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Background: Due to its complex pathogenesis, the assessment of cancer-
associated disseminated intravascular coagulation (DIC) is challenging. We
aimed to develop a machine learning (ML) model to predict overt DIC in
critically ill colorectal cancer (CRC) patients using clinical features and
laboratory indicators.

Methods: This retrospective study enrolled consecutive CRC patients admitted to
the intensive care unit from January 2018 to December 2023. Four ML algorithms
were used to construct predictive models using 5-fold cross-validation. The
models’ performance in predicting overt DIC and 30-day mortality was evaluated
using the area under the receiver operating characteristic curve (ROC-AUC) and
Cox regression analysis. The performance of three established scoring systems,
ISTH DIC-2001, ISTH DIC-2018, and JAAM DIC, was also assessed for survival
prediction and served as benchmarks for model comparison.

Results: A total of 2,766 patients were enrolled, with 699 (25.3%) diagnosed with
overt DIC according to ISTH DIC-2001, 1,023 (36.9%) according to ISTH DIC-
2018, and 662 (23.9%) according to JAAM DIC. The extreme gradient boosting
(XGB) model outperformed others in DIC prediction (ROC-AUC: 0.848; 95% CI:
0.818–0.878; p < 0.01) and mortality prediction (ROC-AUC: 0.708; 95% CI:
0.646–0.768; p < 0.01). The three DIC scores predicted 30-day mortality with
ROC-AUCs of 0.658 for ISTH DIC-2001, 0.692 for ISTH DIC-2018, and
0.673 for JAAM DIC.

Conclusion: The results indicate that MLmodels, particularly the XGBmodel, can
serve as effective tools for predicting overt DIC in critically ill CRC patients. This
offers a promising approach to improving clinical decision-making in this high-
risk group.
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Introduction

Clinical manifestations of disseminated intravascular
coagulation (DIC) vary widely, ranging from asymptomatic
patients exhibiting only mild laboratory abnormalities to critically
ill individuals admitted to intensive care units (ICUs) for overt DIC
characterized by multiple organ damage and/or significant
hemorrhage (Levi et al., 2004; Papageorgiou et al., 2018). A
primary determinant for the diagnosis of overt DIC is the
underlying condition that precipitates it, often linked to diseases
such as sepsis or cancer (Levi and Sivapalaratnam, 2018). However,
the pathogenesis of cancer-associated DIC is complex and
multifactorial and remains poorly understood (Levi, 2009).

As no single laboratory test can definitively confirm or exclude
DIC, international guidelines advocate using DIC scoring systems to
aid in diagnosis (Levi et al., 2009; Wada et al., 2017). Based on
routinely available laboratory tests, these scoring systems include a
well-recognized system developed by the International Society on
Thrombosis and Haemostasis (ISTH). This system evaluates DIC
using four parameters: platelet count, the international normalized
ratio (INR), fibrinogen levels, and D-dimer levels, with a score
of ≥5 indicating DIC (Taylor et al., 2001). In 2018, adjustments were
made to the threshold values for D-dimer and cut-off points to
enhance the model’s sensitivity and specificity (Suzuki et al., 2018).
Alternatively, the DIC score proposed by the Japanese Association
for Acute Medicine (JAAM) focuses on changes in platelet count
and omits fibrinogen (Iba et al., 2016).

Both the ISTH and JAAM scoring systems are used primarily to
diagnose overt DIC and, therefore, cannot predict the onset of DIC

in its early stages (Gando et al., 2016). It is widely recognized that
patients diagnosed with overt DIC generally have a poor prognosis
during their stay in the ICU (Adelborg et al., 2021). Alarmingly, a
recent study revealed that patients who show late-onset DIC, who
tested negative on day one but positive on day three of an ICU stay,
constitute a subgroup with particularly poor prognoses in cases of
septic DIC (Matsuoka et al., 2024). Early prediction of overt DIC has
significant clinical value. Moreover, the application of DIC scores to
cancer patients may seem counterintuitive. In this population, the
utility of the DIC score may decrease due to reduced sensitivity and
specificity since parameters such as D-dimer and prothrombin time
are inherently elevated (Levi, 2009). This complication poses
challenges in accurately assessing the risk of cancer-associated
DIC. In particular, the efficacy of DIC scoring systems in
patients with solid tumors, especially within the colorectal cancer
(CRC) subgroup, remains underexplored in large cohort studies
(Squizzato et al., 2020).

Recent technological advancements have significantly increased
the availability of time-series data in ICUs, including outputs of
digital sensors, laboratory results, and electronic health records.
These data are typically high-dimensional and frequently contain
missing values, presenting challenges and opportunities to improve
patient care (Boehm et al., 2022; Jin et al., 2022). Machine learning
(ML) advances have notably improved the capability to analyze such
complex datasets. This study aimed to develop an ML algorithm
tailored to predict DIC in critically ill patients with CRC.
Additionally, this study aimed to compare the predictive
capabilities of the newly developed ML algorithm for short-term
mortality with established DIC scoring systems.

