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Artesunate (ART) is a classic antimalarial drugwith high efficiency, low toxicity and
tolerance. It has been shown to be safe and has good anti-tumor effect. Existing
clinical studies have shown that the anti-tumor mechanisms of ART mainly
include inducing apoptosis and autophagy of tumor cells, affecting tumor
microenvironment, regulating immune response, overcoming drug resistance,
as well as inhibiting tumor cell proliferation, migration, invasion, and
angiogenesis. ART has been proven to fight against lung cancer,
hepatocarcinoma, lymphoma, multiple myeloma, leukemia, colorectal cancer,
ovarian cancer, cervical cancer, malignant melanoma, oral squamous cell
carcinoma, bladder cancer, prostate cancer and other neoplasms. In this
review, we highlight the effects of ART on various tumors with an emphasis
on its anti-tumor mechanism, which is helpful to propose the potential research
directions of ART and expand its clinical application.
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1 Introduction

Chemoresistance is an important cause of tumor treatment failure and recurrence.
Therefore, it is of great significance to find effective anti-tumor drugs that can overcome
drug resistance. Artesunate (ART), an efficient and relatively safe water-soluble
hemisuccinate derivative of dihydroartemisinin (DHA) (an antimalarial drug) (Qian
Y. et al., 2021), is derived from artemisia annua. ART is inherently unstable in an
aqueous solution, rapidly hydrolyzes after preparation and injection, and can be used
for temporary intravenous administration (Gashe et al., 2022). At present, it has been
found that two-carbon tied artemisinin-isatin complexes have anti-breast cancer
potential and the artemisinin-isatin hybrid with ethylene binding system has anti-
lung cancer activity (Wang et al., 2023a; Wang et al., 2023b). ART is inherently unstable
in an aqueous solution, rapidly hydrolyzes after preparation and injection, and can be
used for temporary intravenous administration. Recent studies have found that in
addition to its specific anti-malaria effect, ART also has many other biological activities,
such as anti-inflammatory (Ruwizhi et al., 2022), anti-tumor (Eitae and Park, 2020),
anti-viral (Hu Y. J. et al., 2021) and hypoglycemic (Alagbonsi et al., 2021). Especially in
the field of anti-tumor, several studies have reported the strong anticancer activity of
ART in recent years (Ma et al., 2021; Guan et al., 2023; Zeng et al., 2023). The anti-
tumor mechanism of ART is largely dependent on the release of DHA from ART as a
prodrug. The latest research shows that DHA inhibits tumor progress via blocking
ROR1-induced STAT3-activation (Li J.-Y et al., 2022; Li et al., 2024b), inhibits
angiogenesis via regulating VEGF and MMP-2/-9 (Rao et al., 2024), remodels
tumor micro-environment and improves cancer immunotherapy through inhibiting
cyclin-dependent kinases (Zhou et al., 2024), restores the immunogenicity and
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enhances the anticancer immunosurveillance of cisplatin by
activating the PERK/eIF2α pathway (Li G et al., 2022). The
other potential anti-tumor mechanisms of ART may be its
own mechanism of action. ART inhibits the proliferation of
Burkitt lymphoma cells by inhibiting AKT and ERK, so this
compound is considered to have the potential to develop novel
anti-tumor drugs (Yuan-Ce et al., 2023). Related studies have
shown that ART acts on glioblastoma cells by inducing oxidative
stress, DNA damage, apoptosis and necrosis (Strik et al., 2024).
ART can also induce apoptosis of breast cancer cells, showing an
anti-breast cancer effect (Wen et al., 2024). ART could combat
choroidal melanoma by promoting apoptosis, inducing cell cycle
arrest, and increasing intracellular ROS levels (Ma et al., 2024a).
The review aims to exhibit the different mechanisms of ART
against tumors, such as inhibiting proliferation and inducing
apoptosis, and the latest research progress in different tumors
elucidating the anti-tumor mechanism of ART, and lay a
theoretical foundation for further development of ART
therapy for cancer.

2 Discovery of ART and its clinical
application

Artemisia annua is an anti-fever herbal medicine first described
in traditional Chinese medicine 1,000 years ago. Artemisinin (ARS),
the extract of Artemisia annua, and its derivatives (DHA,
artemether, and ART) have been used for the treatment of
malaria with substantial efficacy (Zhang T. et al., 2020). As a
classic antimalarial drug, ART is widely used to treat malaria
caused by the multidrug-resistant strains of Plasmodium
falciparum (Adebayo et al., 2020) for its advantages of high
potency, low toxicity (Shi et al., 2022), hydrophilic properties,
better bioavailability than ARS (Markowitsch et al., 2020), and
good tolerance without side effects (Mancuso et al., 2021b),
which has broad development prospects. According to the results
of relevant experiments, ART inhibits the growth and survival of
many types of cancer including leukemia, melanoma cancer, bladder
cancer, ovarian cancer, cervical cancer, breast cancer, colon cancer,
head and neck tumors, hepatocellular carcinoma, prostate cancer,
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and multiple myeloma (Hao et al., 2020; Ma and Fei, 2020; Wen
et al., 2024), etc. The role of ART against different cancers along with
cell proliferation, apoptosis, western and IC50 can be abserved from
Table 1. For example, artesunate induces a decrease in Rb and
phosphorylated Rb levels and thus promotes Head and neck
squamous cell carcinoma (HNSCC) cell apoptosis (Okamoto
et al., 2023). ART induces autophagy of tumor cells by activating
AMPK-mTOR axis, which plays an anti-glioblastoma multiforme
(GBM) role (Ding et al., 2023). Recent studies on the anti-tumor
mechanism of ART have shown that ART produces ROS (Zhao P.
H. et al., 2020) and causes apoptosis of cancer cells (Yin et al., 2020).
Another study reveals that ART elevates the apoptotic rate and
suppresses C918 cell (choroidal melanoma cells of the human eye)
viability by regulating the MALAT1/YAP signaling pathway (Jiu
et al., 2021). In addition, ART inhibits tumor invasion and
metastasis by inhibiting angiogenesis and vasculogenic mimicry
(VM) formation (Geng et al., 2022). ART has been shown to be
safe (Augustin et al., 2020) and effective for clinical use, moreover, it

has a wider range of potential clinical applications than originally
hypothesized because of its greater biological activity (Yang
et al., 2021).

