IL-1β, Caspase-1, NF-
κB, IKKB, ROS, enhanced AGS cell pyrokinesis and dose-
dependently reversed the effect of NLRP3 inhibitor
MCC950 Sodium, suggesting the involvement of the NF-B/
NLRP3 pathway (Liu J. et al., 2024).

Baicalin was able to inhibit the proliferation of SGC-7901 cells
accompanied by a decrease in the proliferative protein PCNA, either
alone or synergistically with paclitaxel, in a time- and concentration-
dependent manner (Li LJ. et al., 2022). In addition, baicalin was able
to concentration-dependently synergize with 5-FU to inhibit the
growth, migration, and invasion of AGS and SGC-7901 cells
accompanied by an increase in TFR1, NOX1, COX2, and ROS
and a decrease in FTH1, FTL, and GPX4, which was reversed by the
ferroptosis inhibitor Fer-1. Furthermore, baicalin does not kill
normal epithelial cells GES-1, showing that ROS-mediated
ferroptosis is one of the mechanisms by which baicalin is
specifically anti-GC (Yuan J. et al., 2023).

4.3.4 Wogonin
Earlier studies reported that wogonin (20–200 μmol/L 24–72 h)

was able to inhibit the proliferation of SGC-7901, BGC-823, and
MKN-45 cells in a time- and concentration-dependent manner.
Further studies revealed that wogonin-induced apoptosis in SGC-
7901 cells was accompanied by a decrease in the levels of β-catenin,
C-myc, and Cyclin D1 proteins, suggesting that the therapeutic
effect of wogonin on GC is associated with the inhibition of theWnt/
β-catenin signaling pathway (Wang et al., 2016a). In addition,
wogonin dose-dependently inhibited the proliferation, erosion
and migration of MGC-803 cells and suppressed the EMT
process by up-regulating E-cadherin and down-regulating
Vimentin, ZEB1 expression (Dai JF et al., 2020). Lactate acid
generated during glycolysis not only provides energy to tumor
cells, but also participates in the tumor microenvironment
thereby promoting malignant behavior (Chen W. et al., 2024).
Lactate dehydrogenase (LDH), as a key enzyme in glycolysis,

promotes lactate acid production together with HIF-1α. Then,
Monocarboxylate transporter-4 (MCT-4) transports lactate acid
outside the cell and exacerbates the malignant behavior of tumor
cells, whose blockade helps to reverse the immunosuppression of the
tumor (Babl N et al., 2023). Study have confirmed that wogonin
inhibited proliferation of SGC-7901 cells accompanied by a decrease
in LDH and SDH viability and a decrease in ATP, HIF-1α, and
MCT4 content (Wang et al., 2019a). Consistent with this, wogonin
time- and dose-dependently inhibited proliferation of SGC-7901
cells and downregulated HIF-1α and MCT-4 expression and LDH,
succinate dehydrogenase (SDH) activity and adenosine triphosphate
(ATP) content, suggesting that wogonin counteracts GC by
interfering with energy metabolism (Wang et al., 2019a).

Oxaliplatin in GC treatment often leads to neurological damage
(Bennedsgaard K et al., 2020). Wogonin synergized with low dose
oxaliplatin induced apoptosis in BGC-823 cells accompanied by an
JNK (Thr183/Tyr185) increase in phosphorylation. And the
synergistic treatment of the two concentration-dependently
increased LC3II formation and decreased unc51-likekinase 1
(ULK1) (Ser555) expression. In addition, wogonin also
potentiated the tumor inhibitory effect of oxaliplatin in a novel
zebrafish model in vivo. These evidences together support the
hypothesis that wogonin can enhance the anti-GC effect of
oxaliplatin by inducing apoptosis and demonstrate the value of
synergistic application of the two drugs to increase the effect and
reduce side efforts (Hong ZP et al., 2018).

4.4 Colorectal cancer

CRC is the most prevalent tumor in digestive system and
predominantly exists in the elderly population, whose occurrence
is closely related to lifestyle (Xin J et al., 2024; Marino P et al., 2024).
The current treatment of CRC mainly includes surgery,
radiotherapy, chemotherapy, and immune therapy (Shebbo S
et al., 2024). Hopefully, the effects of S. baicalensis and
flavonoids have been revealed (Table 4).

4.4.1 Scutellaria baicalensis
Scutellaria baicalensis concentration-dependently inhibited the

proliferation of CRC cell lines HT29, MC38, chemotherapy-resistant
cells H630-R1 and RKO-R10, and normal cells CCD841 in vitro
directly. Further studies revealed that S. baicalensis treatment
induced sub-G0 phase arrest and downregulated the expression
of TS, E2F1, RB, CDK4, CDK6, and cyclin D1, exposing that the
inhibition of the CDK-RB pathwaymay be one of the mechanisms of
CRC suppression. Moreover, S. baicalensis enhanced the inhibition
of 5-FU in drug-resistant H630-R1 and RKO-R10 cells,
accompanied by the downregulation of TS and ITC. Animal
studies showed that S. baicalensis exhibited synergistic effects
with 5-FU or capecitabine and did not show significant toxicity.
Notably, oral or intraperitoneal injection of baicalin did not have a
significant therapeutic effect in animal studies and deserves further
research on its dosage (Liu et al., 2023a).

4.4.2 Baicalein
Earlier studies found that baicalein dose-dependently inhibited

the proliferation and migration of HT-29 cells, accompanied by
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TABLE 4 Scutellaria baicalensis and its flavonoids in the treatment of CRC.

Name Dose Subjects Mechanism Effect Reference

Scutellaria
baicalensis

100 mg/mL; 4 g/
Kg/d ig

HT29, MC38, H630-R1, RKO-
R10,CCD841 cells; MC38 cells
xenograft C57BL/6mice

TS↓E2F1↓RB↓CDK4↓CDK6↓cyclin D1↓ Inhibit proliferation
Increase sensitivity to
5-Fu and
capecitabine

Liu et al. (2023a)

Baicalein 0, 5, 10, 20, 40,
80 μg/mL

HT-29 cells STAT3↓NF-κB↓ p53↑ Inhibit proliferation
and migration

Zhao XY et al.
(2015)

20, 40, 40 μmol/L HCT-29 cells 12-LOX↓ Xu L et al. (2020)

20, 40, 80 μmol/L SW480 cells cleaved-caspase3↑cleaved-PARP↑p-MET/MET↓p-Akt/
Akt↓p-H3/H3↓

Inhibit proliferation
Promote apoptosis

Xu JL et al.
(2022)

10, 20, 40, 80,
160 μM

HT-29, HCT-116, SW480,
SW620 cells

LC3-Ⅱ↑caspase-3↑BIRC3↑ Inhibit viability,
autophagy
Promote apoptosis

Phan T et al.
(2020)

10, 20, 40 μM HCT116 cells DEPP↑Gadd45a↑cleaved caspase-3↑cleaved caspase-
9↑p-JNK↑p-ERK↑p-p38↑

Inhibit proliferation
Promote apoptosis

Su MQ et al.
(2018)

20, 40, 60, 80, 100,
120 mol/L;
4.5 g/kg ig

HT29, DLD1 cells; Sprague-
Dawley mouse

p53↑p21↑E-cadherin↑Snail↓Twist1↓Vimentin↓ Inhibit EMT,
proliferation,
migration and
invasion

Zeng Q et al.
(2020)

50, 100,
200 μmol/L

HT-29 cells p-YAP↑p-LATS↑p-Ser↑ Inhibit proliferation Meng XC et al.
(2022)

Baicalin 50, 100, 200mg/kg
ig bid

HCT-116 cells xenograft BALB/
C mice

Inhibit proliferation
Promote apoptosis
Induce cell cycle
arrest at G2/M phase

Xu ZZ et al.
(2017)

