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Introduction: Scutellarein (Scu) is a natural occurring flavonoid found in multiple
traditional Chinese medicines such asOroxylum indicum (L.) Kurz and Scutellaria
baicalensis, with various pharmacological activities including anti-inflammation,
anti-oxidation and myocardial protection. Here, we investigated the therapeutic
efficacy of Scu on ulcerative colitis (UC) and the underlying mechanism.

Methods: Efficacy of Scu on UC was evaluated in dextran sulfate sodium (DSS)
induced colitis mouse model. Inflammation in colonic tissues was assessed by
myeloperoxidase activity assay and RT-qPCR. Barrier proteins expression was
examined using immunostaining andWestern blot. IL-1β-treated HT-29 cells was
used for mechanical investigation.

Results: Gavage of Scu significantly decreased the DAI score, improved colon
shortening, ameliorated the pathological score in DSS-treated mice with better
efficacy than the positive drug, 5-aminosalicylic acid. Scu also inhibited the
expression levels of cytokines (Il-1β, Tnf-α, Il-1α, Il-6, and Cxcl1) as well as
barrier proteins (E-cadherin, Occludin, and ZO-1) in colon tissues of DSS
mice. In intestinal epithelial HT-29 cells, Scu attenuated the IL-1β-
downregulated expression levels of E-cadherin, occludin, and ZO-1, while
reduced IL-1β-upregulated IL-6 and IL-8 mRNA levels. Moreover, Scu
inhibited the phosphorylation and nuclear translocation of NF-κB and
suppression of NF-κB phosphorylation abolished IL-1β-disrupted epithelial
barrier integrity and IL-1β-upregulated proinflammatory mediators expression
in HT-29 cells.
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Conclusion: These data demonstrate that Scu is an efficacious therapeutic agent to
treat UC. Inhibition of inflammatory responses andmaintenance of epithelial barrier
integrity throughNF-κB signaling pathway underlines Scu therapeutic effect on UC.
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Introduction

Ulcerative colitis (UC) is a common chronic inflammatory
bowel disease (IBD) that is characterized by abdominal pain,
diarrhea, and hematochezia (Ungaro et al., 2017; Anbazhagan
et al., 2018). UC affects approximately 5 million people
worldwide, and the incidence is increasing (Le Berre et al., 2023).
Despite the availability of current treatments such as 5-
aminosalicylic acid (5-ASA), steroids, immunosuppressants, and
biologics, approximately 20% of patients with refractory
remission-relapsing symptoms still require proctocolectomy (Le
Berre et al., 2023).

Although the etiology is not fully understood, genetic
susceptibility, gut barrier defects, dysbiosis, and dysregulated
immune responses and their interplays underpin the initiation
and progression of UC (Ramos and Papadakis, 2019). The
intestinal epithelial barrier not only selectively regulates barrier
permeability for ion/nutrient/water absorption but also prevents
the entry of external harmful pathogens/toxins (Di Tommaso et al.,
2021). To preserve the integrity of the intestinal barrier, the
expression, distribution, and fine balance between isoforms of
tight junction proteins, including claudins, occludins, and zonula
occludens (ZO) family, must be tightly regulated (Chelakkot et al.,
2018). Evidence has demonstrated that a variety of stimuli, such as
tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β),
regulate the expression and organization of tight junction
proteins in both cellular models and in vivo pathological
conditions (Ye et al., 2006; Turner, 2009; Su et al., 2013; Lee
et al., 2024). The disruption of the intestinal barrier and loss of
mucosal homeostasis have been observed in active UC patients and
shown to trigger intestinal inflammation (Van der Post et al., 2019).
Although UC is an immune disease, the gut homeostasis and
function coordinate immune defense and bacterium-immune cell
crosstalk. It is accepted that the prevention of the dysregulation of
the gut barrier may represent a strategy to prevent the progression of
UC. One example is Anakinra, an IL-1R inhibitor used for IBD
therapy, which has been launched in a phase II clinical trial for
severe UC (Shouval et al., 2016; Thomas et al., 2019).

