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Human immunodeficiency virus (HIV-1) remains a persistent global health crisis.
Even while successfully virologically suppressed, people with HIV (PWH)
experience a higher risk for inflammatory disorders such as HIV-associated
neurocognitive disorder (HAND). Tobacco use puts PWH at higher risk for
neurocognitive symptoms resulting from HIV-associated neuroinflammation.
The NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome has been
implicated as a driver of HIV-associated inflammation, including HAND. Nicotine,
the psychoactive component of tobacco smoke, has also been shown to signal
through the NLRP3 inflammasome and modulate inflammatory signaling in the
CNS. Here, we explore the impacts of nicotine and tobacco on the complex
neurobiology of HAND, including effects on cognition, inflammation, viral
latency, and blood-brain barrier integrity. We outline nicotine’s role in the
establishment of active and latent infection in the brain and posit the
NLRP3 inflammasome as a common pathway by which HIV-1 and nicotine
promote neuroinflammation in PWH.
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Introduction

Human immunodeficiency virus (HIV-1) affects more than 39 million people
worldwide and remains incurable despite major advances in antiretroviral therapy
(ART). Although patient life expectancy and quality of life has dramatically improved
over the past few decades, People with HIV (PWH) are still at greater risk for several
comorbid conditions due to viral persistence in latent reservoirs and associated low-level
chronic inflammation (Chun et al., 2010; Collora and Ho, 2022; Global, 2024; Lee et al.,
2020; Siliciano et al., 2003; White et al., 2022). These include a variety of conditions related
to aging, including cardiovascular disease, osteoporosis, cancer, and neurocognitive
disorders (Aberg, 2012; Guaraldi et al., 2011; Heaton et al., 2010; Kaplan-Lewis et al.,
2017; Kearns et al., 2017). PWH also tend to develop these conditions earlier than the
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general population (Aberg, 2012; Kaplan-Lewis et al., 2017).
Chronic inflammation due to persistent infection in viral
reservoirs such as the central nervous system (CNS) is thought to
be the primary driver of this increased risk (Desplats et al., 2013;
Sonti et al., 2021).

HIV-associated neurocognitive Disorder (HAND) is a common
HIV-associated condition affecting 20%–50% of PWH (Heaton et al.,
2010). HAND is characterized by increased neuroinflammation, blood-
brain barrier (BBB) breakdown, metabolic dysfunction, andmeasurable
cognitive impairment (Saylor et al., 2016). Drug use, including smoking,
is a risk factor for the development of HAND in PWH (Saylor et al.,
2016). Tobacco users with HIV experience poorer outcomes, including
increased risk of mortality and virologic rebound and poorer response
to cART (Han et al., 2018). Because of the high prevalence of tobacco
use in PWH and its known detrimental effects, unraveling its role in
neuroinflammation will provide much-needed insights into
mechanisms and possible therapeutic strategies for PWH.

Biology of HAND: Chronic
inflammation in the CNS

People with HIV are more likely to exhibit markers of
inflammation even when viral levels are suppressed below
detection by long-term ART treatments (Aberg, 2012; Deeks,
2011; Sieg et al., 2021). In virologically suppressed individuals,
replication persists in tissues where ART has limited penetrance
(Kulpa and Chomont, 2024). Despite ART, this leads to persistent
immune activation, senescence, and an increased systemic
inflammatory milieu (Aberg, 2012; Deeks, 2011). The brain is a
viral reservoir with unique characteristics due to its immune-
privileged status and thus presents a distinct set of challenges for
a sterilizing cure. Although improved access to ART has greatly
improved the quality of life and life expectancy for PWH, even
complete viral suppression under ART treatment does not eliminate
the cognitive symptoms associated with HIV infection of the brain
(Heaton et al., 2010). HAND is defined clinically as a spectrum of
disorders ranging from Asymptomatic Neurocognitive Impairment
(ANI) to Mild Neurocognitive Disorder (MND) to HIV-associated
Dementia (HAD), the most severe presentation (Heaton et al.,
2011). Clinical studies have shown that biomarkers associated
with CNS inflammation in blood plasma and cerebrospinal fluid
(CSF) are more prevalent during acute HIV infection and decline
over time and with ART treatment (Longino et al., 2022). As access
to earlier ART intervention improves, rates of the more severe forms
of HAND have been declining. Still, it is estimated that between 20%
and 50% of PWH experience some form of neurocognitive
impairment due to chronic HIV infection (Heaton et al., 2010).