4, 8, 16, 32, 64,
128 μmol/L;
40 mg/kg/d ip

SW620, NCM460 cells; CRC
mice induced by AOM/DSS

Caspase-3↑Caspase-9↑SUFU↑IL-1β↓IL-6↓TNF-
α↓SHH↓SMO↓Gli1↓

Inhibit proliferation Lin H et al.
(2023)

50, 100, 150,
200 μg/mL;
50 mg/kg/d ip

SW480, HCT116, HT26,
CT26 cells; CT26 cells xenograft
BALB/c mice

miR-139-3p↑CDK16↓ Inhibit proliferation
Induce cell cycle
arrest at S phase

Cai et al. (2023a)

5, 10, 20, 40,
80 μg/mL; 20,
40 mg/kg/d ip

HCT-116 and CT26 cells;
CT26 cells xenograft BALB/c
mice

cleaved caspase3↑ROS↑TIMP-2↑MMP-2↓MMP-
9↓TLR-4↓NF-κB p65↓p-IκBα↓PD-L1↓

Inhibit proliferation,
migration and
invasion
Promote apoptosis

Song L et al.
(2022)

200 mg/kg/d ig MC38 cells; MC38 cells
xenograft C57BL/6J mice

E-cadherin↑Occludin↑Vimentin↓N-cadherin↓ Inhibit EMT,
metastasis
Improve the gut
microbiota

Wei J et al.
(2023)

Wogonin 10, 20, 40 μM; 20,
40, 80 mg/Kg/
qod 20 d

HCT116, A2780, HT29 cells;
A2780 or HT29 cells xenograft
BALB/c mice

TIGAR↑PGM↓HK2↓GLUT1↓PDHK1↓LDHA↓ Inhibit cell viability Zhao Y et al.
(2018)

20, 40, 80,
160 μg/mL

SW620, SW480, HT29, HCT116,
LOVO cells

BAX↑Bcl-2↓ Inhibit EMT and
proliferation
Promote apoptosis

Mao HY et al.
(2021)

6.25, 12.5, 25,
50 μmol/L

SW480 cells BAX↑CTNNB1↓GSK3B↓BIRC5↓ Promote apoptosis
Induce cell cycle
arrest at G1

Li et al. (2020b)

0.5, 1, 2, 4μM;
2 μM/d/qod ip

SW480, HCT116 cells;
SW480 cells xenograft BALB/c
mice

E-cadherin↑vimentin↓ZEB2↓N-cadherin↓SMAD3
↓YAP1↓AXL↓CYR61↓CTGF↓IRF3↓

Inhibit survival,
EMT, migration and
invasion

You W et al.
(2022)

25, 50 μM LOVO and LOVO/DX cells ---- Inhibit migration
Promote apoptosis

Radajewska A
et al. (2023)

Scutellaria
flavone Ⅰ

80 μmol/L LOVO cells E-cadherin↑miR-378↑Vimentin↓N-cadherin↓ Inhibit EMT,
migration and
invasion

Zhang et al.
(2021b)

(Continued on following page)
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elevated p53 levels and decreased STAT3, NF-κB, suggesting that
this anticancer effect may be achieved by promoting TIGAR gene
expression and STAT3 pathway (Zhao et al., 2015). Precious study
has confirmed that 12-lipoxygenase (12-LOX), a key enzyme in the
arachidonic acid metabolic pathway, has sequentially increased
expression in normal, adenoma, and CRC tissues, and is able to
promote CRC invasion and metastasis (Li S et al., 2013). Baicalein
has shown the time- and dose-dependent reduction of 12-LOX
mRNA expression in HT-29 cells (Xu L et al., 2020). Aberrant
activation of mesenchymal epithelial transition factor (MET) and
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) has
been shown to correlate with a wide range of malignant behaviors in
CRC (Leiphrakpam and Are, 2024). Baicalein was reported to reduce
the levels of p-MET/MET, p-Akt/Akt and p-H3/H3, increased the
levels of apoptosis-associated proteins cleaved-caspase3 and
cleaved-PARP, concentration-dependently inhibiting the MET/
Akt signaling pathway and thus the SW480 proliferation and
promoting apoptosis. In addition, baicalein treatment induced a
decrease in ROS generation and (superoxide dismutase, SOD),
(catalase, CAT) activity compared to the control group (Xu JL
et al., 2022). Baicalein dose-dependently decreased the viability of
HT-29, HCT-116, SW480, and SW620 cells, which could be
enhanced by the autophagy inhibitor chloroquine (CQ). Analysis
showed increased expression of LC3-II, caspase-3, and BIRC3,
suggesting that the therapeutic effects of baicalein correlate with
inhibited autophagy and enhanced apoptosis (Phan T et al., 2020).
Decidual protein induced by progesterone (DEPP) always enhances
ROS-induced tumor cell death (Salcher S et al., 2014). Growth arrest
and DNA damage-inducible 45a (Gadd45a) is an important cell
cycle regulator counteracting tumor growth (Palomer X et al., 2024).
Baicalein could inhibit proliferation and induces apoptosis of
HCT116 cells, accompanied by upregulation of DEPP, Gadd45a,
cleaved caspase-3, cleaved caspase-9, p-JNK, p-ERK, and p-p38.
Subsequent knockdown of DEPP and Gadd45a attenuated the
effects of baicalein. In conclusion, baicalein induces apoptosis in
CRC cells through the JNK/ERK/p38 signaling pathway (Su MQ
et al., 2018). Baicalein time- and dose-dependently inhibited
viability, migration and invasion of HT29 and DLD1 cells,
accompanied by an increase in p53, p21, E-cadherin and a
decrease in Snail, Twist1, Vimentin. This suggests that baicalein
inhibits EMT in CRC cells by decreasing Snail activity (Zeng Q
et al., 2020).

In addition, baicalein has been proved to dose-dependently
potentiate the inhibitory effect of irinotecan on proliferation of
HT-29 cells accompanied by the inhibitory effect of Yes-related

protein (YAP), large-tumor suppressor kinase 1 (LATS1), and
phosphorylation of Src, which plays an important role as a non-
receptor protein complex kinase in EMT of CRC (Meng XC et al.,
2022; Sadri F et al., 2023).

4.4.3 Baicalin
DNA-mismatch repair (MMR) maintains genetic stability by

correcting mismatched DNA bases, whereas defective DNA
mismatch repair (dMMR) induces DNA mis replication and
microsatellite instability (MSI) instability leading to an increased
CRC pathogenesis increased risk (Moreau M et al., 2024). In dMMR
nude mice, baicalin increases the expression of MMR genes
hmlH1 and hMSH2, causing G2/M phase arrest and apoptosis in
HCT-116 cells, thereby inhibiting tumor growth (Xu ZZ et al., 2017).
Hedgehog signaling pathway plays an important role in the
inflammatory cancerous transformation of CRC, consisting of
activation of smoothened (SMO) by elevated sonic hedgehog
(SHH), alleviation of serine/threonine kinase (SUFU) activation,
translocation of Glioma (Gli1) proteins, and ultimately cellular
hyperproliferation (Wu H et al., 2023). Baicalin was able to time-
and dose-dependently inhibit proliferation of SW620 cells, which
was accompanied by an increase in caspase-3, caspase-9, SUFU
activity and a decrease in IL-1β, IL-6, TNF-α, SHH, SMO, and
Gli1 levels. Experiments in CRC mice have also confirmed the effect
of baicalin on the Hedgehog pathway inhibition. However,
prolonged and high doses of baicalin also inhibited normal
colonic epithelial NCM460 cells, warning that its overuse should
be guarded against in the clinic (Lin H et al., 2023). Cyclin-
dependent kinase 16 (CDK16) regulates cell differentiation in
physiological state while favoring tumor development in
pathological state, and can be used as a marker for the
prognostic situation of CRC (Guan L et al., 2022). Baicalin
inhibited the prognostic status of CRC in vitro by increasing the
miR-139-3p and decreasing the CDK16 levels, resulting in S-phase
arrest and cell viability inhibition in SW480, HCT-116, and
CT26 cells, which can be reversed by miR-139-3p silencing and
CDK16 overexpression. Experiments in vivo also support the
conclusion that baicalin treats CRC by modulating the miR-139-
3p/CDK16 axis (Cai R. et al., 2023). Baicalin exerts anti-proliferative,
anti-migratory, anti-erosive and pro-apoptotic effects in HCT-116
and CT26 cells and did not lead to pathological changes in animals.
Meanwhile, the increase in PD-L1 levels and decrease in TLR-4, NF-
κB p65, and p-IκBα levels imply that baicalin functions by
improving immunity and inhibiting the TLR-4/NF-κB pathway
(Song L et al., 2022). Animal experiments revealed that a high-fat

TABLE 4 (Continued) Scutellaria baicalensis and its flavonoids in the treatment of CRC.