Scutellarein (Scu) is a naturally occurring flavonoid found in
multiple traditional Chinese medicines such as Oroxylum indicum
(L.) Kurz, Erigeron breviscapus (Vaniot) Hand.-Mazz, and
Scutellaria baicalensis. These traditional Chinese herbs have anti-
inflammatory, anti-viral, and anti-cancer properties (Dinda et al.,
2015; Zhao et al., 2019; Wu et al., 2021) and have been utilized to
treat cardiovascular, neurological, cutaneous inflammatory diseases,
respiratory tract infections, and liver inflammation (Zhao et al.,
2019; Liao et al., 2021). Huangqin Decoction has been shown to
ameliorate dextran sodium sulfate (DSS)-induced UC in mice,
possibly by suppressing intestinal barrier disruption (Li M. et al.,
2022; Mo et al., 2022). As one of the major active flavonoids in these

Chinese herbs, the anti-inflammatory effects of Scu have been
demonstrated in numerous studies. Scu has been found to
suppress lipopolysaccharide (LPS)-induced inflammation in
RAW264.7 macrophages (Park et al., 2022), relieve OGD/
R-induced cell death and proinflammation of tubular epithelial
cells (Liu et al., 2021), reduce IL-1β-induced apoptosis and
senescence in rat chondrocytes (Jing et al., 2024), and inhibit the
microglia BV2 cell activation (Talavera et al., 2020). We have also
demonstrated that Scu alleviates 2,4-dinitrofluorobenzene (DNFB)
and carvacrol-induced pruritus and dermatitis by specifically
inhibiting transient receptor potential vanilloid 3 (TRPV3)
channels (Wang et al., 2022). Apart from its anti-inflammatory
effect, Scu also displays activities of anti-proliferation, anti-
apoptosis, neuroprotection, and anti-cancer (Shi et al., 2015;
Wang et al., 2022; Rizou et al., 2023; Thoa and Son, 2024).

In the present study, we investigated the impact of Scu on
colonic inflammation in the UC mouse model induced by DSS. We
demonstrate Scu as an effective therapeutic agent to treat UC with
better efficacy than 5-ASA, the positive drug. Mechanistic
exploration demonstrates that Scu inhibits inflammatory
responses and preserves barrier integrity by inhibiting the NF-κB
signaling pathway.

Materials and methods

Materials

Dulbecco’s modified Eagle medium (DMEM), fetal bovine
serum (FBS), penicillin/streptomycin (P/S), and trypsin were
purchased from Life Technology (Grand Island, NY,
United States). Scutellarein (Scu, Cat# B21479), with a purity
above 98%, was obtained from Earay Bio-tech (Baoji, Shanxi
China). Dextran sulfate sodium (DSS, with the highest sulfur
content of 19% and a molecular weight ranging from 36 to
50 kDa, Cat# 160110) was obtained from MP Biomedicals (Santa
Ana, CA, United States). BAY11-7085 (Cat# HY-10257), 5-
aminosalicylic acid (5-ASA, Cat# HY-15027), and IL-1β (Cat#
HY-P78459A) were obtained from MedChemExpress
(Monmouth Junction, NJ, United States). The Myeloperoxidase
(MPO) Activity Assay Kit (Cat# A114-1–1) was supplied by the
Nanjing Jiancheng Bioengineering Institute (Nanjing, Jiangsu,
China). Anti-ZO-1 antibody (Cat# 21773-1-AP) was acquired
from Proteintech (Wuhan, Hubei, China). The following
antibodies were sourced from Cell Signaling Technology
(Danvers, MA, United States): antibodies against phosphor (p)-
NF-κB p65 (Cat# 3033), NF-κB (Cat# 8242), occludin (Cat# 91131),
E-cadherin (Cat# 3195), and anti-rabbit Alexa Fluor® 488 (Cat#
4412). The primary antibody against GAPDH (Cat# MB001) was
purchased from Bioworld Biotechnology Co., Ltd. (Nanjing, Jiangsu,
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China). Tribromoethanol, Hoechst 33342, and all the inorganic salts
were supplied by Sigma-Aldrich (St. Louis, MO, United States)
unless otherwise mentioned. HT-29 cells (Cat# HTB-38) were
procured from the Cell Bank of Shanghai (Shanghai, China).

Animals and ethics statement

Male C57BL/6 mice, aged 7–8 weeks and weighing between
22 and 24 g, were sourced from Yangzhou University (Yangzhou,
Jiangsu, China). The animal care and usage were conducted
following the guidelines established by the National Institutes of
Health, as detailed in NIH Publications No. 8023 (revised in 1978).
All experimental procedures involving animals adhered to ethical
standards for animal research and received approval from the Ethics
Committee of the China Pharmaceutical University (#SYXK,
2023–0019). The mice were housed in a vivarium with a
controlled temperature of 23°C ± 2°C, under a 12-hour light and
dark cycle, and had unrestricted access to food and water.

DSS-induced UC and drug administration

A UC mouse model was established following the methodology
described in previous research (Xue et al., 2023). In brief, a total of
42 mice were acclimatized for 1 week and then randomly assigned to
7 different experimental groups. To induce colonic inflammation,
mice were challenged with a 3% concentration of DSS in their
drinking water for seven consecutive days. Mice in the vehicle (Veh)
group and 20 mg/kg Scu group were provided with regular
drinking water.