FIGURE 1
Schematic of the study design. CRC, colorectal cancer; DIC, disseminated intravascular coagulation; ICU, intensive care unit; ISTH, International
Society on Thrombosis and Haemostasis; JAAM, Japanese Association for Acute Medicine; ML, machine learning.
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Materials and methods

Data source

This study was conducted through a retrospective analysis of a
prospectively maintained CRC database at the Sixth Affiliated
Hospital, Sun Yat-sen University. We analyzed data from CRC
patients admitted to the ICU between January 2018 and December
2023. Exclusion criteria included patients with pre-existing
hemostatic disorders, such as liver cirrhosis or failure,
hematopoietic malignancies, or those diagnosed with DIC at the
time of ICU admission, in line with previous validation studies
(Bakhtiari et al., 2004; Gando et al., 2006). Patients with missing data
necessary to calculate the JAAM and ISTH DIC scores were also

excluded. The Institutional Review Board of the Sixth Affiliated
Hospital of Sun Yat-sen University approved this study, granting a
waiver of informed consent due to its retrospective nature (approval
No. 2024ZSLYEC-210).

Baseline data extraction

The structured query language (SQL) was used to extract various
patient-related variables. The severity of the disease was evaluated
using Charlson’s comorbidity index (CCI). Laboratory examinations
conducted within the first 24 h after admission to the ICU included
the following parameters: red blood cell counts (RBC), white blood
cell counts (WBC), platelet counts (PLT), hematocrit, hemoglobin,

FIGURE 2
Cox regression for the prediction of 30-day mortality in critically ill CRC patients with different DIC underlying mechanisms. ISTH DIC-2018, DIC
score using cut-off scores published in 2018. Daily repeated scoring was performed during ICU stays. A patient was annotated as overt DIC if they had a
positive DIC score that day. All HRs were adjusted for age and gender. CI, confidence intervals; CRC, colorectal cancer; DIC, disseminated intravascular
coagulation; HRs, hazard ratios; ISTH, International Society on Thrombosis and Haemostasis. *P-value of less than 0.05.
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mean corpuscular hemoglobin (MCH), mean corpuscular
hemoglobin concentration (MCHC), mean corpuscular volume
(MCV), eosinophils, basophils, lymphocytes, monocytes,
neutrophils, creatinine, and pH levels. Blood gases measured
included partial oxygen (PaO2) and carbon dioxide (PaCO2)
pressures. Electrolyte assessments covered sodium, potassium,
calcium, and chloride. Additional tests measured the anion gap
(AG), bicarbonate, lactate, blood urea nitrogen (BUN), glucose, total
bilirubin, liver enzymes such as alanine aminotransferase (ALT),
alkaline phosphatase (ALP), aspartate aminotransferase (AST), and
coagulation markers including prothrombin time (PT), activated
partial thromboplastin time (aPTT), INR, fibrinogen, and D-dimer.
Vital signs were also recorded, including mean heart rate, mean
systolic and diastolic blood pressures (MSBP, MDBP), mean
respiratory rate (MRR), mean temperature, mean oxygen
saturation (MOS), and urine output.

Adjudication of the diagnosis of cancer-
associated DIC

PLT, INR, D-dimer, and fibrinogen levels were extracted for
all included patients. DIC scores were calculated using the
algorithms detailed in Supplementary Table S1. We selected
the most abnormal values for patients with multiple
measurements on the same day, choosing the lowest for PLT
and fibrinogen and the highest for INR. Daily repeated scoring
was performed after that. A patient was classified as having an
overt DIC if they registered a positive DIC score on any given day.
DIC was considered cancer-associated if the patient had been
diagnosed with CRC within 6 months before the diagnosis of
DIC, had received any cancer treatment in the previous 6 months,
or had recurrent/metastatic cancer.

All medical records, laboratory results, microbiological findings,
imaging results, and DIC scores were reviewed by all authors to
confirm the diagnosis of cancer-associated DIC. Two authors (Z.L.
and L.Q.) independently assessed whether a definitive diagnosis of
DIC should be established. Disagreements were resolved by
consensus. In the cases where consensus was not achievable, the
opinion of a hematologist (X.L.) was sought.

Study design

To assess the effectiveness of DIC diagnosis, a Cox proportional
hazards regression analysis was conducted to evaluate the impact of
an overt DIC diagnosis, based on three different DIC scores, on
mortality. This analysis adjusted for variables such as age, gender,
and cancer-related factors. Following the analysis, the ISTH DIC-
2018 score was selected as a criterion for outcome measurement in
developing and evaluating subsequent ML models (Figure 1).