Name Dose Subjects Mechanism Effect Reference

Scutellarin 20, 40, 80, 120,
160, 200, 240, 280,
300 μg/mL

HCT-116 cells caspase-3↑caspase-9↑Bax↑MST1↑LATS1↑Bel-2↓p-
YAP1↑YAP1↓TAZ↓c-Myc↓

Inhibit survival and
migration
Promote apoptosis

Yang H et al.
(2023)

40, 80, 160 g/mL;
25, 50, 100 mg/kg/
d ip

HT29-CSC cells; HT29 cells
xenograft BALB/c mice

Gli1↓Ptch1↓CD133↓Lgr5↓c-Myc↓Ki-
67↓CK20↓Nanog↓

Inhibit proliferation
and differentiation

Lei N et al.
(2020)

40, 80, 120, 160,
200, 240,
280 μmol/L

HCT-116 cells cleaved caspase-3↑p53↑p-ERK1/2↑p62↓c-Met↓Akt↓ Promote apoptosis
Increase sensitivity to
oxaliplatin

Yang HJ et al.
(2022)

Frontiers in Pharmacology frontiersin.org10

Zhao et al. 10.3389/fphar.2024.1483785

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1483785


diet led to enhanced CRC invasiveness by elevating E-cadherin and
Occludin mRNA levels and decreasing Vimentin and N-cadherin
mRNA levels. Treatment with baicalin was able to reverse the
resulting CRC live metastasis by inhibiting EMT in animals
compared to controls, a process that was accompanied by an
improvement in the composition of the gut microbiota (Wei J
et al., 2023).

4.4.4 Wogonin
It was shown that low doses of wogonin dose-dependently

inhibited the survival of HCT116 and HepG2 cells, which express
wp-p53, by up-regulating TIGAR and down-regulating PGM, HK2,
GLUT1, PDHK1, and LDHA. These effects were also observed in
ovarian cancer A2780 cells in xenograft mice, while absent in p53-
deficient HCT116 in vitro and HT-29 cells in vivo. Further studies
revealed that wogonin inhibited the interaction of p53 with its
degradation factor MDM2. Thus, inhibition of glycolysis due to
p53 stabilization is involved in the anti-tumor effects of wogonin
(Zhao Y et al., 2018). Biliverdin reductase A (BLVRA), a soluble
NADPH-dependent enzyme, functions by maintaining intracellular
redox reactions and its elevation favors CRC growth (Mao H et al.,
2020). The expression of BLVRA in the CRC cell lines SW620,
SW480, HT29, HCT116, and LOVO were all significantly higher
than in normal intestinal epithelial FHC cells, which is consistent
with the report. Further experiment revealed that wogonin had a
time- and concentration-dependent inhibitory effect on the
proliferation of HT29 and SW620 cells, which was accompanied
by increased levels of apoptosis, EMT inhibition and decreased
BLVRA expression (Mao HY et al., 2021). Wogonin was shown to
dose-dependently inhibit proliferation of SW480 cells and induce
the cell cycle arrest in G1 phase, accompanied by the upregulation of
BAX and the downregulation of CTNNB1, GSK3B, and BIRC5,
demonstrating that wogonin also counteracts CRC by inhibiting the
Wnt/β-catenin pathway (Li et al., 2020b). Interferon regulatory
factor 3 (IRF3), which often suggests a poor prognosis for CRC
patients, is an agonist of YAP1 and a target for tumor therapy (Chen
YJ et al., 2021). Wogonin inhibited survival, migration and invasion
of SW480 and HCT116 cells accompanied by upregulation of
E-cadherin and downregulation of vimentin, ZEB2, N-cadherin,
SMAD3 as well as YAP1, AXL, CYR61, CTGF, and IRF3, which were
reversed by YAP1 overexpression. Animal experiments were
consistent with the above results. It is evident that wogonin
inhibits the EMT process in CRC by regulating the IRF3-
mediated Hippo pathway (You W et al., 2022).

Meanwhile, cellular experiments have shown that adding
wogonin would synergize with irinotecan to promote apoptosis
and inhibit migration of drug-sensitive LOVO and doxorubicin-
resistant LOVO/DX cells directly. However, their synergistic effects
in tumor-bearing animals are still unknown (Radajewska A
et al., 2023).

4.4.5 Others
In addition to the above, other flavonoids of S. baicalensis also

have therapeutic effects on CRC. For example, Scutellaria flavone Ⅰ
inhibited EMT by up-regulating E-cadherin and down-regulating
N-cadherin, and Vimentin accompanied by miR-378 elevation,
inhibiting migration and invasion of LOVO cells (Zhang et al.,
2021b). Transcriptional co-activator with PDZ-bindingmotif (TAZ)

is an important target of the Hippo pathway and contributes to CRC
angiogenesis (Shen Y. et al., 2021). Scutellarin concentration-
dependently inhibited survival and migration and induced
apoptosis of HCT-116 cells accompanied by upregulation of
LATS1, MST1, p-YAP and downregulation of YAP1, TAZ,
c-Myc, suggesting that scutellarin may induce apoptosis through
activation of Hippo-YAP/TAZ pathway in CRC cells (Yang H et al.,
2023). The tumor stem cell markers Lgr5 and Nanog are important
reference for CRC development (Ahmed EM et al., 2023; Vasefifar P
et al., 2022). Scutellarin concentration-dependently inhibited the
growth and transformation of tumor stem cells HT-29CSC in vitro
accompanied by a decrease in the expression of Lgr5, CK20.
Treatment on animals showed that scutellarin reduced the
expression levels of Gli1, Ptch1, CD133, Lgr5, c-Myc, Ki-67,
CK20, and Nanog. It can be seen that scutellarin interferes with
CRC stem cell differentiation in vitro and in vivo by inhibiting the
hedgehog pathway (Lei N et al., 2020).

More than direct therapeutic effects, scutellarin was also shown
to dose-dependently enhance the effects of oxaliplatin in promoting
apoptosis in HCT-116 cells accompanied by the upregulation of p53,
p-ERK1/2 and the decrease of c-Met, Akt, which may be associated
with the activation of ERK/p53 pathway and inhibition of c-Met,
Akt./p53 pathway activation and c-Met/Akt pathway. This suggests
that the mitochondrial pathway is also involved in the treatment of
colorectal cancer with scutellarin (Yang HJ et al., 2022).

4.5 Hepatocellular cancer

HCC percentages 75%–85% of tumors in liver, which mostly
develops from chronic liver disease and is widely distributed in East
Asia and North Africa. Currently, its treatment mainly includes
multiple kinase inhibitors (MKIs), such as sorafenib and
regorafenib, ablation, surgery and immunotherapy (Chen W
et al., 2024). In recent years, the therapeutic role of S. baicalensis
in HCC has been gradually revealed through the intervention of
ferroptosis, apoptosis, EMT and other mechanisms (Table 5). A
recent meta-analysis suggested the efficacy and safety of S.
baicalensis and its flavonoids in HCC treatment (Ma et al., 2023a).