Scu and 5-ASA were dissolved in a solution comprising 2%
dimethyl sulfoxide (DMSO), 2% Tween-80, and 0.5% sodium
carboxymethyl cellulose (CMC-Na). A measure of 200 mg/kg 5-
ASA and Scu at varying levels of 5 mg/kg, 10 mg/kg, and 20 mg/kg
were administered to the mice once daily by intragastric gavage for
seven consecutive days from the first day of DSS administration until
the day of sacrifice by tribromoethanol administration. The distal
colon tissues were carefully dissected, harvested, and immediately
frozen for further analysis.

Disease activity index score

The disease activity index (DAI) was scored according to Sann’s
method by summing the respective scores for body weight loss,
hemorrhage, and faecal consistency (Sann et al., 2013;Wang et al., 2021).

Myeloperoxidase activity assay

The enzymatic activity of MPO in mouse colon samples was
evaluated using an MPO activity assay kit (Alkushi et al., 2022).
According to the manufacturer’s instructions, the colonic
homogenate supernatant reacts with H2O2 and o-dianisidine to
produce oxidized o-dianisidine, the absorbance of which at 460 nm
is linearly correlated with MPO activity. The MPO results were
expressed as units per gram (U/g) of tissue wet weight.

Hematoxylin and eosin (H&E) staining

Colon samples were fixed in 4% paraformaldehyde, paraffin-
embedded, and sectioned at 5 μm, followed by staining with
hematoxylin and eosin. The sections were photographed using the
NanoZoomer 2.0 RS Slide scanner (Hamamatsu Photonics, Japan).
According to Wang’s method (Wang et al., 2018), histological scores
were assessed by summing the respective scores for inflammation, the
extent of crypt damage, and the range of lesions.

Cell culture

The HT-29 cells, human intestinal epithelial cells, were
maintained in DMEM supplemented with 10% FBS and 100 U/
mL of P/S at 37°C with 5% CO2.

Western blotting

Western blotting was performed, as previously described (Li S.
H. et al., 2022). In brief, 30 µg of protein samples were subjected to
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) for separation, followed by transfer to a nitrocellulose
membrane. The membranes were blocked by 5% skimmed milk
and then incubated with primary antibodies: anti-ZO-1, anti-p-NF-
κB p65, anti-NF-κB, anti-occludin, anti-E-cadherin, anti-β-actin,
and anti-GAPDH (at the recommended dilution). After the
incubation with IRDye (680RD or 800CW)-labeled goat anti-
mouse or goat anti-rabbit secondary antibodies (at 1:
10,000 dilution), the blots were visualized using the LI-COR
Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln,
NE, United States), and the densitometry was quantified using its
application software (version 2.1). The expression levels of proteins
were normalized to those of β-actin or GAPDH.

Real-time-quantitative polymerase chain
reaction analysis

Real-time quantitative polymerase chain reaction (RT-qPCR)
was performed, as previously described (Wang et al., 2022). Total
messenger RNA (mRNA) of colon tissues or HT-29 cells was
extracted using TRIzol reagent (Cat# R401-01, Vazyme) and
subsequently reverse-transcripted to cDNA using the HiScript II
Q RT SuperMix Kit (Cat# R223-01, Vazyme). RT-qPCR was
conducted on a QuantStudio 3 System (Thermo Fisher Scientific,
Massachusetts, United States). Relative mRNA expression levels
normalized to GAPDH were quantified using the 2−ΔΔCt method.
All primers listed in Table 1 were synthesized by Beijing Tsingke
Biotechnology Co., Ltd. (Beijing, China).

Transepithelial electrical resistance
measurement

As previously described (Srinivasan et al., 2015), HT-29 cells
were seeded in the upper chamber, and the transepithelial electrical
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resistance (TEER) was recorded using Millcell®ERS (Electrical
Resistance System) with two electrodes placed in the upper and
lower chambers, respectively. The TEER values were reported in
units of ohm-centimeter squared (Ω·cm2).

Immunofluorescence labeling

Colon slides were subject to deparaffinization and subsequent
antigen retrieval. HT-29 cells were seeded in a confocal petri dish
and fixed with 4% paraformaldehyde. After permeabilization using
0.3% Triton X-100, colon slides and HT-29 cells were blocked with
5% BSA at room temperature for 1 h, followed by incubation
overnight with primary antibodies against ZO-1 (1:1,200),
occludin (1:400), E-cadherin (1:1,000), and NF-κB (1:400),
respectively. The goat anti-mouse or anti-rabbit secondary
antibodies conjugated with Alexa Fluor® 488 were used for
visualization. Nuclei were stained with Hoechst. Slides and cells
were photographed using a Zeiss LSM 800 Confocal Fluorescence
Microscope (Le Pecq, France) with a 20 × (slides) or 63 ×
(cells) objective.