For ML model development, the patient data set was randomly
divided into a training cohort (70%) and a validation cohort (30%).
Continuous variables were normalized, and categorical variables
were transformed into dummy variables before training. Laboratory
records and vital signs were averaged with multiple daily
measurements. A variety of ML models, including logistic
regression (LR), random forest (RF), extreme gradient boosting
(XGB), and weighted support vector machine (SVM), were
utilized for DIC prediction. A 5-fold cross-validation grid search
strategy was implemented for hyperparameter tuning and training
in the training cohort.

The efficacy of DIC and mortality predictions was assessed
across the ML models, while the performance of the three
conventional scores was specifically evaluated for mortality
prediction. The predictive capabilities of all scores and models

TABLE 1 Performance of different ML models in predicting DIC occurrence of critically ill CRC patients.

Variables
(model)

AUC/C-indexa

(95% CI)
F1 scorec

(%)
Sensitivity

(%)
(95% CI)

Specificity
(%)

(95% CI)

Positive predictive
value (%) (95% CI)

Negative predictive
value (%) (95% CI)

Training cohort

RF modelb 0.916 (0.889–0.941) 79.6 84.9 (79.8–90.2) 83.9 (79.7–87.9) 74.9 (69.3–80.9) 90.8 (87.4–93.9)

SVM modelb 0.758 (0.713–0.798) 64.1 77.4 (71.6–83.1) 63.9 (58.8–68.5) 54.7 (48.1–60.6) 83.4 (78.2–87.7)

XGB modelb 0.945 (0.931–0.958) 84.3 85.2 (81.5–88.6) 88.9 (86.4–91.3) 83.5 (79.9–86.7) 90.1 (87.6–92.5)

LR modelb 0.762 (0.717–0.803) 64.6 80.7 (74.7–86.1) 60.9 (55.7–66.2) 53.8 (47.7–59.8) 84.8 (80.2–89.5)

Validation cohort

RF modelb 0.845 (0.815–0.885) 72.1 76.6 (70.8–82.4) 76.0 (73.1–83.7) 68.1 (64.6–76.1) 84.0 (79.7–87.9)

SVM modelb 0.741 (0.698–0.786) 64.8 74.8 (69.1–80.9) 63.9 (58.3–69.4) 57.2 (50.7–62.6) 79.8 (74.5–84.9)

XGB modelb 0.848 (0.818–0.878) 73.3 78.8 (72.9–84.4) 76.8 (72.4–81.5) 68.6 (62.2–74.6) 84.9 (80.5–89.2)

LR modelb 0.729 (0.686–0.772) 66.1 83.1 (77.5–87.9) 56.0 (50.4–61.6) 54.9 (48.9–60.3) 83.7 (78.5–88.5)

Data are ROC-AUCs, and (95% CI). AUCs, areas under the curve; CI, confidence interval; CRC, colorectal cancer; DIC, disseminated intravascular coagulation; LR, logistic regression; PPV,

positive predictive value; RF, random forest; ROC, receiver-operating characteristic; SVM, supporting vector machine; XGB, XGBoost.
aThe value of the C-index is the same as that of AUC, in the logistic regression model.
bCalculated cut-off points based on ROC, curves.
cThe F1 score was calculated using the formula: F1 = 2 · PPV · sensitivity/(PPV + sensitivity).
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were quantified using discrimination and goodness-of-fit measures.
Discrimination was determined by the C-index, analogous to the
ROC-AUC value for binary classification tasks. The goodness of fit
was assessed using the F1 score. Additionally, the sensitivity (SEN),
specificity (SPE), positive predictive value (PPV), and negative
predictive value (NPV) were calculated, each with 95%
confidence intervals (95% CIs). Survival probabilities for different
groups, stratified by various scores and ML models, were visualized
using Kaplan-Meier curves and compared using the log-rank test.

Net reclassification improvement

Net reclassification improvement (NRI) was utilized to assess
changes in the four domains of the confusion matrix when 30-day
mortality was designated as the outcome. This measure was
calculated by adding the improvements in sensitivity and
specificity. The NRI for the XGB model was calculated and
compared with three conventional DIC scores in terms of
changes in sensitivity and specificity using the validation set.