4.5.1 Scutellaria baicalensis
Network pharmacological analysis suggested that JUN, RELA,

and AKT1 might be the key targets for S. baicalensis to exert
therapeutic effects on HCC. Subsequent experiments
demonstrated that wogonin and baicalein could concentration-
dependently inhibit HepG2 and Huh7 cell viability accompanied
by elevated levels of ROS and mRNA expression of JUN, RELA, and
AKT1, respectively, which provided a reference for future studies
(Cai X. et al., 2023). Iron-responsive element binding protein 2
(IREB2), glutathione peroxidase 4 (GPX4), synthetase long chain
family member 4 (SLC7A11) are important factors regulating
ferroptosis (Fan H et al., 2022; Zhang W. et al, 2024; Koppula P
et al., 2021). It was found that Scutellaria Barbata extract dose-
dependently inhibited the growth of SMMC-7721, HepG2, and
Huh7 cells compared to the blank control group, which was
accompanied by a decrease in the ferroptosis inducers GPX4 and
SLC7A11 proteins, and a decrease in the ferroptosis inhibitors
IREB2 and ACSL4 proteins. In addition, animal experiments also
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TABLE 5 Scutellaria baicalensis and its flavonoids in the treatment of HCC.

Name Dose Subjects Mechanism Effect Reference

Scutellaria
baicalensis

0.65, 1.25, 2.5, 5,
10 μM

HepG2 and Huh7 cells ROS↑JUN↑RELA↑AKT1↑ Inhibit viability Cai et al. (2023b)

3.15, 6.3, 12.5,
25, 25, 50 mg/
mL; 140 g/d ig

SMMC-7721, HepG2,
Huh7 cells; HepG2 or
Huh7 cells xenograft
BALB/c mice

IREB2↑ACSL4↑GPX4↓SLC7A11↓ Inhibit proliferation
Promote ferroptosis

Li et al. (2022b)

15.625, 31.25,
62.5, 125, 250,
500,
1000 μg/mL

SK-Hp-1 cells cleaved caspase-3↑caspase-7↑caspase-
9↑PARP↑p53↑Bax↑E-Cadherin↑claudin↑HSP60↑Bcl-
2↓CDK2↓CDK4↓CDK6↓cyclin D↓cyclin E↓N-
Cadherin↓vimentin↓HSP90β↓HSP70↓

Inhibit EMT
Promote apoptosis
Induce cell cycle arrest at
G1/S

Wu et al.
(2024b)

Baicalein 1, 2, 5, 10, 20,
50, 100, 200,
500 mol/L

SMMC-7721 cells P-ERK1/2↓CyclinD1↓P-GSK-3β↓P-AKT↓ Inhibit proliferation Wang et al.
(2017a)

1, 10, 40, 80,
160μM;
80 mg/kg/d ip

HMCC-97H and SMCC-
7721 cells

miR-3178↑HDAC10↓ Inhibit proliferation
Promote apoptosis

Qi J et al. (2023)

2.5, 5, 10, 20,
40 μM

SMMC-7721 and
HepG2 cells

PD-L1↓ Inhibit proliferation
Promote immune
response

Ke M et al.
(2019)

12.5, 25, 50,
100M;
10 mg/kg/d ip

SMMC-7721, Hep3B,
HCCLM3, HepG2 cells;
SMMC-7721 cells
xenograft BALB/c mice

---- Inhibit proliferation and
migration

Yu X et al.
(2018)

1, 2, 5, 10, 20,
50, 100, 200,
300 μM

SMMC-7721 cells Bax↑Bcl-2↓Akt↓ERK1/2↓GSK-3β↓ Promote apoptosis
Induce cell cycle arrest at
G0/G1

He K et al.
(2018)

10, 20, 40, 80,
160 μg/mL

Bel7402 cells Bax↑Bcl-2↓ Promote apoptosis
Increase sensitivity to 5-
FU and epirubicin

Li et al. (2018a)

31.25, 62.5, 125,
500 μg/mL

HepG2 cells Bax↑ beclin 1↑TGFβ1↓ATG-7↑ Promote apoptosis
Increase sensitivity to
epirubicin

Al-Ashmawy
GM et al. (2024)

Baicalin 25, 50,
100 μg/mL

HepG2 cells Bax↑ Bcl-2↓ Promote apoptosis Xie YH et al.
(2023)

50, 100, 200,
300 μmol/L

HepG2 cells Fe2+↑ ROS↑; SLC7A11↓ GPX4↓ GSH↓ p-PI3K/PI3K↓
p-Akt/Akt↓ p-FoxO3a/FoxO3a↓

Inhibit proliferation
Promote ferroptosis

Zhou et al.
(2024)

2.5, 5, 7.5, 10,
12.5 μg/mL 12,
24, 48 h

HepG2 cells p-MET↓p-EGFR↓ Inhibit EMT and
proliferation
Promote apoptosis
Induce cell cycle arrest at
G1 phase

Hu ZP et al.
(2023)

10, 20, 40, 60,
80, 120 μM

Hep3B and MHCC-97H
cells; NC-MHCC-97H or
ROCK1-UP-MHCC-97H
cells xenograft BALB/c
mice

Bax↑GSK-3β↑p-β-catenin↑p-GSK-3β↓p-catenin↓Cyclin
D1↓VEGFA↓MMP-9↓Bcl-2↓

Inhibit proliferation,
migration and invasion
Promote apoptosis
Induce cell cycle arrest at
G0/G1 phase

Sun et al.
(2023a)

Wogonin 37.5, 75,
150 μmol/L

HepG2 and LO2 cells CDK1↓SRC↓ Inhibit proliferation and
migration
Promote apoptosis

Yang et al.
(2024c)

3.125, 6.25, 12.5,
25, 50, 100,
200 μM

SMMC-7721 and
HCCLM3 cells

p21↑p-MOB1↑p-LATS↑Claspin↓CTGF↓CYR61↓ Promote apoptosis
Induce cell cycle arrest
atG2/M

Wu et al. (2023)

20, 40, 80μM;
50 mg/kg/d ip

Huh7 cells; Huh7 cells
xenograft BALB/c mice

miR-27b-5p↑YWHAZ↓ Inhibit proliferation
Promote apoptosis
Induce cell cycle arrest at
G1/S phase

(Ma et al., 2023)

(Continued on following page)
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demonstrated the inhibitory effect of S. baicalensis on tumor growth
accompanied by a decrease in Ki-67 and SLC7A11 protein levels in
xenograft mice. It can be seen that the induction of ferroptosis in
HCC cells via iron perioxidation and lipid ROS metabolism is one of
the mechanisms by which S. baicalensis exerts its therapeutic effects
(Li Y. et al., 2022). Heat shock protein 90 (HSP90), a class of cellular
chaperone proteins, widely affects the survival and proliferation of
tumor cells (Tausif YM et al., 2024). Scutellaria baicalensis extract
dose-dependently induced G1/S phase arrest and apoptosis in SK-
Hp-1 cells and reversed the aberrant expression of EMT-related
proteins without damaging normal hepatocytes. Moreover, the
extract also enhanced the anticancer effect due to the inhibition
of HSP90β, which has been shown to be associated with poor
prognosis in advanced HCC (Wu TH. et al., 2024).