Cell viability assay

As previously described (Xue et al., 2023), HT-29 cells seeded in
96-well plates were treated with Scu at various concentrations for
24 h. After the replacement with the fresh medium containing
500 μg/mL of MTT, a further incubation was carried out for 1 h.
Then, the medium was replaced by DMSO to dissolve the formazan
crystals. Absorbance at 570 nm was measured using an Infinite
M200 Pro-NanoQuant Reader from Tecan Austria (GmbH,
Grodig, Austria).

Statistical analysis

Statistical analysis was performed using GraphPad Prism
version 8.01 (San Diego, CA, United States). Data are presented
as the mean ± SEM. Statistical significance was assessed using one-
way ANOVA or two-way ANOVA, followed by Bonferroni’s

multiple comparison test. A p-value less than 0.05 was deemed
statistically significant.

Results

Scu ameliorated DSS-induced UC in mice

The structure of Scu is illustrated in Figure 1A inset. Consecutive
drinking of 3% DSS led to a gradual reduction in the body weight of
the mice (Figure 1A). The administration of Scu alone did not affect
the mouse body weight and dose-dependently alleviated the body
weight loss induced by DSS (Figure 1A). In addition to body weight
loss, DSS also induced diarrhea and bloody stools. These symptoms
can be quantified using the disease activity index (DAI) score. The
DAI scores were significantly increased on day 3 and gradually
increased upon drinking of DSS. The administration of Scu also
dose-dependently suppressed the DSS-induced severity of UC, as
reflected by the decreased DAI scores. At 20 mg/kg, Scu displayed
greater protection against DSS-induced UC than the positive
control, 5-ASA (Figure 1B). Compared to the Veh group, mice
with DSS administration exhibited shortened colon length (7.45 ±
0.14 cm vs. 4.02 ± 0.20 cm, p < 0.01) (Figures 1C, D). While 5 mg/kg
Scu showed marginal improvement (4.02 ± 0.20 cm vs. 4.17 ±
0.19 cm, p > 0.01) in DSS-induced colon atrophy, doses of 10 mg/kg,
20 mg/kg Scu, and 200 mg/kg 5-ASA were able to diminish DSS-
induced colon atrophy by 29.1% (p < 0.01), 67.0% (p < 0.01), and
27.1% (p < 0.01), respectively (Figures 1C, D). Pathological
examination indicated that colon tissues from DSS mice
experienced destruction with the disappearance of crypts (black
arrows) and edematous lamina propria containing inflammatory
cell infiltrates (red boxes). The administration of Scu and 5-ASA
preserved the epithelial barrier, reduced edema, and alleviated
inflammatory infiltration in the lamina propria of DSS mice
(Figure 1E). The pathology score of DSS mice was 10.0 ± 1.1
(p < 0.01 vs. control). While oral administration of 20 mg/kg Scu
alone did not impact colon pathology, doses of 10 mg/kg and
20 mg/kg Scu significantly decreased the pathological scores in
DSS mice to 6.0 ± 0.5 (p < 0.01) and 2.0 ± 0.3 (p < 0.01),
respectively. As the positive drug, 5-ASA also reduced the
pathological score to 6.0 ± 1.0 (p < 0.01) (Figure 1F). These

TABLE 1 Primers used in this study.

Gene Sense (5′−3′) Anti-sense ( 5′−3′)

mGAPDH CATCTTCCAGGAGCGAGACC GAAGGGGCGGAGATGATGAC

mTnf-α GACGTGGAACTGGCAGAAGAG TGCCACAAGCAGGAATGAGA

mCxcl1 GCTGGGATTCACCTCAAGAA CTTGGGGACACCTTTTAGCA

mIl-6 GTTCTCTGGGAAATCGTGGA TTCTGCAAGTGCATCATCGT

mIl-1α CGAAGACTACAGTTCTGCCATT GACGTTTCAGAGGTTCTCAGAG

mIl-1β GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG

hGAPDH AACGGATTTGGTCGTATTGGG TCGCTCCTGGAAGATGGTGAT

hIL-6 GTGTGAAAGCAGCAAAGAG CTCCAAAAGACCAGTGATG

hIL-8 GTCCTTGTTCCACTGTGCCT GCTTCCACATGTCCTCACAA
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findings indicated that Scu yielded superior protection on UC when
compared to the clinically used drug, 5-ASA.