Neuroinflammation in the HIV-1 infected CNS is characterized
by BBB dysfunction, immune cell infiltration, and infection and
inflammatory signaling of resident CNS cells, particularly microglia
(Khanal et al., 2021; Saylor et al., 2016; Sreeram et al., 2022). Infected
microglia compose the bulk of the viral reservoir in the CNS, and
HIV is seeded into the brain in the very early stages of infection,
primarily by infected monocytes, which migrate across the blood-
brain barrier (Davis et al., 1992; Kahn and Walker, 1998; Longino
et al., 2022; Valcour et al., 2012). Damage to the blood-brain barrier
is a key aspect of many neuroinflammatory conditions, and chronic

neuroinflammation from HIV infection is no exception. BBB
dysfunction persists even in the presence of ART and during
chronic infection (Kulpa and Chomont, 2024). Brain
microvascular endothelial cells (BMVECs), pericytes, and
astrocytes, are all dysregulated by the presence of virus in the
CNS (Andersson et al., 2001; Eugenin et al., 2011; Leibrand et al.,
2017; Osborne et al., 2020; Piekna-Przybylska et al., 2019).
Endothelial cells are prone to dysfunction and death due to
direct interaction with viral proteins and exposure to
inflammatory cytokines released by infected cells (Andersson
et al., 2001; Lee et al., 2004; Leibrand et al., 2017). Dysregulation
of endothelial tight junction proteins such as claudin-5, occludin,
and ZO-1 leads to increased BBB permeability and may facilitate
infiltration of peripheral immune cells to the CNS (Boven et al.,
2000; Chaudhuri et al., 2008; Dallasta et al., 1999; Eugenin et al.,
2011). Decreased pericytes coverage of the endothelium and infected
or dysregulated astrocytes have also been shown to contribute to
barrier dysfunction in the HIV-infected brain (Piekna-Przybylska
et al., 2019; Pla-Tenorio et al., 2023; Valdebenito et al., 2021).
Although HIV can both cross and dysregulate the BBB, BBB
penetrance remains a complex problem for the efficacy of
antiretroviral drugs. The viral reservoir in the brain is formed by
a combination of this challenge for ART delivery and the
development of a population of latently infected cells, primarily
microglia, which harbor HIV provirus (Osborne et al., 2020).

As the cell population most susceptible to HIV infection in the
brain, microglia form the bulk of the latent reservoir (Wallet et al.,
2019). An established literature shows a relationship between HIV-1
proteins, neuronal death, and microglial activation. Transgenic
mouse studies show that viral proteins such as Tat and gp120 are
produced by infected cells and have neurotoxic properties (Leibrand
et al., 2017). Additionally, infected human microglia become
reactive and release pro-inflammatory cytokines such as TNF⍺,
CCL2, IL-1β, IL-6, and CCL5 (Alvarez-Carbonell et al., 2019).
Infected microglia are also prone to mitochondrial dysfunction
and overproduction of ROS (Alvarez-Carbonell et al., 2019;
Borrajo et al., 2021).

Recent models suggest that cyclical reactivation of latent
provirus in microglia may cause the ongoing cascade of
inflammation in HAND (Sreeram et al., 2022). The susceptibility
of microglial cells to latent infection is thought to be tied to the
activation state at the time of infection, with more quiescent cells
favoring a latent status than reactive or activated cells (Sreeram et al.,
2022; Wallet et al., 2019). Activation of the transcription factor NF-
κB or IRF3 in response to an inflammatory stimulus can reactivate
viral replication in a latently infected human microglial cell line
(Alvarez-Carbonell et al., 2017). Thus, inflammatory stimuli such as
damaged neurons or drug exposures can potentiate latency reversal
and promote the chronic inflammation characteristic of HAND
(Alvarez-Carbonell et al., 2019). We will further explore the role of
NLRP3 inflammasome signaling and nicotine exposures in driving
this complex inflammatory cascade.