4.5.2 Baicalein
Glycogen synthase kinase 3-β (GSK-3β) is closely related to the

development of various tumors (Wang J. et al., 2024; Fukuda J et al.,
2024). It was demonstrated that baicalein synergized with the PI3K
pathway inhibitor LY294002 to inhibit the proliferation of SMMC-
7721 cells without affecting apoptosis, a process that was associated
with reduced expression of P-ERK1/2, CyclinD1, P-GSK-3β, and
P-AKT (Wang et al., 2017a). MiR-3178, which can inhibit tumor
cells by affecting EMT, decreased in HCC tissues and Bel-7402, Bel-
7404, SMMC-7721, MHCC-97H, HepG2, Hep3B, and Huh7 cell
lines compared to normal liver tissue L-O2 cells. Further
intervention revealed that baicalein time- and dose-dependently
inhibited proliferation and promoted apoptosis of HMCC-97H and

SMCC-7721 cells, similar to sorafenib, accompanied by elevated
miR-3178 and decreased HDAC10. Overexpression of miR-3178
decreased HDAC10 expression and thus HCC cell viability. Animal
experiments showed the same therapeutic effect (Qi J et al., 2023).
Increasing evidence suggests that upregulation of immune
checkpoints, such as the programmed cell death-ligand 1 (PD-
L1)/programmed cell death protein 1 (PD1) pathway, is an
important way for tumor cells to achieve immune evasion
(Hayashi H et al., 2024). Animal experiments revealed that
baicalein and baicalin inhibited the growth of HCC accompanied
by decreased PD-L1 expression in mice. Further studies revealed
that baicalein and baicalin significantly inhibited IFN-γ-induced
cellular PD-L1 upregulation thereby increasing T-cell-mediated
tumor-killing activity in addition to dose-dependently and
directly inhibiting proliferation of SMMC-7721 and HepG2 cell.
In addition, both in vivo and ex vivo experiments demonstrated that
inhibition of PD-L1 is associated with inhibition of STAT-3
phosphorylation (Ke M et al., 2019). A significant portion of
HCC initiation and recurrencies derived by tumor initiating stem
cell-like cells (TICs), whose marker CD133 expression level is
negatively correlated with the final outcome of HCC patients
(Wu J. et al., 2024). And it is reasonable to believe that TICs are
closely related to HCC chemoresistance (Huang H et al., 2023). NF-
κB interacting LncRNA (NKILA), an important regulator in tumor
development, was found to be downregulated in SMMC-7721,
Hep3B, HCCLM3, and HepG2 cells compared to normal
hepatocytes and interacted closely with baicalein: overexpression
of NKILA increased the expression of the inhibitory effects of

TABLE 5 (Continued) Scutellaria baicalensis and its flavonoids in the treatment of HCC.

Name Dose Subjects Mechanism Effect Reference

50, 100, 200,
400, 800μM; 25,
50 mg/kg/d ip

MHCC97L, HepG2,
LO2 cells; MHCC97L cells
xenograft BALB/c mice

Cyclin D1↓ Inhibit proliferation
Induce cell cycle arrest at
G1 phase

Hong M et al.
(2020)

Wogonoside 1, 2, 4, 8, 16, 32,
64, 128, 256,
512μM,
1mM, 2 mM

Bel7402 cells Bax↑ Bcl-2↓ Inhibit proliferation
Promote apoptosis
Induce cell cycle arrest at
G2/M

Li Y et al. (2015)

Oroxylin-A 12.5, 25, 50 μM
24h; 200 mg/kg/
qod ig

SMMC-7721, HepG2,
MHCC-97H cells; SMMC-
7721 cells xenograft BALB/
c mice

E-cadherin↑N-cadherin↓Vimentin↓Twist↓ Inhibit proliferation,
EMT, and migration

Huo TX et al.
(2022)

2.5, 5, 10, 20, 40,
80 μM

HepG2 cells xenograft
BALB/c mice

wt-p53↑p-MDM2↓p-SIRT↓ Inhibit viability Yao et al.
(2022b)

10 μM 24h;
300 mg/kg/
qod ig

HepG2 cells xenograft
NOD/SCID mice

SIRT3↓FOXO3↓BNIP3↓PINK1↓PRKN↓ Inhibit autophagy
Increase sensitivity to
adriamycin

Yao et al.
(2022a)

6, 8, 10, 15, 20,
25 μM;
300 mg/kg/d ig

HepG2 and SMMC-7721
cells; HepG2 cells
xenograft NOD/SCIDmice

ALB↑HNF-4α↑PKM1↑PTB↓AFP↓PKM2↓ Inhibit proliferation
Promote differentiation
Induce cell cycle arrest at
G2/M phase

Wei L et al.
(2017)

10 μM;
300 mg/kg/d ig

HepG2, SMMC-7721, H22,
THP-1, HEK293T cells;
H22 cells xenograft mice

MHC-Ⅱ↑CD-206↓ Promote apoptosis and
immune response

Wang et al.
(2023e)

12 μM 48h;
300 mg/kg/
qod ig

HepG2, Huh7, SMMC-
7721 cells; HepG2 or
SMMC-7721 cells
xenograft mice

FIS1↑p-DRP1-s616↑OPA1↓p-DRP1-
s637↓GLUT1↓SIRT1↓PDK2↓PARL1↓MFN1↓
OPA1↓YME1L1↓PGC-1α↓

Promote apoptosis Guo Y et al.
(2023)
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baicalein on the proliferation and migration of SMMC-7721 and
HepG2 and its knockdown reversed these effects, which was also
verified in animal experiments (10 mg/kg/d 28 d). Further studies
revealed that NKILA enhances the inhibitory effect of baicalein on
NF-κB transcriptional activity, and the NF-κB inhibitor JSH-23
disrupts this synergy, implying that the combination of these is a
promising therapeutic strategy (Yu X et al., 2018).

Furthermore, baicalein has been shown to synergize with the
PI3K inhibitor LY294002 to induce G0/G1 phase arrest and
apoptosis in SMMC-7721 cells (He K et al., 2018). Baicalein also
induced apoptosis in SMMC-7721 cells by reversing the resistance of
Bel7402 cells to chemotherapeutic drug (5-FU and epirubicin) and
induced apoptosis (Li J. et al., 2018). Another study showed that
baicalein enhances the toxicity of epirubicin on HepG2 cells by up-
regulating the activation of autophagy by beclin 1 and ATG-7 (Al-
Ashmawy et al., 2024). Addition of baicalein to antagonize the
resistance of HCC cells to chemotherapeutic drugs is a
feasible approach.

4.5.3 Baicalin
Baicalin was shown to dose-dependently upregulate Bax and

downregulate Bcl-2 protein expression to induce apoptosis in
HepG2 cells directly (Xie YH et al., 2023). A recent study found
that baicalin time- and dose-dependently inhibited proliferation of
HepG2 cells, accompanied by a decrease in SLC7A11, GPX4, GSH,
p-PI3K/PI3K, p-Akt/Akt, p-FoxO3a/FoxO3a levels and an increase
in Fe2+, ROS. Fer-1 reversed these effects, revealing that the anti-
HCC effects of baicalin is associated with inhibition of the ROS-
mediated PI3K/Akt/FoxO3a pathway and ferroptosis (Zhou JQ
et al., 2024). Epidermal growth factor receptor (EGFR) regulation
of target genes and mesenchymal MET are closely associated with
the malignant phenotype of cancer cells (Bhushan B et al., 2019).
Baicalin was able to inhibit proliferation of HepG2 cells alone or in
concert with the EGFR inhibitor gefitinib and the MET inhibitor
crizotinib, triggering G1-phase cell arrest and induction of apoptosis
accompanied by a decrease in p-MET, p-EGFR protein expression
(Hu ZP et al., 2023). ROCK1 promotes migration and invasion of
multiple tumors including HCC (Dong S et al., 2023). Baicalin
induced G0/G1 phase arrest and apoptosis in Hep3B and MHCC-
97H cells time- and dose-dependently, thereby inhibiting the
proliferation, migration and invasion of HCC cells. Meanwhile,
the expression of Bax, GSK-3β, and p-β-catenin was upregulated
while that of ROCK1, p-GSK-3β, β-catenin, C-myc, cyclin D1,
VEGFA, MMP-9, and Bcl-2 was downregulated, which was
consistent with the alterations in vivo in mice. This suggests that
baicalin may inhibit proliferation and metastasis of HCC through
the ROCK1/GSK-3β/β-catenin pathway (Sun et al., 2023a).