Scu attenuated the inflammation in DSS-
treated mice

Given the superior protection of Scu on UC in DSS-treated mice,
we next evaluated the impact of Scu on the inflammatory response in
colonic tissues. DSS-administered mice displayed increased MPO
activity in colonic tissues and upregulated mRNA expression levels
of inflammatory cytokines such as Tnf-α, Il-1β, Il-1α, Cxcl1, and Il-6
(Figure 2). Although oral administration of 20 mg/kg Scu alone did

not affect theMPO activity, Scu dose-dependently reduced theMPO
activity and the mRNA expression levels of these inflammatory
mediators (Figure 2). At the dose of 20 mg/kg, Scu significantly
decreased the MPO activity by 66.6% ± 1.6% (p < 0.01), while 5-ASA
only achieved 29.8% ± 8.8% reduction (p < 0.01). Scu at 20 mg/kg
also remarkably decreased mRNA expression levels of Tnf-α, Il-1β,
Il-1α, Cxcl1, and Il-6 by 72.8% ± 8.5% (p < 0.01), 99.4% ± 2.9% (p <
0.01), 96.9% ± 4.6% (p < 0.01), 90.0% ± 1.8% (p < 0.01), and 99.0% ±
0.6% (p < 0.01), respectively, in the colons of DSS-treated mice
(Figure 2). As a positive drug, 5-ASA also significantly reduced
mRNA expression levels of Tnf-α, Il-1β, Il-1α, Cxcl1, and Il-6 by
60.5% ± 11.9% (p < 0.01), 70.0% ± 13.5% (p < 0.01), 51.8% ± 26.2%
(p < 0.01), 58.1% ± 8.7% (p < 0.01), and 85.1% ± 4.5% (p < 0.01),

FIGURE 1
Scu ameliorated DSS-induced ulcerative colitis in mice. (A) Changes in body weight in mice treated with vehicle or DSS, administered with Scu and
5-ASA for 7 days. Inset: structure of Scu. (B) Disease activity index of mice treated with vehicle and DSS, administered with Scu and 5-ASA. (C)
Representative colon images and (D) quantification of colon length in vehicle and DSS-treatedmice administered with Scu and 5-ASA. (E) Representative
micrographs of colon tissues from mice in different groups stained with H&E. Disappearance of crypts and edematous lamina propria containing
inflammatory cell infiltrates are labeled by black arrows and red boxes, respectively. Scale bars are 500 μm in the upper panel images (5 × magnification)
and 250 μm in the lower panel images (10 × magnification). (F) Quantification of histopathological scores from H&E-stained colon tissues from mice in
different groups. Data are expressed as the mean ± SEM. N = 6 mice; **, p < 0.01 vs. Veh; #, p < 0.05, ##, p < 0.01, vs. DSS.
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respectively, in the colons of DSS-treated mice (Figure 2). Again, Scu
displayed better suppression on colonic inflammation in the DSS-
treated mice than 5-ASA.

Scu ameliorated damage of the epithelial
barrier in DSS mice

The disruption of the gut barrier and loss of mucosal
homeostasis were observed in active UC patients and shown to
trigger intestinal inflammation (Van der Post et al., 2019). To
maintain the integrity of the intestinal barrier, the expression,
distribution, and fine balance between isoforms of tight junction
proteins, including occludins, claudins, and ZO family, must be
tightly regulated (Chelakkot et al., 2018). We, therefore, investigated
the impact of Scu on the expression of tight junction proteins in
DSS-treated mice. Immunofluorescence staining demonstrated that
E-cadherin, occludin, and ZO-1 were highly expressed in the crypts
of colons in vehicle-treated mice. The administration of Scu
(20 mg/kg) alone did not change the expression levels and
patterns of E-cadherin, occludin, and ZO-1. However, in the
colons of DSS-treated mice, the expressions of E-cadherin,
occludin, and ZO-1 were all diminished. The administration of
Scu dose-dependently alleviated the downregulated protein
expression of E-cadherin, occludin, and ZO-1, a phenomenon
also observed by 5-ASA treatment (Figure 3A). Consistent with
the immunofluorescence measurement, Western blots also
demonstrated that DSS-treatment decreased the protein levels of

E-cadherin, occludin, and ZO-1 by 89.8% ± 2.9% (p < 0.01), 94.8% ±
1.4% (p < 0.01), and 69.5% ± 8.6% (p < 0.01), respectively. The
administration of Scu dose-dependently reversed the protein
expression of E-cadherin, occludin, and ZO-1 in DSS mice. At
20 mg/kg, Scu increased the expression levels of E-cadherin,
occludin, and ZO-1 in DSS-treated mice from 10.2% ± 2.9% to
109.2% ± 15.7% (p < 0.01), 5.2% ± 1.4% to 82.8% ± 10.6% (p < 0.01),
and 30.5% ± 8.6% to 120.2% ± 25.3% (p < 0.01) of vehicle-treated
mice, respectively (Figures 3B, C).