HIV and the NLRP inflamamsome

The NLR Family Pyrin Domain Containing 3 (NLRP3)
inflammasome, which consists of NLRP3, ASC, and pro-caspase-
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1, has been implicated in HAND and other HIV-associated
inflammatory pathologies. Upon activation by intracellular
pathogens and binding of Damage-associated Molecular Patterns
(DAMP) to PRRs (Pattern Recognition Receptors), the
inflammasome activates caspase-1, leading to the release of pro-
inflammatory cytokines (IL-1β and Il-18) and pyroptosis, an
inflammatory form of cell death known to contribute to
inflammation in PWH (Doitsh et al., 2014; Katuri et al., 2019;
Mamik and Power, 2017). HIV infection in T-cells may lead to
incomplete transcription and viral fragments, triggering PRRs and
leading to NLRP3 activation, inflammatory cytokine release, and cell
death (Doitsh et al., 2014). In myeloid cells, NLRP3 activation and
inflammatory cytokine release are associated with many HIV-
associated inflammatory processes, such as atherosclerosis (Mao
et al., 2021; Mullis and Swartz, 2020).

Animal studies in the CNS have shown that the
NLRP3 inflammasome can be activated in microglia in response
to viral proteins such as Tat, Vpr, and gp120, resulting in
inflammatory cytokine release and neuroinflammation (Chivero
et al., 2017; He et al., 2020). HIV infection was shown to
promote IL-1β release in primary human microglia (Walsh et al.,
2014). Furthermore, NLRP3 inflammasome inhibitors have shown a
therapeutic effect in a mouse HAND model (He et al., 2020; Mamik
and Power, 2017).

Alongside microglia-induced inflammatory signaling, the
NLRP3 inflammasome is also implicated in BBB dysregulation.
HIV-1 dysregulates the BBB through a variety of mechanisms,
from direct interaction of brain microvascular endothelial cells
(BMVECs) with viral proteins to inflammatory cytokine release
(Il-6, TNF-a, IL-1β) from infected microglia and infiltrating
monocytes in the CNS (Atluri et al., 2015; Caligaris et al., 2021).
Studies indicate that HIV readily establishes latency inmicroglia and
that microglial activation by NLRP3-associated inflammatory
cytokines such as TNF-α and IL-1β may contribute to viral
emergence from proviral latency, contributing to the chronic
inflammation of HAND (Alvarez-Carbonell et al., 2017; Alvarez-
Carbonell et al., 2019; Ko et al., 2019; Li and Barres, 2018; Plaza-
Jennings et al., 2022; Sreeram et al., 2022).

Nicotine and inflammation

Nicotine and its effects in the context of HAND are particularly
of interest due to the high prevalence of smoking among PWH and
the heightened health risks experienced by PWH who smoke. The
established literature points to tobacco use as contributing to
inflammation in a variety of contexts, both inside and outside of
the CNS. However, its pro-inflammatory and anti-inflammatory
effects can be disease and context dependent. Nicotine signals
through the Nicotinic Acetylcholine receptor family (nAChRs),
which are involved in cholinergic signaling and reward stimulus
(de Kloet et al., 2015). They are also widely expressed in various cell
types, including monocytes, macrophages, and microglia (Richter
and Grau, 2023; Suzuki et al., 2006; Zoli et al., 2018). In non-
excitable cells, signaling is primarily mediated through the influx of
calcium ions directly through the ion-gated channel of the receptor
(Zoli et al., 2018). In different non-neuronal cell types, signaling can
be ionically or non-ionically driven and trigger downstream

signaling via various pathways (Sorimachi et al., 1994; Zia et al.,
2000; Zoli et al., 2018).

The general pro- and anti-inflammatory properties of nicotine
are complex and context-dependent, with factors such as cell type,
receptor type, and disease context playing important roles. In many
studies, nicotine exhibits anti-inflammatory properties due to
cholinergic signaling in neurons and non-neuronal cells (Zoli
et al., 2018). However, the literature consistently links nicotine
and NLRP3 inflammasome activation, especially in myeloid-
derived cell types. There is a well-established relationship
between nicotine and NLRP3-driven atherosclerosis progression
(Duan et al., 2021; Mullis and Swartz, 2020; Wu et al., 2018; Xu
et al., 2021). One study demonstrated that nicotine promotes
NLRP3 inflammasome activation in peripheral myeloid cells,
driving atherosclerosis progression due to inflammatory cytokine
release in macrophages and monocytes (Mao et al., 2021). Nicotine
was also shown to exacerbate proliferation and cell migration in lung
adenocarcinoma via a5-nAChR and NLRP3 signaling (Jia
et al., 2022).