3 Antineoplastic mechanism of ART

The main mechanism of ARS and its derivatives (ART,
artemether, DHA) toward leukemia, multiple myeloma, and
lymphoma cells comprises oxidative stress response,
inhibition of proliferation, induction of various types of cell
death as apoptosis, autophagy, ferroptosis, inhibition of
angiogenesis, and signal transducers, such as NF-κB, MYC,
amongst others (Mancuso et al., 2021b). Existing basic and
clinical studies have shown that the pharmacological
mechanism of ART therapy for cancer is embodied in the
inhibition of tumor cell proliferation, migration and invasion
(Xu et al., 2022), induction of tumor cell apoptosis and

TABLE 1 The role of ART against different cancer along with other activities (cell proliferation/apoptosis/Western blot/IC50).

Neoplasms
Proliferation, invasion and

metastasis
Apoptosis and autophagy Western

blot
IC50 (μM) References

Lung cancer Inhibit EMT, downregulate the
transcription of MMP-2 and MMP-7

Regulate mitochondrial membrane
potential

Bcl-2
Bax

H1975:4.023
LLC:11.05
H468:16.11

Wang et al. (2020a), Zhao et al.
(2020c), Yang et al. (2021), Cao
et al. (2022)

Hepatocarcinoma Alter the expression and activity of
regulatory enzymes in the cell cycle

Target GBA, increase intracellular
ROS levels

Bcl-2
Bax

HepG2:38.38
MHCC-97H:
171.4

Yin et al. (2020), Chen et al.
(2022)

Lymphoma Combine with Hsp90 to reduce the
expression of AKT, ERK, p-AKT,
p-ERK, and EGFR

Induce ferroptosis by regulating
metallothionein 1G, induce apoptosis
via a caspase-dependent pathway

caspase-3
caspase-8
caspase-9
PARP
Bcl-2
IAP

SU-DHL-4:
0.89 ± 0.12
Daudi:0.70 ±
0.29
CA-46:0.72 ±
0.05
JEKO-1:
1.34 ± 0.31

Ishikawa and Mori (2021),
Yuan-Ce et al. (2023), Xiong
et al. (2024)

Myeloma Arrest the cell cycle at G0/G1 phase
with downregulation of cyclin D,
CDK2, and CDK4

Induce ferroptosis by inhibiting the
nuclear localization of Sterol
regulatory element binding protein 2
(SREBP2)

GPX4
ACSL4

MM1S:53.61
RPMI8226:
58.96

Mancuso et al. (2021b), Liang
et al. (2023)

Leukemia Downregulate SRC, downregulate levels
of activator protein-1 (AP-1) and NF-
κB signaling

Induce apoptosis through the
mitochondrial pathway via generation
of ROS

JNK caspase-3
caspase-7
caspase-8
Bcl-2

MV4-11:
0.2529
THP-1:0.3664

Mancuso et al. (2021b), Hill et al.
(2023)

Ovarian cancer Arrest the cell cycle at the G0/G1 phase Trigger the intrinsic apoptotic cascade
involving cytochrome c, elevate the
intracellular levels of ROS

Bcl-2 caspase-3
P53

OVCAR3:5.95
UWB1.289:
17.95
CAOV3:26.73
OV-90:61.00

McDowell et al. (2021a), Li et al.
(2022a), McCorkle et al. (2024)

Bladder cancer Inhibit cellular lipogenesis associated
with the Clusterin/SREBP1/FASN
signaling pathway

Upregulate ROS, activate AMPK-
mTOR-ULK1 axis

Bax caspase-3
caspase-PARP
Bcl-2

EJ: 89
T24: 95

Zhou et al. (2020a), Lin et al.
(2024a)

Prostate cancer Arrest the cell cycle at the G0/G1 phase Trigger ferroptosis by consuming
extracellular GSH, decreasing
GPX4 levels and generating ROS (Yu
et al.; Xiao et al., 2020; Okamoto et al.,
2023)

caspase 3
PARP-1

PC-3:25.1
LnCaP:2.13

Fabian et al. (2022),
Vakhrusheva et al. (2022)

Breast cancer Block cell cycle in G2/M (ROS-
dependent) and in G1 (ROS-
independent)

Decrease expression and activity of
HSP70, influence the transcripts for
Eph receptors and ephrin ligands

HSP70
Bcl-2 caspase-9

MCF-7:83.28
4T1:52.41

Duarte and Vale (2020), Zadeh
et al. (2022)
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autophagy (Zhao F. G. et al., 2020), regulation of cell signal
transduction (Zeng et al., 2022), inhibition of tumor
angiogenesis (Lu et al., 2022b) and others (Table 2).