FIGURE 3
The performance of the RF Plot (A), SVM Plot (B), XGB Plot (C), and LR Plot (D)models in the training cohort, with DIC diagnosed by ISTHDIC-2018 as
the outcome. To evaluate the performance of the four machine learning models, we plotted the classification based on the optimal threshold and ROC
and PR curves. AUCs were also calculated with 95% CIs. The optimal threshold points of the PR curves were plotted, along with their respective
sensitivities and positive predictive values. CI, confidence interval; DIC, disseminated intravascular coagulation; ISTH, International Society on
Thrombosis and Haemostasis; LR, logistic regression; PPV, positive predictive value; PR, precision-recall curve; RF, random forest; ROC-AUC, the area
under the receiver operating characteristic curve; SEN, sensitivity; SVM, supporting vector machine; XGB, XGBoost; Youden index: = sensitivity +
specificity - 1.
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Statistical analysis

Continuous variables were presented as means with standard
deviations for normally distributed data, with group comparisons
performed using the Student’s t-test. Medians and interquartile
ranges were reported for skewed data, and comparisons between
groups were conducted using the Mann-Whitney U test. Discrete
variables were summarized as frequencies and percentages, and
group comparisons were made using the chi-squared or Fisher’s
exact test, as appropriate. Missing data were addressed using

Python’s multivariate imputation by chained equations
(MICE) method.

All p-values are two-tailed, and a threshold of less than 0.05 was
set for statistical significance. Data analysis was done using SPSS
version 20.0 (IBM, Armonk, NY, United States) and the R statistical
package (https://cran.r-project.org). Additionally, a SHapley
Additive exPlanations (SHAP) analysis was performed to
enhance model interpretability. SHAP values were calculated for
each patient in the training cohort to assess the impact of individual
variables on the model’s predictions. The mean absolute SHAP

FIGURE 4
The performance of the RF Plot (A), SVM Plot (B), XGB Plot (C), and LR Plot (D)models in the validation cohort, with DIC diagnosed by ISTHDIC-2018
as the outcome. To evaluate the performance of the four machine learningmodels, we plotted the classification based on the optimal threshold, and the
ROC and PR curves. AUCs were also calculated with 95% CIs. The optimal threshold points of the PR curves were plotted, along with their respective
sensitivities and positive predictive values. CI, confidence interval; DIC, disseminated intravascular coagulation; ISTH, International Society on
Thrombosis and Haemostasis; LR, logistic regression; PPV, positive predictive value; PR, precision-recall curve; RF, random forest; ROC-AUC, the area
under the receiver operating characteristic curve; SEN, sensitivity; SVM, supporting vector machine; XGB, XGBoost; Youden index: = sensitivity +
specificity - 1.

Frontiers in Pharmacology frontiersin.org06

Qin et al. 10.3389/fphar.2024.1478342

https://cran.r-project.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1478342


values across the ML models were used to globally rank variables
based on their contribution to the predicted occurrence of DIC at the
group level.

Results

Patient characteristics

The division of the data set and the study flow are shown in
Supplementary Figure S1. For this analysis, 1,936 patients were
selected for model development, and 830 patients were designated
for external validation. Patients were categorized into DIC and non-
DIC groups based on three diagnostic scores: ISTH DIC-2001, ISTH
DIC-2018, and JAAM DIC. The baseline characteristics of these
groups are detailed in Supplementary Table S2. Most of the patients,
approximately 90%, were admitted from the emergency department
or a hospital ward. Patients with stage IV cancer or those who
underwent ongoing/recent chemotherapy had higher rates of DIC.
In comparison, those who underwent recent surgery or underwent
ongoing/recent radiotherapy had lower DIC rates. The use of

bevacizumab showed negligible differences between the DIC and
non-DIC groups. Follow-up durations were comparable across all
groups; for instance, in the ISTH DIC-2018 group, the 75th quantile
was 27 days, the 50th quantile was 16 days, and the 25th quantile was
9 days; similarly, in the non-ISTH DIC-2018 group, the durations
were 19 days, 12 days, and 9 days respectively for the exact quantiles.

Model performance comparisons

After controlling for age, gender, and cancer-related factors, a
diagnosis of DIC based on three different scores (ISTH DIC-2001,
ISTH DIC-2018, and JAAM DIC) remained significantly associated
with 30-day mortality in CRC patients, despite various underlying
DIC mechanisms (Figure 2; Supplementary Figures S2, S3). The
performance evaluations for DIC prediction using four established
ML models, RF, SVM, XGB, and LR, are detailed in Table 1. Figures
3, 4 further delineate the DIC predictions of these MLmodels within
the training and validation cohorts.

The effectiveness of all scores and ML models in predicting
survival outcomes is presented in Table 2. In the training cohort,

TABLE 2 Performance of different scores and ML models in predicting 30-day mortality of critically ill CRC patients.