In the context of the CNS, nicotine exerts direct pro-
inflammatory effects on both microglia and the vasculature of the
BBB. Exposure to NNKs (nicotine-derived nitrosamine ketones, a
nicotine-derived metabolite) increased ROS and inflammatory
cytokine release in mouse microglia (Ghosh et al., 2009).
Tobacco use is generally associated with BBB disruption, CNS
oxidative stress, and decreased cognitive performance in clinical
studies (Ande et al., 2013; Ghosh et al., 2009; Louboutin and Strayer,
2014; Mazzone et al., 2010). BBB damage due to nicotine exposure is
primarily linked to mitochondrial dysfunction, ROS production,
and release of inflammatory cytokines such as TNFa and IL-6, which
can trigger endothelial dysfunction by dysregulation of tight
junction proteins such as claudin-5 and occludin (Hossain et al.,
2011; Hutamekalin et al., 2008; Kousik et al., 2012; Manda,
Mittapalli, Geldenhuys, et al., 2010; Pimentel et al., 2020).
Additionally, Zhang et al. have linked the NLRP3 inflammasome
directly to nicotine-induced endothelial barrier dysfunction and
hyperpermeability via the release of HMGB1 (Zhang et al., 2019).

HIV and nicotine in HAND

While nicotine and HIV alone both contribute to
neuroinflammation and BBB dysfunction, in PWH who smoke,
additive effects have been observed on neuroinflammation and
decreased cognitive performance (Bryant et al., 2013; Chang
et al., 2020). These clinical findings are supported by studies in
HIV-1 transgenic rat models, where nicotine promotes
overexpression of immune-related genes and inflammatory
cytokine expression (Royal et al., 2018; Yang et al., 2016).
Additionally, Delgado-Velez et al. showed that gp120 exposure
can directly upregulate the expression of a7-nAChRs in
peripheral immune cells (Delgado-Vélez et al., 2015). In addition
to promoting their upregulation, the viral protein gp120 can bind to
the α7 receptors. α7-nAChR signaling promoted amyloid-beta
accumulation in an HIV-gp120 mouse model (Liu et al., 2017).
While certain animal studies show that nicotine alone increases
cognitive performance in behavioral tests, this improvement is
ameliorated in HIV-1 Tg rats (Nizri et al., 2009; Revathikumar
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et al., 2016; Royal et al., 2018; Yang et al., 2016). Along a similar vein,
α7-nAChRs were found to be upregulated in the monocytes of
women with HIV, but greater receptor abundance did not result in a
protective anti-inflammatory effect when MDMs were treated with
LPS (Delgado-Vélez et al., 2015). These findings, when taken
together, suggest that the presence of HIV may alter the
cholinergic anti-inflammatory response via the α7-nAChRs,
dampening or even reversing the anti-inflammatory effects of
nicotine alone.

It is important to consider that in people who smoke cigarettes,
nicotine is always accompanied by the thousands of other
compounds present in tobacco smoke. Tobacco smoke and
nicotine alone have been shown to have differing effects on
inflammation, and their respective contributions to HIV
associated neuroinflammation are not yet clearly delineated.
Tobacco smoke is almost universally pro-inflammatory in both
pre-clinical and clinical studies. Cigarette smoke condensate
increases apoptosis, viral replication, and oxidative stress in
human monocytes (Rao et al., 2016). Tobacco smoke extract
similarly increases viral replication in bronchial epithelial cells
and alveolar macrophages (Abbud et al., 1995; Chinnapaiyan
et al., 2018). In clinical studies, PWH who smoke exhibit higher
levels of inflammatory markers, increased viral load, and increased
risk of HAND compared to non-smokers (Han et al., 2018;
Valiathan et al., 2014; Wojna et al., 2007). As mentioned above,
nicotine can induce anti-inflammatory cholinergic signaling
through the ⍺7 nAChR and can be neuroprotective in certain
contexts, including in some HIV-1 Tg rat studies (Cao et al.,
2013; Cao et al., 2016). However, chronic nicotine exposure is
known to cause BBB disruption, a key component of HAND
pathology (Feldman and Anderson, 2013). Furthermore, there is
evidence that nicotine treatment promotes HIV infection in human
microglia (Rock et al., 2008). Further studies with both nicotine and
tobacco smoke are needed to unravel their roles in the
context of HAND.