3.1 Inhibition of tumor cell proliferation,
invasion and metastasis

Studies have shown that ART can inhibit the proliferation of
tumor cells by inhibiting or activating certain signal pathways
(Antoszczak et al., 2020). ART causes mitochondrial
dysfunction to further activate AMPK and suppress Akt/
mTOR (Xiao et al., 2020). ART induces apoptosis in thyroid
cancer cells and inhibits their proliferation and migration by
inhibiting the PI3K/AKT/FKHR signal pathway (Xu et al., 2022).
ART induces apoptosis of leukemia cells and inhibits the growth
and stemness of transplanted tumors via the suppression of the
MEK/ERK and PI3K/Akt pathways (Chen et al., 2020). ART
evidently attenuates the migration, invasion and proliferation of
cutaneous squamous cell carcinoma (CSCC) cells, which may be
intensely related to PI3K/AKT pathway repression (Huang X. Y.
et al., 2022). Another study proves that DHA and ART inhibit
the growth of non-small cell lung cancer (NSCLC) via
prohibiting cancer cell aerobic glycolysis through ERK/c-Myc
pathway (Zhang Y. X. et al., 2022). ART can also inhibit cell
proliferation, invasion and metastasis by affecting protein and
enzyme expression. For instance, ART induces a significant
downregulation of cyclin-dependent kinase-2 (CDK2), CDK4,
cyclin D1, and cyclin E1 at various levels and then causes
apoptosis, which impairs normal liver cell proliferation by
inducing G0/G1 cell cycle arrest and apoptosis (Yin et al.,
2020). ART combined with cisplatin (CIS) exerts anticancer
effects on A549 cells by influencing the expression of Bcl-2, Box,
p-P53, Caspase-3/7, Caspase-9, Cyclin Bl, P34, P21 (Li W. et al.,
2021; Liu W. et al., 2023). The antimigration activity of ART is
mediated by inhibition of BTBD7 mRNA expression while

BTBD7 was found highly expressed in tumor tissues of NSCLC
patients (Wang J. S. et al., 2020). ART may suppress the
proliferation, migration and invasion of A549 and H1299 cells and
induce their apoptosis by decreasing the expressions of human
antigen R and matrix metalloproteinase-9 (MMP-9) proteins (Hu
et al., 2022). The results obtained from another study demonstrate
that the anticancer activity of ART occurs via STAT3 pathway and its
target proteins (Berkoz et al., 2021). In addition, ART inhibits
intestinal tumorigenesis by inhibiting Wnt signal pathway
(Hamoya et al., 2021).

3.2 Induction of tumor cell apoptosis
and autophagy

ART evokes ferroptosis, an iron-dependent cell death caused by
ROS formation (Olivo et al., 2022; Huang et al., 2023). Accordingly,
ferroptotic effects have been demonstrated in ART-induced head
and neck tumor cells, pancreatic cancer cells, liver cancer cells
(Markowitsch et al., 2020), ovarian serous carcinoma cells (Koike
et al., 2022) and glioblastoma cells (Song et al., 2022). ARS
derivatives have been shown to have anti-NSCLC activity
through induction of ROS-dependent apoptosis/ferroptosis
(Zhang Q. T. et al., 2021). ART may induce apoptosis and cell
cycle arrest to inhibit cell proliferation, and regulate autophagy and
ferroptosis via impairing the STAT3 signaling pathway in diffuse
large B cell lymphoma (DLBCL) cells (Chen et al., 2021). ART
targets oral tongue squamous cell carcinoma via mitochondrial
dysfunction-dependent oxidative damage (Xiao et al., 2020). ART
treatment causes significant growth inhibition and apoptosis in
A549 cells (Zhang W. W. et al., 2022) and induces apoptosis in
breast cancer cells as a HSP70 ATPase activity inhibitor (Pirali et al.,
2020). ART has an anti-esophageal cancer effect by inhibiting
aerobic glycolysis (Jin et al., 2022). Furthermore, ART induces
autophagy dependent apoptosis through upregulating ROS and
activating AMPK-mTOR-ULK1 axis in human bladder cancer

TABLE 2 Summary of antineoplastic mechanism and signaling pathway of artesunate.

Mechanism of action Signaling pathway References

Inhibition of tumor cell
proliferation, invasion and
metastasis

AMPK pathway, Akt/mTOR pathway, PI3K/AKT/FKHR
pathway, MEK/ERK pathway, ERK/c-Myc pathway,
STAT3 pathway, Wnt pathway

Antoszczak et al. (2020), Chen et al. (2020), Wang et al. (2020a),
Xiao et al. (2020), Yin et al. (2020), Berkoz et al. (2021), Hamoya
et al. (2021), Li et al. (2021a), Hu et al. (2022), Huang et al. (2022a),
Xu et al. (2022), Zhang et al. (2022e), Liu et al. (2023a)

Induction of tumor cell apoptosis
and autophagy

STAT3 signaling pathway, AMPK-mTOR-ULK1 axis Zhou et al. (2020b), Chen et al. (2021)

Inhibition of tumor angiogenesis STAT3 signaling pathway
HIF-1α/VEGF/PDGF pathway
STAT3/AKT signaling pathway

Berkoz et al. (2021), Chen et al. (2023b)
Ma et al. (2024b)
Yao et al. (2024b)

Affecting the tumor
microenvironment

JAK2/STAT3 signaling pathway Mancuso et al. (2021c)

Modulating immune response TAZ/PD-L1 signaling pathway Cao et al. (2022)

Overcoming drug resistance in
cancer cells

TAZ signaling pathway
JAK/STAT3 signaling pathway
Noxa/Bim/Mcl-1/p-Chk1 axis
AFAP1L2-SRC-FUNDC1 axis-dependent mitochondrial
autophagy

Cao et al. (2022)
Su et al. (2023)
Zhang et al. (2022a)
Ma et al. (2024c)
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cells (Zhou X. J. et al., 2020). The researchers demonstrate that high
GBA levels over activated autophagic flux, accelerates the rate at
which cellular material may be degraded and recycled in balanced,
healthy cells. This disturbance enables liver cancer to progress while
ART can suppress GBA expression levels and restore normal
autophagic flux, boosting the drug’s anticancer activity (Chen
et al., 2022).