4.5.4 Wogonin
Network pharmacological analysis showed that wogonin has

113 intersecting targets with HCC, which is mainly focused on the
PI3K/AKT signaling pathway. Subsequent experiments
demonstrated that wogonin inhibited proliferation and migration
and promoted apoptosis of HepG2 cells by down-regulating
CDK1 and SRC expression, which was not significant in normal
LO2 cells (Yang et al., 2024c). Similarly, wogonin concentration-
dependently induced G2/M cell cycle arrest and apoptosis in
SMMC-7721 and HCCLM3 cells accompanied by upregulation of

p21, p-MOB1, p-LATS and downregulation of Claspin, CTGF, and
CYR61, which could be reversed by YAP or TAZ overexpression. It
is evident that the pro-apoptotic effect of wogonin in HCC involves
activation of MOB1/LATS and inhibition of YAP/TAZ in the Hippo
pathway (Wu K et al., 2022). Wogonin inhibited the proliferation of
Huh7 cells both in vitro and in vivo and induced cell cycle arrest at
G1/S phase and apoptosis. The prediction of genes potentially
targeted by miRNA showed that miR-27b-5p and its downstream
target YWHAZ were most significantly upregulated and the
expression of both was negatively correlated. Further experiments
verified that wogonin could exert anticancer effects by upregulating
miR-27b-5p and downregulating YWHAZ (Ma et al., 2023b). In
MHCC97L and HepG2 cells, wogonin in vitro and in vivo dose-
dependently inhibited cell proliferation and induced G1-phase
arrest, which was able to be reversed by GSK-3β knockdown
without affecting apoptosis, suggesting that activation related to
GSK-3β may dominate the process (Hong M et al., 2020).

4.5.5 Wogonoside
Earlier studies reported that wogonoside inhibited the

proliferation of Bel-7402 cells by inducing G2/M phase blockade
and apoptosis (Li Y et al., 2015).

4.5.6 Oroxylin-A
Non-steroidal anti-inflammatory drug activated gene-1 (NAG-

1), one of the TGF-β, is thought to be associated with poor prognosis
in many tumors (Lee J et al., 2019). Oroxylin-A not only directly
inhibited the proliferation and migration of SMMC-7721, HepG2,
and MHCC-97H cells, but also reversed the TGF-β-triggered rise in
N-cadherin, Vimentin, and Twist1 and the decline in E-cadherin.
Following experiment revealed that NAG-1 knockdown eliminated
the inhibitory effect of oroxylin-A on TGF-β/pathway in SMMC-
7721 cells, suggesting that oroxylin-A knockdown NAG-1 by
upregulating it. In addition, animal experiments suggested a role
for oroxylin-A in reducing SMMC-7721 lung metastasis, which
could be blocked by NAG-1 knockdown or
HDAC1 overexpression (Huo et al., 2022). PTEN induced kinase
1 (PINK) regulates tumor cell survival and chemotherapeutic drug
resistance (Zheng F. et al., 2023). Cyclin-dependent kinase 9
(CDK9), a transcriptional activator belonging to the CDK family,
whose inhibitor has been used in the treatment of a variety of tumors
(Zhang Y. et al., 2024). Expression of CDK9 in HepG2, MHCC-97H,
HLE, Huh7, and Hep3B cells was significantly higher than that in
tumor cells HLE and normal cells LO2, and the CDK9 inhibitors
LDC067 and PHA767491 inhibited the proliferation of
HepG2 in vitro and in vivo, respectively. The time- and
concentration-dependent inhibition of CDK9 viability in
HepG2 cells by upregulation of wt-p53 and downregulation of
p-MDM2, p-SIRT levels by oroxylin-A had a comparable effect
to PHA767491 in animals in vivo. In addition, toxicological study in
vivo showed that oroxylin-A has lower toxicity. This reveals that
oroxylin-A safely exerts its therapeutic effect on HCC by restoring
the function of wt-p53 and thus inhibiting CDK9 (Yao JY. et al.,
2022). Similarly, LDC067-induced inhibition of CDK9 inactivated
the SIRT3-FOXO3-BNIP3 axis and the PINK1-PRKN pathway as
well, leading to disruption of mitochondrial homeostasis and cell
death in HCC cells. Oroxylin-A downregulated SIRT3, FOXO3,
BNIP3, PINK1, and PRKN through disruption of mitochondrial

Frontiers in Pharmacology frontiersin.org14

Zhao et al. 10.3389/fphar.2024.1483785

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1483785


function. It is evident that oroxylin-A also reverses drug resistance in
HCC cells by inhibiting mitochondrial autophagy mediated by the
PINK-PRKN pathway (Yao J. et al., 2022). Hepatocyte nuclear factor
4α (HNF-4α), a positive regulator of HNF-1α downstream, is
involved in hepatocyte differentiation (Morimoto A et al., 2017).
The radio of pyruvate kinase M1 (PKM1) and pyruvate kinase M2
(PKM2) have been shown to be associated with metabolic alterations
and proliferation of HCC cells (Li Y et al., 2023). Oroxylin-A
inhibited proliferation and induced G2/M phase arrest of
HepG2 and SMMC- 7721 cells. Furthermore, oroxylin-A induced
cell differentiation accompanied by upregulation of ALB, HNF-4α
and downregulation of PTB, AFP. Animal experiments showed that
oroxylin-A inhibited tumor growth accompanied by protein
changes consistent with that in vitro. It can be seen that
oroxylin-A plays a therapeutic role by inducing primary HCC
cell differentiation (Wei L et al., 2017). Oroxylin-A not only
directly induced apoptosis in HepG2 and SMMC-7721 cells, but
also, by altering extracellular vesicles released by HCC cells,
promoted macrophage M1-like polarization. Moreover, oroxylin-
A (300 mg/kg/d 2w) also enhanced the antitumor effects of PD-1/
PD-L1 inhibitors in mice. Therefore, improving the tumor
microenvironment and immune response of HCC is one of the
mechanisms underlying the therapeutic effects of oroxylin-A (Wang
P. et al., 2023).

Glucose transporter 1 (GLUT1) is used by malignant tumors
to increase glucose utilization and is one of the prognostic
markers of HCC (Kim H et al., 2024). Oroxylin-A induced
apoptosis in HepG2 and SMMC-7721 cells, a process that was
characterized by the downregulation of GLUT1 expression and
significant reduction in ECAR, OCR, and ATP production.
Experiments in vivo inhibited tumor growth and decreased
the expression of SIRT1, PDK2, PARL1, MFN1, OPA1,
YME1L1. It is evident that oroxylin-A inhibits HCC by
limiting glucose metabolism and blocking mitochondrial
fusion (Guo Y et al., 2023).

4.6 Pancreatic cancer

PC is known as the “king of cancers” due to its high mortality
and aggressiveness, with a 5-year survival rate of less than 10%
(Siegel RL et al., 2023). Currently, surgical resection is the only
means of eradication of PC, which is increasingly resistant to
mainstream anticancer drugs such as oxaliplatin (Kamisawa T
et al., 2016; Perri G et al., 2020). The direct and indirect
therapeutic effects of flavonoids of S. baicalensis on PC are
shown in (Table 6).

4.6.1 Baicalein
It is previously reported that baicalein (50–100 mol/L 48 h) was

able to upregulate apoptosis-related genes caspase-3 and Bax,
downregulate the protein expression of cell cycle genes cyclinD1,
cyclinE, cyclinA, and apoptosis gene Bcl-2, and concentration-
dependently inhibit proliferation of BxPC-3 and PANC-1 cells
and promoted autophagy and apoptosis in PC cells. Meanwhile,
75 mol/L baicalein and 20 mol/L had similar in vitro inhibitory
effects (Ao P et al., 2018). Cancer-associated fibroblasts (CAF) is the
most prominent cell within the PC stromal, favoring tumor

progression (Niu N et al., 2024). Experiment has shown that
baicalein inhibits PANC and HM-SUIT2 cell viability
accompanied by downregulation of FGFBP1 gene expression. In
addition, baicalein suppressed the growth and liver metastasis of
HM-SUIT2 in xenograft mice. It suggests that baicalein improves
the tumor of PDAC through CAF microenvironment (Zhang C
et al., 2023).