Variables
(model)

AUC/C-indexa

(95% CI)
F1 scored

(%)
Sensitivity

(%)
(95% CI)

Specificity
(%)

(95% CI)

Positive predictive
value (%) (95% CI)

Negative predictive
value (%) (95% CI)

Training cohort

ISTH DIC-2001
scoreb

0.718 (0.655–0.777) 46.8 61.8 (50.1–72.9) 81.8 (77.8–85.4) 37.7 (29.2–46.3) 92.3 (89.5–94.8)

ISTH DIC-2018
scoreb

0.712 (0.655–0.763) 42.6 72.1 (61.4–82.1) 70.4 (66.1–74.6) 30.2 (23.5–36.9) 93.4 (90.7–95.9)

JAAM DIC scoreb 0.698 (0.639–0.756) 45.2 56.3 (45.2–66.7) 83.4 (79.6–86.5) 37.7 (29.4–46.1) 91.5 (88.3–94.1)

RF modelc 0.727 (0.661–0.791) 38.1 70.6 (60.3–79.7) 64.4 (60.1–68.7) 26.1 (20.2–32.0) 92.5 (89.6–95.3)

SVM modelc 0.654 (0.592–0.718) 33.2 72.4 (60.8–83.2) 52.8 (48.6–57.8) 21.5 (16.4–26.9) 91.5 (87.8–94.9)

XGB modelc 0.778 (0.724–0.825) 42.6 72.0 (62.2–81.2) 70.4 (65.9–74.9) 30.2 (24.2–36.9) 93.4 (90.6–95.8)

LR modelc 0.734 (0.663–0.802) 33.9 77.5 (68.3–87.2) 50.2 (45.8–54.8) 21.7 (17.2–26.5) 92.6 (88.7–96.1)

Validation cohort

ISTH DIC-2001
scoreb

0.658 (0.601–0.718) 38.4 53.2 (42.5–63.7) 78.3 (74.1–81.8) 30.1 (22.8–37.3) 90.5 (87.3–93.3)

ISTH DIC-2018
scoreb

0.692 (0.635–0.742) 39.7 71.8 (61.2–81.3) 66.6 (62.1–70.7) 27.4 (20.7–33.4) 93.1 (90.2–95.6)

JAAM DIC scoreb 0.673 (0.615–0.728) 40.3 56.5 (45.4–67.2) 78.2 (74.1–82.4) 31.3 (23.7–39.2) 91.1 (88.3–93.8)

RF modelc 0.695 (0.628–0.751) 35.7 70.9 (60.1–80.0) 60.5 (56.0–65.1) 23.9 (18.1–28.9) 92.2 (88.9–94.9)

SVM modelc 0.607 (0.539–0.674) 31.7 70.2 (60.7–79.9) 52.1 (47.6–56.5) 20.5 (15.7–25.2) 90.9 (87.2–94.4)

XGB modelc 0.708 (0.646–0.768) 35.9 71.8 (61.4–81.8) 68.2 (64.5–72.3) 23.9 (18.4–29.5) 93.3 (90.4–95.8)

LR modelc 0.670 (0.599–0.739) 30.5 75.8 (66.3–85.4) 43.6 (39.0–48.7) 19.1 (14.5–23.7) 91.1 (87.3–94.9)

Data are ROC-AUCs, and (95% CI). AUCs, areas under the curve; CI, confidence interval; CRC, colorectal cancer; DIC, disseminated intravascular coagulation; ICU, intensive care unit; ISTH,

international society on thrombosis and haemostasis; JAAM, japanese association for acute medicine; LR, logistic regression; PPV, positive predictive value; RF, random forest; ROC, receiver-

operating characteristic; SVM, supporting vector machine; XGB, XGBoost.
aThe value of the C-index is the same as that of AUC, in the logistic regression model.
bRecommended cut-off points based on derivation studies.
cCalculated cut-off points based on ROC, curves.
dThe F1 score was calculated using the formula: F1 = 2 · PPV · sensitivity/(PPV + sensitivity).
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FIGURE 5
Kaplan-Meier plot of estimated 30-day mortality according to different ML models in training (A, C, E, G) and validation (B, D, F, H) cohort. Any
differences in the incidence were evaluated with a log-rank test. Plot A-H was grouped by predictions of RF, SVM, XGB, and LRmodels on the first day of
ICU stay, respectively. CI, confidence interval; DIC, disseminated intravascular coagulation; HR, hazard ratio; ICU, intensive care unit; LR, logistic
regression; ML, machine learning; RF, random forest; SVM, supporting vector machine; XGB, XGBoost.
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TABLE 3 Changes to reclassification across XGB models and existing DIC scores in 30-day mortality outcome.