3.3 Inhibition of tumor angiogenesis

The mechanisms underlying tumor angiogenesis and VM
formation involve hypoxia, EMT, and activation of tumor-
associated fibroblasts and tumor-associated macrophages. Many
molecules participate in one or more of these processes that
regulate tumor angiogenesis, such as vascular endothelial growth
factor (VEGF), MMPs, VE-cadherin, and non-coding RNAs (Geng
et al., 2022) that emerged recently (Figure 1). Further, ART inhibits
melanoma vasculogenic mimicry by inhibiting the HIF-1α/VEGF/
PDGF pathway (Ma et al., 2024b). ART and other artemisinin
derivatives have been identified as anti-cancer agents due to their
anti-proliferative, anti-angiogenic, and anti-inflammatory properties
(Zhong et al., 2021). ART also inhibits STAT3 and Src activations and
STAT3 related protein expressions. The upregulated expressions of
STAT3 related protein by STAT3, play positive roles in melanoma
metastasis through promoting cell invasion and angiogenesis (Berkoz

et al., 2021). Currently, anti-angiogenesis targetingVEGFR-2 has been
considered as an important strategy for cancer therapy (Lu et al.,
2022c). ART inhibits choroidal melanoma cell growth through the
STAT3/AKT signaling pathway (Yao et al., 2024b). Furthermore, the
synergistic effect of ART and sorafenib (SOR) can inhibit non-
Hodgkin lymphoma (NHL) cell viability and have anti-angiogenic
activity. Further studies showed that gene inhibition of STAT3 could
promote iron apoptosis and cell apoptosis induced by ART/SOR
(Chen Y. et al., 2023).

3.4 Affecting the tumor microenvironment

The tumor microenvironment refers to the non-cancerous cells
and the molecular components produced by the tumor. The
interaction between tumor cells and tumor microenvironment
plays an important role in tumor genesis, development,
metastasis and response to therapy, which has attracted wide
attention (Xiao and Yu, 2021). DHA (a metabolite produced in
the liver from ART and artemether) regulates the crosstalk between
autophagy and IFI16/caspase-1 inflammasome, which inhibits IL-1β
production in tumor microenvironment (Shi et al., 2020).
Furthermore, nanozyme-like single-atom catalyst combined with
ART produces abundant cell cytotoxic radicals in tumor
microenvironment (TME) for inhibiting tumor growth (Lv et al.,
2023). Monocytes are components of the tumor microenvironment

FIGURE 1
VEGF, MMPs, VE-cadherin and non-coding RNA are involved in regulating the specific mechanisms of tumor angiogenesis (By Figdraw).
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related to cancer progression and immune escape. ART induced
changes in the monocyte phenotype are mediated by JAK2/
STAT3 downregulation (Mancuso et al., 2021c).

3.5 Modulating immune response

ART has an immunomodulatory effect on various immune cells
and cytokines of the immune system, also it shows different
regulatory effects in different immune states (Lin et al., 2022).
Flagella of tumor-targeting bacteria trigger local hemorrhage to
reprogram tumor-associated macrophages for improved anti-
tumor therapy (Xu et al., 2023). Other related studies report for
the first time about the anti-complement bioactivities of ART and
suggest a potential therapeutic benefit of ART in complement-
related human diseases (Song et al., 2021). ART protects
immunosuppression mice induced by glucocorticoids via
enhancing pro-inflammatory cytokines release and bacterial
clearance, and does indeed demonstrate to possess
immunomodulatory effects (Wang et al., 2021). ART suppresses
TAZ/PD-L1–induced T-cell growth inhibition in vitro and enhances
anti-tumor immunity by recruiting infiltrating CD8+ T-cells in
syngeneic mouse models (Cao et al., 2022). NK cells can
eliminate virus-infected cells and tumor cells nonspecifically (Lin
et al., 2022) while ART is able to enhance the cytotoxicity of
NK92 cells (Zhang J. et al., 2021; Lin et al., 2022).

3.6 Overcoming drug resistance in
cancer cells

Overcoming drug resistance and seeking new therapeutic
strategies are the main focus of tumor research. Natural products
serve as effective substances against drug resistance because of their
diverse chemical structures and pharmacological effects. Their main
mechanisms for reversing resistance include regulating proteins
involved in resistance, targeting non-apoptotic cell death, and
inducing other types of non-apoptotic cell death. Signaling
pathways associated with tumor resistance include epidermal
growth factor receptor (EGFR), renin-angiotensin system (Ras),
phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), Wnt,
Notch, transforming growth factor-β (TGF-β) and their specific
natural product signaling pathway inhibitors. This has implications
for how to prevent drug resistance to cancer treatment (Yang et al.,
2022). Recent evidence shows that lysosomal function is associated
with drug resistance of cancer cells. The results suggest that ART or
other inhibitors of lysosomal function would be potential in the
treatment of cancer cells with drug resistance caused by the
enhanced lysosomal function (Li Z. et al., 2021). ART promotes
anti-tumor immunity and overcomes EGFR-TKI resistance in non-
small-cell lung cancer by enhancing oncogenic TAZ degradation
(Cao et al., 2022). In addition, ART is effective against
chemoresistant anaplastic thyroid carcinoma by targeting
mitochondrial metabolism (Ma and Fei, 2020). Most patients
with advanced HCC develop resistance to sorafenib early during
treatment. While ART or ginsenoside Rg3 (a main bioactive
triterpenoid saponin of red ginseng) in combination with ART
can be used to overcome resistance to Sorafenib in hepatocellular

carcinoma cells (He et al., 2021; Yao et al., 2022). ART significantly
inhibits proliferative and metabolic aspects of cisplatin-sensitive and
cisplatin-resistant bladder cancer (BCa) cells, it may hold potential
in treating advanced and therapy-resistant BCa (Zhao F. G. et al.,
2020). ART reverses the resistance of AML cells to AraC by blocking
the JAK/STAT3 signaling pathway, and the combination of ART
and cytarabine significantly reduced the proliferation of AML cells
and increased its apoptosis rate (Su et al., 2023). ART targeting
Noxa/Bim/Mcl-1/p-Chk1 axis improves drug resistance of
venetoclax combined with cytarabine in AML, providing a new
triple therapy for AML treatment (Zhang J. et al., 2022). ART
mitigates sorafenib resistance in hepatocellular carcinoma (HCC)
patients by exacerbating AFAP1L2-SRC-FUNDC1 axis-dependent
mitochondrial autophagy (Ma Z. et al., 2024) (Figure 2).