The concentration-dependent induction of S-phase cell cycle
arrest and apoptosis by baicalein was accompanied by an increase
in p21 levels and a decrease in CCND1 levels, having an inhibitory
effect on the proliferation, motility, and invasion of PANC-1 cells,
which was identified in the animal experiments. Further studies
revealed that this process was accompanied by the upregulation of
20 miRNAs, of which miR-139-3p is the most abundant, and the
downregulation of 39 miRNAs, of which miR-196b-5p is the most
abundant, promoting apoptosis by up-regulating ING5 and
down-regulating NOB1 expression (Ma D et al., 2021).
Cisplatin-resistant PC cell CAPAN2 showed concentration-
dependent viability inhibition and S-phase cell cycle arrest
after baicalein treatment, compared to normal pancreatic cells
HTRET-HPNE. This process was accompanied by an increase in
cleaved caspase-3, Bax expression and a decrease in caspase-3,
Bcl-2 expression, suggesting that baicalein also has a selective pro-
apoptotic effect on PC-resistant cells (Zhang Y et al., 2020).
Activation of the sonic Hedgehog (Shh) signaling pathway in
cancer stem cell (CSC) is closely associated with PC (Jeng KS et al.,
2020). Baicalein not only directly inhibits PANC-1 cell
proliferation and migration, but also affects sphere formation
of pancreatic CSCs. Further experiment revealed that baicalein
treatment decreased the expression of CSC markers CD44, CD24,
Oct-4, Sox-2 and effector Gli-2. Animal experiments also showed
that tumor growth inhibition in xenograft mice treated by
baicalein was accompanied by downregulation of Shh pathway
and expression (Song L et al., 2018). The level of neural precursor
cell expressed developmentally downregulated 9 (NEDD9), a
scaffold protein in focal adhesions, correlated with PC cell
migration, invasion, and metastasis (Kondo S et al., 2012).
Baicalein dose- and time-dependently inhibited the
proliferation and migration of BxPC-3 and PANC-1 cells, and
induced G0/G1 phase arrest, which was consistent with the effects
of the PI3K inhibitor LY294002 and the MEK inhibitor PD98059.
Upregulation of Bax, cleaved caspase-9, p21, p27 levels and
downregulation of PDK1 also occurred. Notably, the anticancer
ability of baicalein was instead decreased at high concentrations.
Following studies revealed that NEDD9 knockdown induced
tumor cell apoptosis by inhibiting p-ERK, p-Akt expression,
which was consistent with the effect of baicalein, and its
overexpression reversed this trend. It can be seen that baicalein
exerts its anti-PC effect by inactivating PI3K/Akt and MEK/ERK
by reducing NEDD9 expression (Zhou RT et al., 2017).

Earlier studies demonstrated that baicalein (3.2–100 μM 48 h)
synergized with gemcitabine to concentration-dependently inhibit
CFPAC-1 and PANC-1 cell viability. Baicalein also synergized with
gemcitabine to inhibit tumor growth in xenograft mice in vivo. The
combination of them showed intracellular rise in Bax, caspase-8,
PARP and decrease in Bcl-2, survivin, proving that the pro-
apoptotic effect is an important component of the therapeutic
effect (Li Z. et al., 2018).
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4.6.2 Baicalin
Proliferation, migration and invasion of SW1990 cells were

inhibited by baicalin in a dose-dependent manner, which was
accompanied by p15, ROS, p-JNK, Foxo1, BIM upregulation and
CDK2 downregulation and would be reversed by the free radical
scavenger NAC. It is reasonable to hypothesize that baicalin induces
apoptosis by activating the JNK/Foxo1/BIM pathway to inhibit PC
(Huang Q et al., 2019).

4.6.3 Wogonin
Wogonin time- and dose-dependently induced PANC-1 and

AsPC-1 Cell death, accompanied by an increase in Fe2+, TF,
TFRC, and ROS, which is reversed by the ferroptosis inhibitors
DFO or Fer-1. Treatment of animals showed the same effect
without organ toxic effects. It is evident that wogonin
counteracts PAAD by inducing iron death and lipid
peroxidation (Liu X. et al., 2023).

TABLE 6 Flavonoids of Scutellaria baicalensis in the treatment of PC.

Name Dose Subjects Mechanism Effect Reference

Baicalein 50, 75, 100 μmol/L BxPC-3 and PANC-1
cells

caspase-3↑Bax↑cyclinD1↓cyclinE↓cyclinA↓Bcl-2↓ Inhibit
proliferation
Promote
autophagy and
apoptosis

Ao P et al.
(2018)

25 mg/kg/d PANC, HM-SUIT-2 cells;
HM-SUIT-2 cells
xenograft mice

FGFBP1↓ Inhibit
proliferation and
liver metastasis

Zhang C et al.
(2023)

50, 100 M 72h10 mg/kg/tiw ip PANC-1 cells xenograft
BALB/c mice

miR-139-3p↑ING5↑miR-196b-5p↓NOB1↓ Inhibit
proliferation,
migration and
invasion
Promote apoptosis
Induce cell cycle
arrest at S phase

Ma D et al.
(2021)

2.5, 5, 10, 20, 40, 80, 160, 320 μM CAPAN2 and HTRET-
HPNE cells

cleaved caspase-3↑Bax↑caspase-3↓Bcl-2↓ Inhibit viability
Promote apoptosis
Induce cell cycle
arrest at S phase

Zhang Y et al.
(2020)

2, 4, 8, 16, 32, 64, 128, 256 μM 24,
48, 72h; 20, 60 mg/kg/d ig

PANC-1 cells xenograft
BALB/c mice

CD44↓CD24↓Oct-4↓Sox-2↓Gli-2↓ Inhibit
proliferation and
migration

Song L et al.
(2018)

25, 50, 75, 100 μM BxPC-3, PANC-1, HL-
7702, 293T cells

Bax↑cleaved caspase-9↑p21↑p27↑PDK1↓ Inhibit
proliferation and
migration
Promote apoptosis
Induce cell cycle
arrest at G0/
G1 phase

Zhou RT et al.
(2017)

0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.25, 12.5,
25, 50, 100 μM

CFPAC-1 cells; CFPAC-1
cells xenograft BALB/c
mice

Bax↑caspase-8↑PARP↑Bcl-2↓survivin↓ Inhibit viability
and proliferation
Promote apoptosis
Increase sensitivity
to gemcitabine

Li et al. (2018a)

Baicalin 40, 80, 120, 160 μmol/L SW1990 cells p15↑Bax↑ cleaved caspae-8↑p53↑CDK2↓Bcl-2↓ Inhibit
proliferation,
migration and
invasion
Promote apoptosis

Huang Q et al.
(2019)

Wogonin 5, 10, 20, 40, 60, 80, 100 M;
60 mg/kg/d ip

PANC-1 and AsPC-1
cells; PANC-1 cells
xenograft BALB/c mice

Fe2+↑TF↑TFRC↑ROS↑GSH↓Nrf2↓GPX4↓HO-
1↓SLC7A11↓

Promote
ferroptosis

Liu et al.
(2023b)

1.3,2.5,10,20,40,80,160 μM;
50 mg/kg/d ig

PANC-1, BXPC-3,
PANC-02 cells; PANC-02
cells xenograft C57BL/
6 mice

Bad↑p-Akt↓Bcl-2↓ Inhibit
proliferation
Promote apoptosis
Increase sensitivity
to gemcitabine

Zhang T et al.
(2022)

Wogonoside 1.5, 3, 6.25, 12.5, 25, 50, 100, 200,
400, 800μM; 80 mg/kg/d ig

PANC-1 and
SW1990 cells; PANC-
1xenograft BALB/c mice

PCNA↓p21↓CD44↓SOX2↓N-cad↓MMP-14↓IL-
6↓TNF-Iα↓L-1β↓

Inhibit viability
and proliferation
Promote apoptosis

Huang H et al.
(2021)
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Furthermore, wogonin inhibited the growth of gemcitabine-
resistant cells PANC-1 and increased cellular sensitivity to the drug
in vitro. Further studies revealed that wogonin promotes apoptosis
through upregulation of Bad and downregulation of p-Akt, Bcl-2 during
this process. Oral administration also led to the same changes in animals,
showing that wogonin indeed reverses PC cell gemcitabine-resistance by
inhibiting the Akt pathway (Zhang T et al., 2022).