Scu inhibited IL-1β-induced epithelial
inflammation and barrier damage in HT-
29 cells

We next investigated whether Scu can affect the epithelial
inflammation and epithelial barrier integrity in a cell model. We
first examined the cytotoxicity of Scu in cultured HT-29 cells. A 24 h
exposure of Scu up to 30 μMhad no cytotoxic effect on the HT-29 cell
although 100 μM of Scu decreased the HT-29 cell viability by 9.9% ±
1.4% (p < 0.01) (Figure 4A). IL-1β is a critical inflammatory mediator
in the development of UC (Al-Sadi et al., 2008; Mannino et al., 2019).
IL-1β exposure for 12 h dramatically increased themRNA levels of IL-
6 and IL-8 to 4.59 ± 0.54 (p < 0.01) and 34.69 ± 1.97-fold (p < 0.01) of
their respective controls (Figures 4B, C). Although the incubation of
Scu did not affect the basal expression levels of IL-6 and IL-8, it
abolished IL-1β-inducedmRNA expression of IL-6 and decreased that
of IL-8 by 45.8% ± 3.4% (p < 0.01) (Figures 4B, C).

FIGURE 2
Scu attenuated colonic inflammation in DSS-treatedmice. (A)MPO activity in colon tissues from Veh- and DSS-treatedmice, administered with Scu
and 5-ASA. (B–F) Quantitative RT-PCR analysis of mRNA levels of Tnf-α (B), Il-1β (C), Il-1α (D), Cxcl1 (E), and Il-6 (F), respectively, in colon tissues from
different groups of mice. Data are presented as the mean ± SEM. N = 6 mice; **, p < 0.01 vs. Veh; #, p < 0.05, ##, p < 0.01 vs. DSS. One-way ANOVA with
Bonferroni’s multiple comparisons tests.
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IL-1β exposure for 24 h significantly decreased TEER values
from 18.76 ± 0.36Ω·cm2 to 13.26 ± 0.78Ω·cm2 (P < 0.01) in cultured
HT-29 cell monolayer (Figure 4D). Although Scu (10 μM) treatment
alone did not alter the TEER value, it significantly increased TEER
values to 16.45 ± 1.15 Ω·cm2 (p < 0.05) in IL-1β-treated HT-29 cell
monolayer (Figure 4D). HT-29 monolayer cells showed
considerable staining of E-cadherin, occludin, and ZO-1 proteins
in the cell membrane between cells, consistent with their function to
maintain barrier integrity (Figure 4E). IL-1β exposure decreased the
immunofluorescence signals of E-cadherin, occludin, and ZO-1
(Figure 4E). While Scu (10 μM) treatment for 24 h did not alter
the expression levels and distribution patterns of these tight junction
proteins in vehicle (0.1% DMSO)-treated HT-29 monolayer, it
increased the expression levels of E-cadherin, occludin, and ZO-1
in IL-1β-treated HT-29 cell monolayer from 0.66 ± 0.06 to 1.19 ± 0.1

(p < 0.01), 0.74 ± 0.04 to 0.99 ± 0.06 (p < 0.01), and 0.66 ± 0.05 to
0.95 ± 0.08-fold (p < 0.01) of their respective controls
(Figures 4E–G).

Scu suppressed NF-κB signaling in HT-29
cells to decrease epithelial inflammation and
maintain epithelial barrier integrity

We next explored how Scu exerted its anti-inflammatory on
epithelial HT-29 cells. The activation of the nuclear transcription
factor NF-κB mediates signaling pathways for a variety of
inflammatory mediators, including IL-1β (Lee et al., 2024).
Western blot analysis demonstrated that IL-1β exposure rapidly
increased NF-κB phosphorylation (Figure 5A) and nuclear