4 ART against different types
of neoplasm

According to the latest estimates by the International Agency for
Research on Cancer (IARC) through 2022, lung cancer was the most
common cancer, followed by female breast, colorectal, prostate and
stomach cancers. Lung cancer was also the leading cause of cancer
death, followed by colorectal, liver, and female breast and stomach
cancers. Broken down by sex, breast cancer and lung cancer were the
most common cancers in women and men, respectively (Bray et al.,
2024). Cancer is a major social, public health and economic problem
of the 21st century. In the following, we focus on the role of
artesunate in more than a dozen cancers, and present the latest
trends and potential prospects for its prevention and control of
tumors (Table 3; Figures 3, 4).

4.1 Lung cancer

Lung cancer is the main cause of cancer-related deaths around the
world (Sherry, 2022). Recent studies have found that ART has
significant therapeutic potential in multiple respiratory diseases
(Zhang et al., 2022b). Lung cancer, the most common malignant
tumor, is classified into NSCLC and small cell lung cancer (SCLC).
ART was involved in inhibiting the epidermal interstitial
transformation (EMT) of NSCLC cells by up-regulating the
expression of epithelial marker E-cadherin and inhibiting the
protein and mRNA levels of mesenchymal markers N-cadherin,
vimentin and FN1 in A549 and H1975 cells (Wang J. S. et al.,
2020). ART suppresses lung cancer cells growth by regulating
mitochondrial membrane potential, inducing apoptosis (Zhao
et al., 2020c) and down-regulating the AKT/Survivin Signaling
Pathway (Zhang W. W. et al., 2022). In addition, ART enhances
anti-tumor immunity and overcomes EGFR-TKI resistance in
NSCLC at least in part by suppressing TAZ/PD-L1 signaling (Cao
et al., 2022). Results have demonstrated that the ART-loaded PLGA
porous microsphere could achieve excellent anti-cancer efficacy,
providing a potential approach for NSCLC treatment via the
pulmonary administration (Xiong et al., 2021). In addition, spray-
dried micelles containing artesunate have the potential to be used as a
dry powder formulation for inhalation in the treatment of lung cancer
(Somavarapu et al., 2023).
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4.2 Hepatocarcinoma

Hepatocellular carcinoma (HCC), one of the most common
cancers, causes the fourth cancer-related deaths worldwide (Wang
M. Y. et al., 2020). An effective strategy for HCC therapy is the
perturbation of iron metabolism. ART regulates the unstable iron
pool (LIP) and effectively induces ROS-dependent cell death in a
variety of HCC cells, showing anticancer activity (Jiang et al.,
2021). Glucosylceramidase (GBA) is required for autophagic
degradation, and a preclinical study identified GBA as one of
the direct targets of ART, which may have promising potential to
inhibit lysosomal autophagy for HCC therapy (Chen et al., 2022).
Another research shows that ART alone inhibits the proliferation
of five HCC cell lines in a dose-dependent manner, and sorafenib
combined with ART exert a synergistic anti-proliferation effect
and induced synergistic apoptosis in HCC cell lines (Yao et al.,
2020). The synergistic effects include ferroptosis induction (Li Z.
J. et al., 2021), apoptosis induction, cell migration inhibition and
anti-angiogenesis activity.

4.3 Lymphoma, multiple myeloma
and leukemia

ARS and its derivatives (ART, DHA, artemether) act in a
multi-specific manner against hematological malignancies, for
example, lymphoma, multiple myeloma, and leukemia. The main
mechanism of ARTs against different types of hematological
malignancies comprises oxidative stress response, inhibition of

proliferation, induction of various types of cell death (apoptosis,
autophagy, ferroptosis, inhibition of angiogenesis), production of
reaction oxygen species, induction of differentiation, and signal
transducers, amongst others (Li et al., 2020; Mancuso et al.,
2021b). ART is effective against adult T-cell leukemia/
lymphoma by blocking G1 and/or G2/M phases, reducing the
expression of cyclin-dependent kinases 1/2/4/6, cyclin B1/D2/E,
and c-Myc, and increasing the expression of p21 (Ishikawa et al.,
2020). ART exhibits cytotoxic effects in primary effusion
lymphoma (Ishikawa and Mori, 2021) and induces apoptosis,
autophagy and ferroptosis in diffuse large B cell lymphoma cells
by impairing STAT3 signaling (Chen et al., 2021; Chen et al.,
2023a). Beyond that, ART combined with arsenite inhibits the
growth of multiple myeloma cells through the PI3K/AKT
signaling pathway (Hu G.-F. et al., 2021). Leukemia is a
hematological malignancy originated from the bone marrow
(Ng et al., 2021). ART induces apoptosis and inhibits the
proliferation, stemness, and tumorigenesis of leukemia (Chen
et al., 2020). ART converts monocytes, a component of the tumor
microenvironment associated with cancer progression and
immune escape, into an inflammatory phenotype with the
ability to kill leukemia cells (Mancuso et al., 2021c). Also,
artesunate has significant anti-leukemia effects in mice by
targeting ROS/Bim and TFRC/Fe2+ pathways (Liu et al., 2023).
ART induces endoplasmic reticulum (ER) stress in leukemia cells
eventually led to apoptosis (Mancuso et al., 2021a). Venetoclax
plus cytarabine therapy is approved for elderly AML patients.
Furthermore, ART induces synergistic apoptosis with venetoclax/
cytarabine/daunorubicin accompanied (Li J.-Y. et al., 2022;

FIGURE 2
Anti-tumor mechanism of artesunate. Some elements originate from Figdraw.
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Zhang et al., 2022b). Molecular docking findings reveal that
artesunate is critically important in the therapy of AML due to
its high affinity for the four primary disease targets, CASP3,
EGFR, MAPK1, and STAT3 (Tao et al., 2023). Besides, ART
induces cell death in pediatric AML cell lines through
cytochrome c (Hill et al., 2023).