In addition to the many compounds present in tobacco smoke,
antiretroviral drug treatments and other substance use in PWH add
another layer of complexity to the neuroinflammatory context of the
HIV-infected CNS. Many studies have shown that earlier
intervention with ART can significantly reduce the risk of more
severe forms of HAND in PWH (Brew, 2004; Sacktor et al., 2002).
However, as outlined earlier, infection and inflammation persist in
the brain despite the presence of ART. As reviewed elsewhere,
certain antiretroviral drugs can have neurotoxic effects through
mechanisms such as oxidative stress and mitochondrial
dysfunction, and balancing this neurotoxicity against viral
suppression and penetrance of the CNS reservoir remains an
important clinical challenge (Shah et al., 2016; Yuan and Kaul,
2021). In PWH who smoke tobacco, there is the additional factor of
drug-drug interactions between nicotine and ARTs (reviewed by
Ghura et al., 2020). Nicotine has been shown to affect ART
metabolism directly and can impact drug delivery by
compromising BBB integrity (Kumar et al., 2015; Manda,
Mittapalli, Bohn, et al., 2010; Manda, Mittapalli, Geldenhuys,
et al., 2010; Pal et al., 2011). Animal model studies with the
protease inhibitor saquinavir demonstrate that nicotine-induced
BBB compromise may facilitate entry of ART into the CNS, but
nicotine and saquinavir cause additive oxidative stress in the brain

endothelium leading to dysregulation of Notch-4 and ZO-1 (Manda,
Mittapalli, Bohn, et al., 2010; Manda, Mittapalli, Geldenhuys, et al.,
2010). Balancing ART toxicity with BBB penetrance remains an
important clinical problem, as long-term exposure to certain ARTs
has been associated with neurovascular toxicity (Bertrand et al.,
2021). Thus, although nicotine’s ability to disrupt the BBB may lead
to greater drug penetrance, it is likely that the additive impacts on
BBB dysfunction and subsequent inflammation and immune
infiltration of the CNS represent an overall detrimental outcome
(Ahmed et al., 2018; Bertrand et al., 2021). ART has also been
observed to increase nicotine metabolism in PWH (Ashare et al.,
2019; Earla et al., 2014). ARTs may also impact nicotine signaling by
acting on nicotinic receptors. For example, the protease inhibitor
indinavir was demonstrated to impact cholinergic signaling by
inhibiting the α7-nAChR activity (Ekins et al., 2017). More
investigation is necessary to understand the specific interactions
between various ARTs and nicotine to inform best practices for the
treatment of PWH.

As outlined here, the NLRP3 inflammasome pathway is a
common mechanism by which HIV and nicotine promote
neuroinflammation. More studies are needed to fully understand
how HIV and nicotine interact to promote inflammation, BBB
dysregulation, and viral reactivation in the CNS.

Discussion

Chronic inflammation leads to increased risks for comorbid
disorders in PWH, even in the presence of ART (Chun et al., 2010;
Collora and Ho, 2022; Lee et al., 2020; Siliciano et al., 2003; White
et al., 2022). In the brain, this manifests as an increased risk for
neuroinflammation and cognitive impairment classified under the
family of neurocognitive disorders known as HAND (Heaton et al.,
2011; Saylor et al., 2016). The persistence of HIV in viral reservoirs
such as the CNS is a primary driver of this chronic inflammation
(Desplats et al., 2013; Sonti et al., 2021). The use of substances such
as tobacco increases the risk of comorbidities for PWH and further
contributes to HIV-associated inflammatory pathologies (Han
et al., 2018).