From ISTH DIC-2001 to XGB model

30-day
mortality

Predicted by ISTH DIC-
2001 scorea

Predicted by XGB
modelb

Reclassified

Negative Positive Increased
risk

Decreased
risk

Net correctly
reclassified

Mortality (n = 124)

<5 31 27 21.77% 14.51%

≥5 9 57 7.26%

Non mortality (n = 706)

<5 399 154 21.81% −15.58%

≥5 44 109 6.23%

NRI (95% CI) 0.55 (0.40–0.75) p < 0.01

From ISTH DIC-2018 to XGB model

30-day
mortality

Predicted by ISTH DIC-
2018 scorea

Predicted by XGB
modelb

Reclassified

Negative Positive Increased
risk

Decreased
risk

Net correctly
reclassified

Mortality (n = 124)

<4 25 10 8.06% −4.03%

≥4 15 74 12.09%

Non mortality (n = 706)

<4 381 89 12.61% 3.83%

≥4 62 174 8.78%

NRI (95% CI) 0.57 (0.41–0.73) p < 0.01

From JAAM DIC to XGB model

30-day
mortality

Predicted by JAAM DIC
scorea

Predicted by XGB
modelb

Reclassified

Negative Positive Increased
risk

Decreased
risk

Net correctly
reclassified

Mortality (n = 124)

<4 27 27 21.77% 11.29%

≥4 13 57 10.48%

Non mortality (n = 706)

<4 398 154 21.81% −15.44%

≥4 45 109 6.37%

NRI (95% CI) 0.54 (0.37–0.71) p < 0.01

CI, confidence interval; DIC, disseminated intravascular coagulation; ICU, intensive care unit; ISTH, international society on thrombosis and haemostasis; JAAM, japanese association for acute

medicine; NRI, net reclassification improvement; XGB, XGBoost.
aRecmmonded cut-off points based on derivation studies.
bCalculated cut-off points based on ROC, curves.
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Kaplan-Meier curves revealed poorer 30-day survival among
patients with positive DIC predictions, as determined by both
DIC scores and ML models (Supplementary Figure S4; Figure 5).
This pattern persisted in the validation cohort (Supplementary
Figure S4; Figure 5). In the validation cohort, the NRI values for
the 30-day mortality prediction of the XGB model compared to the
DIC scores were 0.55, 0.57, and 0.54 for ISTHDIC-2001, ISTHDIC-
2018, and JAAM DIC, respectively, with all corresponding
p-values <0.01 (Table 3).

Explainability

Feature importance was assessed using SHAP analysis, which
identified the top 10 clinical variables influencing the predictions of
the XGB model (Figure 6B). Additionally, Figure 6A shows how
each feature correlates with the model’s output. For instance, the
SHAP values for D-dimer levels displayed an asymmetric
distribution, where higher levels were strongly associated with an
increased likelihood of DIC occurrence. In Supplementary Figure
S5, we further detailed the impact of continuous variables on the
model, including the thresholds for positive and negative SHAP
values that influence the predictions.

For individual patient predictions, the final model output and
the confidence in the prediction are determined by summing the
SHAP contributions of each feature. Supplementary Figure S6
presents the XGB model’s predictions for three patients: one with
a significant positive outcome, one with an indeterminate outcome,
and one with a significant negative outcome.

Discussion

This proof-of-concept study evaluated the efficacy of using clinical
data on the first day of admission to the ICU to assess the risk of cancer-
associatedDIC in CRC patients.We usedML techniques to address this
issue and developed four models to predict the overt DIC. Additionally,
the performance of three conventional DIC scores in predicting 30-day
mortality was assessed and used as benchmarks for model comparison.
The XGB model was the most effective, demonstrating superior
performance in predicting DIC occurrence and mortality within our
validation cohort. A feature importance analysis through the XGB
model highlighted the top 10 clinical variables that most significantly
influence DIC prediction. These variables, ranked by impact, include
D-dimer, PLT, INR, packed red blood cell transfusion, PTT, PaO2, PT,
urine output, fibrinogen, and fresh frozen plasma transfusion. The
analysis also explored how these variables specifically affect the model
predictions.

Epidemiology of overt DIC in critically ill
patients with CRC

Previous research has shown that the incidence of overt DIC in
ICU patients varies depending on the underlying conditions
associated with DIC, including sepsis/severe infection, trauma,
organ destruction, malignancy, obstetric complications, vascular
abnormalities, severe hepatic failure, severe toxic or immunologic
reactions, thrombosis, and bleeding (Saito et al., 2019; Larsen et al.,
2021; Taylor et al., 2001; Iba et al., 2019a). While numerous studies