4.4 Colorectal cancer

Colorectal cancer has the second highest incidence of
malignant tumors and is the fourth leading cause of cancer
deaths in China (Cai et al., 2021). The combination of Arte
and 5-FU significantly reduced the viability of cancer cells

in vitro and synergistically inhibited the growth of CRC
xenografts in vivo (Xia et al., 2023). ART has been reported to
be a promising candidate for CRC treatment, which induces
senescence and autophagy to inhibit cell proliferation in
colorectal cancer by promoting excessive ROS generation
(Huang Z. Y. et al., 2022). The study proposes that ART
induces cytotoxicity in HCT116 colon cancer cells by
suppressing the expression of survivin and partially by
ferroptosis (Eitae and Park, 2020). Abnormal Wnt signaling
pathways are known to lead to unexpected β-catenin nuclear
translocation and promote T-cell factor/lymphoid enhancer
factor (TCF/LEF) transcriptional activity, resulting in CRC
progression. ART inhibits intestinal tumorigenesis through
inhibiting Wnt signaling (Hamoya et al., 2021).

TABLE 3 Summary of the effects of artesunate on different neoplasms.

Neoplasms Mechanism of action References

Lung cancer Inhibit EMT, regulate mitochondrial membrane potential, induce
apoptosis, downregulate the AKT/Survivin Signaling Pathway,
suppress TAZ/PD-L1 signaling

Wang et al. (2020a), Zhao et al. (2020c), Cao et al. (2022) Zhang et al.
(2022d), Somavarapu et al. (2023)

Hepatocarcinoma Disturb cellular iron homeostasis, target GBA and induce autophagic
degradation

Jiang et al. (2021), Chen et al. (2022)

Lymphoma and Multiple
myeloma

Induce oxidative stress response, inhibit proliferation, induce various
types of cell death, produce reaction oxygen species, induce
differentiation and signal transducersexert, exert anti-ATLL effects,
impair STAT3 signaling, target ROS/Bim and TFRC/Fe2+ pathways,
induces endoplasmic reticulum (ER) stress

Ishikawa et al. (2020), Li et al. (2020), Cao et al. (2021), Mancuso et al.
(2021a), Mancuso et al. (2021c), Chen et al. (2023b), Liu et al. (2023a)

Leukemia Switch monocytes to an inflammatory phenotype, four primary
disease targets, CASP3, EGFR, MAPK1, and STAT3

Mancuso et al. (2021c), Tao et al. (2023)

Colorectal cancer Suppress cellular senescence, promote excessive ROS generation,
suppress the expression of survivin, induce ferroptosis, inhibit Wnt
signaling

Eitae and Park (2020), Hamoya et al. (2021), Huang et al. (2022b), Xia
et al. (2023)

Ovarian cancer Enhance ferritinophagy Koike et al. (2022)

Cervical cancer Intercept HOTAIR Zhou et al. (2020c)

Malignant melanoma Induce apoptosis, suppress choroidal melanoma vasculogenic
mimicry formation and angiogenesis via the Wnt/CaMKII signaling
axis, regulate the AKT/mTOR pathway, regulating the HIF-1α/VEGF/
PDGF pathway, down-regulating EFNA3

Berkoz et al. (2021), Geng et al. (2022), Wroblewska-Luczka et al.
(2023), Ma et al. (2024b), Yao et al. (2024a), Yao et al. (2024b)

Head and neck squamous cell
carcinoma

decrease in Rb and phosphorylated Rb levels, inhibit macrophage
migration inhibitory factor, induce mitochondrial dysfunction-
dependent oxidative damage, inhibit Akt/AMPK/mTOR signaling

Yu et al.; Xiao et al. (2020), Okamoto et al. (2023)

Bladder cancer Inhibit the viability, proliferation and migration of BCa cells, induce
autophagy

Zhou et al. (2020b), Chen et al. (2023a)

Prostate cancer Display cytotoxicity Adedeji et al. (2020), Fabian et al. (2022)

Cutaneous squamous cell
carcinoma

Repress PI3K/AKT pathway Huang et al. (2022a)

Breast cancer Inhibit HSP70 ATPase activity Pirali et al. (2020), Svolacchia et al. (2023)

Esophageal cancer Target HK1 Jin et al. (2022)

Renal cell carcinoma Arrest cell cycle, induce ferroptosis Markowitsch et al. (2020)

Thyroid carcinoma Target mitochondrial metabolism, inhibit the PI3K/AKT/FKHR
signaling pathway

Ma and Fei (2020), Xu et al. (2022)

Prolactinoma Inhibit mitochondrial metabolism, Induce apoptosis Zhang et al. (2020b)

Glioblastoma Induce ferroptosis via modulation of p38 and ERK signaling pathway Song et al. (2022)
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4.5 Ovarian cancer and cervical cancer