FIGURE 3
Scu increased the barrier proteins expression in DSS mice. (A) Representative immunofluorescent images of E-cadherin (upper panel), occludin
(middle panel), and ZO-1 (lower panel) labeled colon tissues fromVeh- andDSS-treatedmice, administeredwith Scu and 5-ASA. Nuclei were stainedwith
Hoechst 33342. Scale bar = 50 μm. (B) Representative Western blots of E-cadherin, occludin, and ZO-1 in colon tissues from mice with different drug
administrations. (C) Quantification of E-cadherin, occludin, and ZO-1 protein expression in colon tissues from mice with different drug
administrations. Data are expressed as the mean ± SEM. N = 6 mice; **, p < 0.01 vs. Veh; #, p < 0.05, ##, p < 0.01 vs. DSS. One-way ANOVA with
Bonferroni’s multiple comparisons tests.
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translocation (Figure 5C). Treatment with Scu (10 μM) for 30 min
significantly suppressed IL-1β-induced NF-κB phosphorylation by
63.4% ± 10.8% (p < 0.01) (Figure 5B) and abrogated the IL-1β-
induced NF-κB nuclear translocation (Figure 5C). To validate the
promotion of NF-κB activation on epithelial inflammation and
barrier integrity, we examined the effects of NF-κB inhibition on
IL-1β-induced IL-6 and IL-8 expression and barrier disruption. An
NF-κB inhibitor, BAY-11–7082 (3 μM) suppressed IL-1β
upregulated mRNA expression of IL-6 and IL-8 by 84.1% ± 3.2%
(p < 0.01) and 24.1% ± 3.3% (p < 0.01), respectively (Figures 5D,E).
BAY-11–7082 also reversed the value of TEER in IL-1β-treated HT-
29 cells from 6.60 ± 1.35 Ω·cm2 to 20.24 ± 1.07 Ω·cm2 (p < 0.01)

(Figure 5F) and IL-1β downregulated protein expression of
E-cadherin, occludin, and ZO-1 (Figure 5G).

Discussion

Scu is one of the main active flavonoids found in multiple
traditional Chinese medicines. Scu has been demonstrated to
alleviate chronic obstructive pulmonary diseases (Liu et al., 2023),
cardiac hypertrophy (Shi et al., 2022), pulmonary fibrosis (Miao
et al., 2020), liver inflammation (Lan et al., 2023), and osteoarthritis
(Ye et al., 2024). We have also demonstrated that Scu alleviates

FIGURE 4
Scu inhibited IL-1β-inducedmRNA expression of inflammatorymediators and barrier damage ofHT-29 cells. (A)HT-29 cell viabilitymeasured by the
MTT assay after being exposed to different concentrations of Scu for 24 h (B, C) Quantitative RT-PCR analysis of mRNA levels of IL-6 (B) and IL-8 (C) in
HT-29 cells treated with IL-1β (10 ng/mL) for 12 h in the absence and presence of Scu (10 μM). (D) Change in the TEER of HT-29 monolayer treated with
IL-1β (10 ng/mL, 24 h) in the absence and presence of Scu (10 μM). (E) Representative immunofluorescence images of E-cadherin (upper panel),
occludin (middle panel), and ZO-1 (lower panel) in HT-29 cells after being exposed to IL-1β (10 ng/mL) for 24 h in the absence and presence of Scu
(10 μM). Nuclei were stained with Hoechst 33342. Scale bar = 10 μm. (F) Representative Western blots of E-cadherin, occludin, and ZO-1 in HT-29 cells
exposed to IL-1β (10 ng/mL) for 24 h in the absence and presence of Scu (10 μM). (G)Quantification of E-cadherin, occludin, and ZO-1 protein expression
in HT-29 cells after being exposed to IL-1β (10 ng/mL) for 24 h in the absence and presence of Scu (10 μM). Data are expressed as the mean ± SEM. N =
5–6; **, p < 0.01 vs. Veh (0.1% DMSO); #, p < 0.05, ##, p < 0.01 vs. IL-1β. One-way ANOVA with Bonferroni’s multiple comparisons tests.
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FIGURE 5
Scu inhibited IL-1β-induced phosphorylation of NF-κB and its nuclear translocation in HT-29 cells. (A) Representative Western blots and (B)
quantification of phosphorylated NF-κB in HT-29 cells. HT-29 cells were exposed to IL-1β (10 ng/mL) in the absence and presence of Scu (10 μM). (C)
Representative immunofluorescence images of stained with NF-κB in HT-29 cells. Cells were treated with IL-1β (10 ng/mL) for 30min in the absence and
presence of Scu (10 μM). Nuclei were stained with Hoechst 33342. Scale bar = 10 μm. (D, E)Quantitative RT-PCR analysis of mRNA levels of IL-6 (D)
and IL-8 (E) in HT-29 cells treated with IL-1β (10 ng/mL) for 12 h in the absence and presence of BAY11-7082 (3 μM). (F) Changes in the TEER of HT-29
monolayer treated with IL-1β (10 ng/mL) for 24 h in the absence and presence of BAY11-7082 (3 μM). (G) Representative immunofluorescence images of
E-cadherin, occludin, and ZO-1 in HT-29 cells exposed to IL-1β (10 ng/mL) for 24 h in the absence and presence of BAY11-7085 (3 μM). Nuclei were
stained with Hoechst 33342. Scale bar = 10 μm. N = 3–6. **, p < 0.01 vs. Veh; #, p < 0.05, ##, p < 0.01 vs. IL-1β. One-way ANOVAwith Bonferroni’smultiple
comparisons tests.
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DNFB and carvacrol-induced pruritus and dermatitis (Wang et al.,
2022). In the current study, we found that Scu effectively
ameliorated DSS-induced weight loss, colon atrophy,
histopathological damage, and colonic inflammation in mice,
therefore extending its potential utility to treat UC. It should be
noted that at a dose of 20 mg/kg, Scu displayed better protection on
DSS-induced UC severity, inflammation, and epithelial barrier
disruption than the positive drug, 5-ASA, suggesting its superior
efficacy in the treatment of UC.