FIGURE 6
Analysis and interpretation of the XGBModel. Plot (A) displays the SHAP analysis results for the model training set. The variables are characterized by
their mean absolute SHAP values. Distributions of the top ten ranked variables are displayed across individual patients. Each point in the figure denotes the
SHAP value for a particular patient. The y-axis shows the ranking of each variable’s impact on the model prediction. The x-axis displays the SHAP value.
Blue indicates lower variable values, while red indicates higher values. Plot (B) illustrates the average contribution of each feature to the model
output as determined by the SHAP analysis. INR, international normalized ratio; PLT, platelet counts; PT, prothrombin time; PTT, activated partial
thromboplastin time; SHAP, Shapley Additive Explanations; XGB, XGBoost.
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have explored the epidemiology of overt DIC using standardized
diagnostic criteria, most have focused mainly on septic patients. For
instance, Ogura et al. (2014) reported that among 634 patients with
severe sepsis, 46.8% were diagnosed with overt DIC using the JAAM
DIC score. Similarly, in Denmark, infection/sepsis was identified as
the most common cause of overt DIC, accounting for 87% of cases in
a large cohort of ICU patients (Larsen et al., 2021).

Other specific conditions also present notable rates of overt DIC:
Grafeneder et al. (2022) found that among patients with liver disease
and low fibrinogen levels, 21.83% and 25.06% were diagnosed using
ISTHDIC-2001 and ISTHDIC-2018 scores, respectively. In patients
with acute type A aortic dissection undergoing artificial graft
replacement, 26.6% were diagnosed using the JAAM score
(Arima et al., 2022). However, a study by Grafeneder et al.
(2020) that excluded septic patients and those undergoing
routine surgeries or procedures in the ICU identified lower rates
of DIC, with 9.6% and 12.0% of patients diagnosed using the ISTH
DIC-2001 and ISTH DIC-2018 scores, respectively.

Our dataset, which included critically ill CRC patients without
preexisting hemostatic disorders or liver cirrhosis, revealed
moderate rates of overt DIC: 25.27% with ISTH DIC-2001,
36.98% with ISTH DIC-2018, and 23.93% with the JAAM DIC.
The higher incidence of DIC diagnosed by ISTH DIC-2018 is likely
due to a reduction in the model threshold from 5 to 4, enhancing
sensitivity, and the allocation of up to three points for elevated
D-dimer levels, which are commonly observed in cancer patients
(Pabinger et al., 2013). Unfortunately, there remains a lack of
published studies on the epidemiology of DIC in patients with
solid tumors, highlighting a gap in the current literature.

Significance of DIC scores and ML models

The efficacy of DIC models is typically evaluated in two domains:
predicting DIC occurrence and forecastingmortality outcomes. A study
by Larsen et al. (2021) focused on the predictive value (PPV) of the first-
time ISTHDIC-2001 score ≥5 in internal medicine wards/ICU settings,
where an expert panel established the gold standard diagnosis of DIC
based on clinical and laboratory data. The overall PPV for overt DIC
was 68% (95% CI: 61%–74%), which increased with higher scores, 47%
(95% CI: 35%–59%) for a score of 5, escalating to 88% (95% CI: 79%–
94%) for scores ≥7. In particular, PPVwas higher in patients with sepsis
(70%) compared to those with malignancy (40%).

Helms et al. (2020) observed a moderate sensitivity of 67% for
the initial ISTH DIC-2001 score assessed within 12 h of ICU
admission in patients with septic shock. Similarly, Kim et al.
(2022) reported a sensitivity of 63% in a retrospective emergency
department cohort. The RF and XGB models showed satisfactory
DIC prediction performance in our study. We selected the XGB
model for further analysis due to its high sensitivity and superior
performance in the training set. In particular, even though Larsen
et al. (2021) only included patients with a first-time score of ≥5, the
high PPV (approximately 68% in our validation set) underlines the
robustness of the model, particularly given our exclusion of patients
with positive DIC scores at ICU admission. This criterion prevented
us from analyzing the predictive capabilities of first-time DIC scores.

Previous research indicates that patients diagnosed with DIC,
using existing scoring systems, generally have poor clinical

outcomes in various diseases (Iba et al., 2017; Iba et al., 2019b).
We observed high 30-day mortality rates (32%–56%) in patients
with positive DIC scores on ICU admission, aligning with other
studies (Saito et al., 2019; Grafeneder et al., 2020; Grafeneder et al.,
2022). Conversely, patients with negative DIC scores exhibited
substantially lower mortality rates (20%–26%). Our study results
(Supplementary Figure S4) are consistent with these findings.
Additionally, NRI analysis and ROC-AUC evaluations suggested
that the XGB model slightly improved survival predictions
compared to traditional DIC scores.

The ability of the XGBmodel to predict using only data from the
first day of ICU stay, while traditional scores require daily updates,
shows its potential utility. Although there is no specific treatment for
cancer-associated DIC, early diagnosis can facilitate patient
stratification for clinical trial enrollment, potentially identifying
those who could benefit from targeted coagulopathy treatments.
Furthermore, as shown in studies by Matsuoka et al. (2024) and Kim
et al. (2022), early DIC prediction is crucial for managing ICU
patients, particularly those with solid tumors, by identifying
individuals at risk of progressing to DIC after initial
negative diagnoses.