Ovarian cancer and cervical cancer are life-threatening diseases
with a high mortality rate among women (Caird et al., 2022; Yuan
et al., 2022). ART has preclinical activity in ovarian cancer that
merits further investigation to treat ovarian cancer (McDowell et al.,
2021). Enhancement of ferritinophagy is an important step involved
in the mechanism of artesunate-induced ferroptosis, and ferritin
heavy chain levels may contribute to the regulation of sensitivity in
artesunate-induced ferroptosis in ovarian serous carcinoma cells
(Koike et al., 2022). Synergetic delivery of ART and isosorbide 5-
mononitrate with reduction-sensitive polymer nanoparticles for
ovarian cancer chemotherapy (Li et al., 2022b). HOX transcript
antisense RNA (HOTAIR), a trans-acting long non-coding RNA
(lncRNA), plays an oncogenic role in cervical cancer by promoting
cell proliferation, migration, invasion and autophagy, etc. Moreover,
the blockade of HOTAIR by ART or propofol shows promise for
further development of this lncRNA as a potential therapeutic target
in cervical cancer (Zhou et al., 2020a). ART has a cytotoxic effect on
squamous cells transformed by HPV. Self-administered vaginal
ART inserts are safe and well-tolerated, which can be used at
clinically effective doses to treat cervical intraepithelial neoplasia
2/3 (CIN2/3) (Trimble et al., 2020).

4.6 Malignant melanoma

Malignant melanoma is a malignant neoplasm of the skin and
mucosal tissues (Zahir et al., 2021) characterized by a potential

metastatic tumor of melanocytic origin. ART inhibits cellular
proliferation of cancer cells by induction of apoptosis
(Wroblewska-Luczka et al., 2023). The treatment shows
decreased cellular migration, invasion, and colony formation in
melanoma cells (Berkoz et al., 2021). ART suppresses choroidal
melanoma (CM) vasculogenic mimicry formation and
angiogenesis, while angiogenesis and VM are considered to be
the main processes to ensure tumor blood supply during the
proliferation and metastasis of CM (Geng et al., 2022). In uveal
melanoma, ART elevates the apoptotic rate and suppresses
C918 cell viability (Jiu et al., 2021). In addition, ART regulates
the AKT/mTOR pathway by reducing the expression of Ang-1 in
CM cells, thereby inhibiting the occurrence of CM tumors (Yao
et al., 2024a). EphrinA3 (EFNA3) promotes CM cell growth and
migration by activating the STAT3/AKT signaling pathway, while
ART inhibits this process by down-regulating EFNA3 (Yao et al.,
2024a). Meanwhile, ART has played a role in suppressing
choroidal melanoma by regulating the HIF-1α/VEGF/PDGF
pathway (Ma et al., 2024b).

4.7 Head and neck squamous cell carcinoma

Artesunate and cisplatin synergistically inhibit HNSCC cell
growth and promote apoptosis with artesunate-induced decreases
in Rb and phosphorylated Rb levels (Okamoto et al., 2023). Oral
squamous cell carcinoma, the most common type of oral cancer,
affects more than 275,000 people per year worldwide (Pena-
Oyarzun et al., 2020). ARS suppresses tumor growth and

FIGURE 3
Artesunate inhibits growth and survival of many types of cancer including lung cancer, hepatocarcinoma, hematological malignancies, colorectal
cancer, ovarian cancer, cervical cancer, malignant melanoma, head and neck tumor, bladder cancer, and prostate cancer. ART has the same or different
mechanisms of action against different tumors, including the inhibition of tumor cell proliferation, migration and invasion [22], induction of tumor cell
apoptosis and autophagy [23], regulation of cell signal transduction [24], inhibition of tumor angiogenesis [25] and many other aspects.
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induces vascular normalization in oral squamous cell carcinoma
via inhibition of macrophage migration inhibitory factor (Ding
et al., 2019; Yu et al., 2024). Mitochondrial metabolism has recently
gained attention as a promising therapeutic strategy in cancer.
ART targets oral tongue squamous cell carcinoma via
mitochondrial dysfunction-dependent oxidative damage and
Akt/AMPK/mTOR inhibition (Xiao et al., 2020).

4.8 Bladder cancer

Urinary bladder cancer is a common urological cancer (Tse
et al., 2021) and is the 10th most common cancer type in the
world (Bilim et al., 2022). ART can inhibit the viability,
proliferation and migration of bladder cancer cells, as well as
induce autophagy in a time and dose dependent manner. In

addition, ART induced apoptosis of bladder cancer cells by up-
regulating ROS and activating AMPK-mTOR-ULK1 pathway
(Zhou X. J. et al., 2020). ART impairs growth in cisplatin-
resistant bladder cancer cells by cell cycle arrest, apoptosis
and autophagy induction, which may hold potential in
treating advanced and therapy-resistant bladder cancer (Zhao
F. G. et al., 2020). ART induces G2/M cell cycle arrest in HT
1376 and BFTC 909 cell lines, thereby inducing apoptosis and
REDOX imbalance, and may be a candidate drug for the
treatment of bladder cancer in concert with cisplatin (Chen S.
Y. et al., 2023). A new artesunate-metformin dimer triazine
derivative AM2 is designed and synthesized by coupling
artesunate with metformin. AM2 inhibits the growth of
bladder cancer cells T24 by inhibiting cellular adipogenesis
associated with the Clusterin/SREBP1/FASN signaling pathway
(Lin et al., 2024).

FIGURE 4
Network of Artesunate’s function in different types of neoplasm.
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4.9 Prostate cancer

Prostate cancer (PC), a malignant tumor occurring in the male
prostate, is the second leading cause of cancer-related deaths in men.
The lesions have the characteristics of small size and blurry outline
(Qian Y. J. et al., 2021). Combining ART with PTX displays
cytotoxicity regardless of the type of prostate cancer cell line.
This may offer a promising new therapeutic option for the
treatment of metastatic hormone-refractory PC (Adedeji et al.,
2020; Fabian et al., 2022). ART induced apoptosis of parent and
DX-resistant DU145 cells by increasing ROS, indicating that ART
inhibited the growth of docetaxel-resistant PC cells (Vakhrusheva
et al., 2022).