There is a well-established literature linking HIV-1 with
NLRP3 inflammasome signaling both in the periphery and in the
CNS. Studies have shown that HIV can stimulate the inflammasome
through the binding of viral fragments and proteins to PRRs and
through the activation of purinergic receptors (Doitsh et al., 2014;
Freeman and Swartz, 2020; Swartz et al., 2015). In the brain, HIV
drives NLRP3-associated inflammation primarily through infected
and activated microglia, which contribute to the inflammatory
environment by releasing neurotoxic factors and pro-
inflammatory cytokines (Chivero et al., 2017; He et al., 2020;
Walsh et al., 2014). HIV also drives BBB damage through several
mechanisms, including NLRP3-driven dysregulation of endothelial
cells (Atluri et al., 2015; Caligaris et al., 2021).

NLRP3 inflammasome activation, a key feature of
neuroinflammation and BBB dysregulation, is influenced by both
HIV and nicotine. Like HIV infection, nicotine is known to drive
endothelial dysfunction by promoting ROS, mitochondrial
dysfunction, and NLRP3 inflammasome activation (Ghosh et al.,
2009; Hossain et al., 2011; Hutamekalin et al., 2008; Kousik et al.,
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2012; Manda, Mittapalli, Bohn, et al., 2010; Pimentel et al., 2020;
Zhang et al., 2019). There is evidence that nicotine in tobacco
enhances viral replication in microglia and macrophages and has
been shown to cause activation of these resident immune cells and
compromise the BBB (Ghosh et al., 2009; Manda, Mittapalli,
Geldenhuys, et al., 2010; Pimentel et al., 2020; Rock et al., 2008).
Taken together, the literature suggests that the combined effect of
HIV and nicotine-driven NLRP3 activation plays a key role in the
heightened neuroinflammation and cognitive symptoms observed in
PWH who smoke.

Further investigation is necessary to understand the mechanism
of HIV and nicotine’s interactions in the CNS and the precise role of
NLRP3 in driving their combined effects. Furthermore, there are
many critical unanswered questions surrounding the impact of
substance use on the establishment and reactivation of viral
latency in the CNS. Atluri et al. suggest that nicotine increases
the risk of viral latency establishment due to the upregulation of
HDAC2 in a neuronal cell line (Atluri et al., 2014). In this model, the
transcriptional repressor HDAC2 is synergistically upregulated by
HIV and nicotine, leading to more compact chromatin organization,
reduced gene transcription, and increased latent infection.
Treatment with the HDAC inhibitor vorinostat reversed this
effect and reactivated latent virus. However, is important to note
that the biological relevance of this study is limited, as neurons are
not typically infected with HIV-1 and do not form a significant
portion of the CNS viral reservoir. In a murine macrophage model of
atherosclerosis, another histone deacetylase, HDAC6, was shown to
promote nicotine-mediated inflammation and pyroptosis via
deacetylation of p65, and activation of NF-kB and
NLRP3 transcription (Xu et al., 2021). HIV-1 is known to
integrate itself into transcriptionally active regions of the genome
located in regions of open chromatin (Schröder et al., 2002). It relies
on host cell machinery and activation states to regulate its latency,
favoring activated over quiescent states in both microglia and CD4+

T-cells (Mbonye and Karn, 2017; Sreeram et al., 2022; Wallet et al.,
2019). All of this considered, it seems likely that nicotine may play a
role in regulating viral latency in microglia by promoting activation
of NF-kB and NLRP3 associated genes, leading to transcription of
latent provirus. However, nicotine’s specific role in viral latency
formation and maintenance in the CNS remains largely unexplored
in the literature, and thorough investigation of its impacts on latent
infection in microglia is especially necessary.

There are additionally many open questions regarding poly-
substance use in PWH and the impacts of combined drug use on
cognitive impairment in these patients. As previously reviewed by

our group, cannabis use is largely associated with protective effects
against inflammation in PWH, and CB2R signaling has been linked
to reduced HIV-1 infection and NLRP3 inflammasome activation
(Min et al., 2023). Further study is needed to better understand the
interactions between the cannabinoid system, nicotine, and
NLRP3 and the impacts of multiple drug exposures on
neuroinflammation in PWH. Investigating these questions will
provide valuable insights into the mechanism of nicotine’s impact
on the pathogenesis of HIV-1-associated neurodegeneration,
informing possibilities for future therapeutic development.
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