4.6.4 Wogonoside
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is

widely involved in PC cell growth and migration (Rong et al., 2014).
Experiments in vitro demonstrated that Wogonoside concentration-
dependently decreased viability and promoted apoptosis of PANC-1
and SW1990 cells, which was accompanied by downregulation of
proliferation-associated proteins (PCNA and p21), stem cell marker
proteins (CD44 and SOX2)and mesenchymal transition marker
proteins (N-cad and MMP-14). In addition, wogonoside reduced
the levels of IL-6, TNF-α, IL-1β and reversed tumor growth caused
by overexpression of TRAF6 and its downstream proteins in vivo. It
is evident that wogonoside counteracts PC by inhibiting the TRAF6-
mediated tumor microenvironment (Huang H et al., 2021).

5 Disscusion

The 5 flavonoids mentioned above are the most intensively studied
ingredients of S. baicalensis by far. Numerous preclinical studies have
shown that the pharmacological effects of S. baicalensis and its
flavonoids are realized through multiple pathways such as, making
their pharmacological effectsmore diverse and potential compared with
drugs functioning through single pathway, which have not yet been fully
revealed. A summary of the research conducted in the last decade shows
that, although in its infancy, the use of S. baicalensis in the treatment of
digestive system tumors, in particular GC and HCC, is on the rise, and
the quality of the trials has improved significantly. Most studies have
demonstrated exciting effects of S. baicalensis taken orally or flavonoids
injected, and that these effects are synergistic with other treatment
methods without significant toxicity. Meanwhile, a growing body of
research is making it possible to utilize S. baicalensis and its flavonoids
more efficiently, including the production of the herb, the extraction of
the flavonoids, and the mode of administration. For example,
overexpression of transcription factor SbMYB3 was investigated to
increase the accumulation of flavonoid components, creating an
opportunity for the production of more active ingredients (Fang Y
et al., 2022). Chilling treatment (4°C 2–8 d) increased the concentration
of flavonoids, including baicalin, baicalein, and wogonin, in the root of
S. baicalensis Georgi as well (Yeo HJ et al., 2022). In addition, the
optimized ultrasound-assisted enzymatic pretreatment process was able
to significantly improve the extraction efficiency of baicalein and
wogonin (Yun et al., 2022). In addition, the synthesis of baicalein
and wogonin and their related derivatives is becoming more mature,
and larger scale production is coming into reality (Zhao Z et al., 2022).
pH-responsive sodium alginate/polyaspartate/CaCO3 in situ hydrogel
with sustained release behavior and outstanding biodegradability
significantly prolonged the residence time of baicalin in the stomach,
which is also a potential oral drug delivery system (Xu L et al., 2023).
These results provide us with solutions to the material basis for the
application of S. baicalensis.

However, it is troubling that although Scutellaria baicalensis has
been used clinically in China for the treatment of digestive system
tumors by direct decoction in water and oral administration, the
extraction and application of its bioactive ingredients like flavonoids
have not yet come out of the laboratory. For example, due to practical
constraints, most of these studies have been limited to elucidating the
possible role of a single mechanism in the pharmacological effects on
tumor cells, which is still a huge gap from the clinical use of drugs and
bioactive ingredients. Theminority of synergistic studies with anticancer
therapies also lacked further exploration of the mechanisms. An animal
study found that baicalein was best tolerated in mice compared to four
other anti-tumor active ingredients of TCM (curcumin, betulinic acid,
resveratrol and dihydroartemisinin), which may give a side note on its
safety in the same drug class (Gao et al., 2024). Another recent review
also illustrates the insignificant toxicity of baicalein (Lei C et al., 2024).
This low toxicity is also shown for wogonoside and wogonin (Yan Y
et al., 2020; TongY et al., 2024). Although sufficient evidence is lacking, it
is reasonable to hypothesize that the flavonoids of S. baicalensis have
acceptable toxicity based on these studies. Consequently, in the future,
research and application of S. baicalensis and its flavonoids should focus
on the following points: (1) Transfer to clinical studies gradually to
prepare for the clinical studies of novel formulations, in particular, the
effect of body metabolism on the distribution of flavonoids; (2)
Upgrading cultivation and extraction techniques to produce herbs
and extracts more steadily; (3) Paying more attention to the
cooperation between drugs. On the one hand, the cooperation of
many kinds of TCMs can give the advantage of multi-targets, and
many TCM prescriptions with a long history can function well as
reference in this regard; on the other hand, the combination of S.
baicalensis or its flavonoids with modern chemotherapeutic drugs has
been proved to have a synergistic effect without any obvious adverse
reaction, and the combination therapy of traditional herbs and modern
drugs is a potential solution. Combination therapy of traditional herbs
with modern drugs is a promising direction.

In conclusion, our study demonstrated that S. baicalensis and its
flavonoids have great potential in the treatment of various digestive
tumors and are worthy of further study and application.
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Glossary
12-LOX 12-lipoxygenase

BTG3 B-cell translocation gene 3

BLVRA Biliverdin reductase A

CAF Cancer-associated fibroblasts

CAT catalase

CDK cyclin-dependent kinase

DEPP decidual protein induced by progesterone

MMR DNA-mismatch repair

EGFR epidermal growth factor receptor

EC esophageal cancer

EAC esophageal adenocarcinoma

ESCC esophageal squamous cell carcinoma

FAS factor associated suicide

FASL factor associated suicide ligand

FAK focal adhesion kinase

GC gastric cancer

Gli1 Glioma

GPX4 glutathione peroxidase 4

GSK-3β glycogen synthase kinase 3-β

GLUT1 glucose transporter 1

GADD45a growth arrest and DNA damage-inducible 45a

HSP heat shock protein

HCC hepatocellular carcinoma

HK2 hexokinase-2

HIF-1α hypoxia inducible factor-1α

IRF interferon regulatory factor

ICC intrahepatic cholangiocarcinoma

IREB2 iron-responsive element binding protein 2

LDHA lactate dehydrogenase A

LATS1 large-tumor suppressor kinase 1

MMP matrix metalloproteinase

MET mesenchymal epithelial transition factor

miRNA microRNAs

MCT-4 monocarboxylate transporter-4

NEDD9 neural precursor cell expressed developmentally downregulated 9

NAG-1 non-steroidal anti-inflammatory drug activated gene-1

OSCC oral squamous cell carcinoma

PAK4 p21-activated kinase 4

PC pancreatic cancer

PI3K phosphatidylinositol 3-kinase

PD-L1 programmed cell death-ligand 1

PD1 programmed cell death protein 1

Akt protein kinase B

PINK PTEN induced kinase 1

PDK1 pyruvate dehydrogenase kinase-1

PKM pyruvate kinase M

SUFU serine/threonine kinase

SMO smoothened

SHH sonic hedgehog

Sp1 Specificity protein 1

ROS reactive oxygen species

SOD superoxide dismutase

SLC7A11 synthetase long chain family member 4

TRAIL TNF-related apoptosis-inducing ligand

TAZ transcriptional co-activator with PDZ-binding motif

TGF-B transforming growth factor-B

TICs tumor initiating stem cell-like cells

TRAF6 tumor necrosis factor receptor-associated factor 6

ULK1 unc51-likekinase 1

YAP Yes-related protein
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