4.10 Other neoplasms

ART evidently attenuates the migration, invasion and
proliferation, lessened cell numbers at G2/M phase and triggers
apoptosis of CSCC cells, which may be intensely related to the
PI3K/AKT pathway repression (Huang X. Y. et al., 2022). ART
induces the death of breast cancer cell lines 4T1 and MCF-7 by
inhibiting the expression of HSP70 and Bcl-2 (Pirali et al., 2020;
Svolacchia et al., 2023). ART targets HK1, promotes the
degradation of HK1, reduces the expression of HIF-1α and
PKM2, which are key glycolytic enzymes, and plays an anti-EC
role (Jin et al., 2022). Furthermore, ART can reverse gemcitabine
(dFdC) resistance in combination with dFdC in dFdC-resistant
Panc-1 cells in vitro (Yao et al., 2022b). ART therapy significantly
increases the cytotoxicity of Sunitinib-resistant RCC cells and
inhibited proliferation and clonal growth. ART inhibits the
growth of KAKI-1, 786-O, and A-498 cell lines through G0/
G1 phase arrest and significant regulation of cell cycle
regulators, and inhibits the growth of KTCTL-26 through ROS
production, ferroptosis, and metabolism (Markowitsch et al.,
2020). The inhibition of ART on chemotherapy-sensitive
(8505C and KAT-4) and drug-resistant (8505C-R and KAT-4-
R) ATC cells is effective against chemotherapy-resistant anaplastic
thyroid cancer by inhibiting mitochondrial function, leading to
oxidative stress and damage (Ma and Fei, 2020). ART inhibits
apoptosis, proliferation and migration of thyroid cancer cells by
inhibiting the PI3K/AKT/FKHR signaling pathway (Xu et al.,
2022). ART exerts anti-prolactinoma activity by inducing G0/
G1 phase arrest and cell apoptosis, thereby inhibiting
mitochondrial metabolism and inducing cell apoptosis (Zhang
W. Y. et al., 2020). ART influences iron apoptosis by regulating
iron homeostasis and p38 and ERK signaling pathways. These
findings support the role of ART in inducing ferroptosis through
this pathway in glioblastoma (Song et al., 2022). In breast cancer,
artesunate also induces apoptosis in cancer cells (Wen et al., 2024).

5 Clinical evidence of ART as an anti-
cancer therapy

At present, artesunate has been gradually used in clinical
studies to treat tumors, and has become a promising strategy for
the treatment of cancer. In glioblastoma cells, artesunate acts as a

supplement for cancer treatment. Clinical trials have shown that
artesunate itself is cytotoxic and enhances the cytotoxicity of
temozolomide, and therefore has the potential to enhance the
therapeutic efficacy of glioblastoma (Strik et al., 2024).
Artesunate is effective, safe and well tolerated for the
treatment of cervical intraepithelial neoplasia 2/3 (CIN2/3)
(Trimble et al., 2020). Phase I clinical trials evaluated
artesunate suppositories as effective in treating HPV-infected
cells with cytotoxic effects while having minimal effects on
healthy cells (Fang et al., 2023). Artesunate has shown
anticancer activity both in vitro and in vivo against
hematological malignancies in a multispecific manner. The
main mechanisms of its action on leukemia, multiple myeloma
and lymphoma cells include oxidative stress response, inhibition
of proliferation and induction of various types of cell death (Li
et al., 2020; Mancuso et al., 2021b). Because artesunate drugs are
highly effective and well tolerated without side effects, they could
be applied in the future as anti-tumor therapy alone or in
combination with standard chemotherapy after further clinical
trials in various tumors are completed.

6 Conclusion and perspectives

Cancer is one of the most important and common public
health problems on Earth endangering human health. And its
incidence rates continue to rise. As anti-tumor drugs have always
been the most common methods for treating cancers, searching for
new anti-tumor agents is of great significance (Sekeroglu and
Tuncal, 2021; He et al., 2023). The use of herbal products is
booming all over the world because of being believed as safer
than conventional drugs and free of side effects (Mwankuna et al.,
2023). Chinese herbal medicine (CHM) has long been applied in
the clinic due to its advantages of low toxicity and
polypharmacology (Li et al., 2022). CHM plays a positive role
in regulating patients’ immune system, which helps cancer patients
to fight against cancer itself and finally improves patients’ life
quality (Wang S. M. et al., 2020). ART, a sesquiterpene lactone
endoperoxide isolated from Chinese herbal medicine, displays
excellent anti-tumor and anti-inflammatory activity (Lu W.
J. et al., 2022; Wang et al., 2022). It is safe, efficacious and well-
tolerated anti-malarial (Savargaonkar et al., 2020). ART possesses
profound cytotoxic activity against tumor cells (Khanal, 2021),
which brings new hope for the treatment of diseases. The
combination of ART and other anti-tumor drugs may provide a
new idea for the treatment of tumors in the future (Duarte and
Vale, 2020). In this paper, the anti-tumor mechanism of artesunate
and its corresponding signaling pathway are reviewed, and the
anti-tumor mechanism of artesunate in different types of tumors is
analyzed and explained. In addition to this, we also provide a
separate explanation of the anti-tumor mechanism of artesunate in
different types of tumors. It provides a comprehensive reference
for further study of the anti-tumor mechanism of artesunate, and is
conducive to expanding its clinical application. In conclusion, the
efficacy of ART as an anticancer agent has been demonstrated in
multiple tumor types. However, the anti-tumor mechanism of
ART is not completely clear, so it needs to be further studied to
obtain more theoretical support and experimental basis.
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