Interpretation of the XGB model

Among the top ten significant variables identified by SHAP
analysis, RBC transfusion, and plasma transfusion were particularly
noteworthy. Although few studies have directly examined the
impact of these transfusions on DIC risk, substantial evidence
indicates that perioperative RBC transfusions are associated with
an increased risk of postoperative venous thromboembolism (VTE)
in various surgical procedures, demonstrating the necessity for
vigilant monitoring and management of VTE risk in transfused
patients (Sheth et al., 2022; Lo et al., 2023).

A recent large propensity-matched cohort study further
highlighted that patients receiving combined plasma and RBC
transfusions exhibit higher risks of postoperative mortality
(4.52% vs. 3.32%, risk ratio: 1.36 [95% CI, 1.24–1.49]), VTE
(3.92% vs. 2.70%, risk ratio: 1.36 [1.24–1.49]), pulmonary
embolism (PE) (1.94% vs. 1.33%, risk ratio: 1.46 [1.26–1.68]),
and DIC (0.96% vs. 0.35%, risk ratio: 2.75 [2.15–3.53]) compared
to those receiving RBC transfusions alone (Choi et al., 2024).
Changes in RBC properties during long-term storage, such as
increased aggregability and reduced cell membrane deformability,
have increased the risk of VTE after transfusions (Goel et al., 2018).

Our findings also suggest an association between lower PaO2

and an increased risk of DIC occurrence. The pathology of DIC
involves tissue hypoxia resulting from impaired oxygen delivery and
mitochondrial dysfunction, which are influenced by damage-
associated molecular patterns leading to extensive microclot
formation. This pathway demonstrates the need for further
research to clarify the clinical implications of these alterations in
increasing DIC risk.

The satisfactory performance of the XGB model in predicting
DIC, as evidenced by robust ROC-AUC scores and positive
predictive values, may be attributed to the model’s sensitivity to
critical thresholds for D-dimer, PLT, PT, INR, and fibrinogen levels
(Supplementary Figure S5). Solid tumors can induce DIC by
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expressing fibrinolytic proteins, like urokinase-type (u-PA) and
tissue-type plasminogen activators (t-PA), leading to prolonged
PT, APTT, and a hyperfibrinolytic state (Levi, 2019). This
sensitivity highlights the potential utility of the model in clinical
settings to identify patients at increased risk for DIC.

Strengths and limitations

Our study contributes valuable information on DIC research,
particularly its epidemiology and evaluation of conventional DIC
scores in patients with solid tumors, specifically focusing on the CRC
subgroup, a demographic rarely reported in the existing literature. We
used advancedML techniques to develop predictive models from diverse
data collected during ICU stays. The sophisticated computational power
and fitting capabilities of ML algorithms facilitated the creation of
complex models capable of capturing intricate patterns and
relationships. Additionally, we used the SHAP package to make the
decision-making processes of the XGB model transparent, enhancing its
clinical utility by helping practitioners understand how predictions
are generated.

However, the scope of the study, focusing solely on CRC patients,
limits its generalizability to other solid tumor populations. The relatively
low PPV in survival prediction indicates further limitations of our model.
Diagnosing DIC, particularly from a specific source population, often
requires supplementary validation from clinical and laboratory data to
mitigate the risk of misclassification. The clinical complexity in CRC
patients, who may concurrently develop conditions such as abdominal
sepsis and acute gastrointestinal bleeding, complicates the identification
of the precise triggers of DIC. Our findings did not reveal any association
between DIC risk and cancer treatments such as chemotherapy,
radiotherapy, and surgery. This absence suggests the need for future
studies to rigorously examine the impact of specific cancer treatments on
the incidence of cancer-associated DIC. Additionally, diagnosis of DIC
using the JAAM score may be underestimated, as D-dimer levels were
used for calculation instead of all fibrin-related markers.

The lack of a universally accepted standard for DIC diagnosis
remains a challenge in this field. In our study, diagnoses were based
onmedical record entries, which could lead to an underestimation of
bleeding or thrombotic events, especially in patients with
abbreviated follow-up periods due to mortality.

Conclusion

We developed an ML model using the XGB algorithm to predict
the occurrence of DIC in critically ill CRC patients. The XGB model
demonstrated high sensitivity and positive predictive value,
indicating its potential as a complementary diagnostic tool to
identify patients at high risk of developing DIC. Interpretative
analysis of the model provided information on the risk factors
associated with DIC in this patient population.
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