Although UC is a chronic disease manifested by dysregulated
immune response, gut homeostasis coordinates the interplay
between immune cells and bacteria. The disruption of the gut
barrier with subsequent loss of mucosal homeostasis is a critical
step to trigger intestinal inflammation (Van der Post et al., 2019). In
the current study, we also demonstrated that Scu effectively
suppressed the epithelial barrier damage in DSS-treated mice as
reflected by the restoration of DSS-disrupted expression of tight
junction proteins, as well as in the IL-1β-treated epithelial HT-29
cell monolayer. Treatment of Scu completely reversed the IL-1β-
induced decrease in the TEER value and the downregulated
expression levels of tight junction proteins such as E-cadherin,
occludin, and ZO-1. These data demonstrated that in both in
vivo and in vitro models, Scu was capable of preserving the
integrity of the epithelial barrier. Upon pathogen/inflammatory
mediator stimulation, intestinal epithelial cells also release a
variety of proinflammatory mediators (Mannino et al., 2019).
These proinflammatory mediators further aggravate the
infiltration of immune cells, contributing to the progression of
intestinal inflammation. We demonstrated that in HT-29
cultures, Scu completely suppressed the IL-1β-upregulated IL-6

expression although it was less effective on the IL-1β-upregulated
IL-8 expression. Although Scu has been demonstrated to suppress
LPS-induced inflammation in RAW264.7 macrophages, considering
its relatively low absorption and low level in the blood (Zhang et al.,
2016), it is feasible to prospect that Scu likely exerts its effect in the
gut, possibly by preserving the epithelial barrier integrity and
inhibiting proinflammatory response of the epithelial cells. Such
combinatorial effects on barrier disruption and anti-inflammation
may explain the superior therapeutic efficacy of Scu to 5-
ASA on UC.

During the progression, IL-1β is a critical inflammatory
mediator that causes intestinal inflammation and disruption of
epithelial integrity (Al-Sadi et al., 2008). As one of the major
mediators, NF-κB is critical to inflammation in epithelial cells
(Laurindo et al., 2023). Consistent with the previous results, we
demonstrated that IL-1β exposure increased NF-κB
phosphorylation and nuclear translocation, while the suppression
of NF-κB phosphorylation suppressed the IL-1β-upregulated IL-6
and IL-8mRNA expression. The NF-κB inhibitor, BAY11-7082, also
reversed the IL-1β-induced decreases in TEER values and the
expression of E-cadherin, occludin, and ZO-1. Interestingly, with
the Scu treatment, IL-1β-induced NF-κB phosphorylation and
nuclear translocation were markedly suppressed. Considered
together these data demonstrate that Scu exerts its protection on
epithelial barrier integrity and anti-inflammatory effect through
suppression of the NF-κB signaling pathway. However, the
molecular target remains to be explored. We previously
demonstrated that Scu is a selective inhibitor of TRPV3 and Scu
alleviates DNFB and carvacrol-induced pruritus and dermatitis
through specific suppression of TRPV3 (Wang et al., 2022). A

FIGURE 6
Schematic depiction of Scu amelioration of DSS-induced ulcerative colitis in mice. Scu alleviates DSS-induced UC through its suppression of
proinflammatory mediators and preservation of epithelial barrier integrity by inhibiting NF-κB signaling in intestinal epithelial cells.
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recent study has reported the abundant expression of TRPV3 in the
colon epithelial cells (Ueda et al., 2009). It remains to be established
that whether Scu’s effect is, at least in part, due to its inhibition of
TRPV3 activity.

Conclusion

The current study expands on the potential utility of Scu in
treating UC. Scu exerts its protective effect on UC through its anti-
inflammatory effect on intestinal epithelial cells and its ability to
preserve epithelial barrier integrity (Figure 6). Scu has the potential
to be a novel therapeutic agent for the treatment of UC.
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