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Flecainide acetate is a Class 1c anti-arrhythmic with a potent sodium voltage
gated channel blockade which is utilized for the second-line treatment of
tachyarrhythmias in children and adults. Given its narrow therapeutic index,
the individualization of drug therapy is of utmost importance for clinicians.
Despite efforts to improve anti-arrhythmic drug therapy, there remain
knowledge gaps regarding the impact of variation in the genes relevant to
flecainide’s disposition and response. This variability is compounded in
developing children whose drug disposition and response pathways may
remain immature. The purpose of this comprehensive review is to outline
flecainide’s disposition and response pathways while simultaneously
highlighting opportunities for prospective investigation in the pediatric
population.
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Introduction

The last three decades have brought extensive reforms in pediatric drug labeling due to
changes in US regulations and new federal laws (Food and Drug Administration, 1994;
Food and Drug Modernization Act, 1997; Steinbrook, 2002). The Food and Drug
Administration (FDA) has issued over 1000 pediatric study requests since 1998 (Green
et al., 2021). Despite early success with pediatric study requests resulting in new or
expanded pediatric labeling (Wharton et al., 2014), gaps in pediatric cardiovascular
drug labeling remain (Pasquali et al., 2008). Even with the success of this legislation in
obtaining pediatric labeling for numerous pharmacotherapeutics, the gaps reveal the
complexity of pediatric drug dosing, efficacy, and toxicity (Rodriguez et al., 2008).

Clinicians of pediatric medicine uniformly appreciate austerity in the appropriate
diagnosing and treatment of growing and developing children. The untrained observer may
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merely accept adult treatment guidelines extrapolated to a younger
population. However, such linear extrapolation ignores the influence
of development on the expression of proteins responsible for drug
disposition and, by extension, the impact that has on the dosing
requirements and safety profiles of drugs utilized from birth until
young adulthood. The impact of ontogeny on drug disposition has
been accelerated by in vitro and in vivo data generated on the
developmental pattern of drug-metabolizing enzymes (Hines, 2008;
Hines, 2007; Hines andMcCarver, 2002;McCarver andHines, 2002)
and transporters (Prasad et al., 2016). Even with a full understanding
of the ontogenic trajectory of a certain drug’s disposition pathway,
an understanding of genetic variation on drug disposition and
efficacy in the developing child is lacking (Leeder and Kearns,
2002; Leeder, 2003; Leeder and Kearns, 2012; McLaughlin et al.,
2019). The limited number of participants and decreased
involvement of a vulnerable population has halted further
prospective pediatric trials (Ward and Sherwin, 2015; Stiers and
Ward, 2014) and, thereby, the understanding and incorporation of
pharmacogenomic principles into clinical practice.

In the absence of more comprehensive data, a systemic approach
has been developed to gather more information about certain drugs
and identify knowledge gaps to strategize the design of future
studies. This approach has previously been utilized to address the
dilemma of over-the-counter cough and cold preparations (Leeder
et al., 2010), 3-hydroxy-3-methyl-glutaryl coenzyme A reductase
inhibitors (statins) (Wagner and Leeder, 2012), and more recently,
beta blockers (Walton and Wagner, 2024). Ultimately, this review
will take the reader through a systematic approach that reveals the
current knowledge regarding the impact of ontogeny and genetic
variation on the dose–exposure–response continuum of a drug with
a narrow therapeutic index.

Treatment of childhood
tachyarrhythmias

Supraventricular tachycardia (SVT) is the most common
childhood tachyarrhythmia (Weindling et al., 1996) and the most
common tachyarrhythmias requiring treatment in pediatrics
(Garson et al., 1981). It is a common pediatric condition with an
incidence estimated to be 1 in 250–1000 children (Weindling et al.,
1996). Our knowledge base regarding the mechanism and diagnosis
of childhood tachyarrhythmias has improved dramatically over the
last 30–40 years (Vignati, 2007). Despite its relative common
occurrence in pediatrics, there remains insufficient data to guide
treatment, thus highlighting prescription inconsistencies in drugs
used in pediatrics (Wong et al., 2006; Seslar et al., 2013). This
knowledge gap is even more pronounced in special populations (e.g.,
neonatal) where rapid growth and development may influence the
diagnosis and treatment of clinical disease (Kearns et al., 2003).With
advances in catheter-based options for treating tachyarrhythmias in
older children, the demand for precision-based pharmacotherapy is
thus more prominent in the younger pediatric population where
rapid growth and development occur.

Current management strategies are based on observational data
and clinician experience (Weindling et al., 1996; Wong et al., 2006;
Seslar et al., 2013) rather than randomized, prospective trials or
systematic reviews. Unfortunately, dosing guidelines for many of

these anti-arrhythmics are extrapolated from adult
recommendations, similar to many other pediatric cardiovascular
drug agents (Pasquali et al., 2008; Maltz et al., 2013). This allometric
approach (i.e., based on relative body size) assumes that human
growth is a linear process. However, age-associated changes in body
composition, organ function, and the pharmacologic mediators of
drug disposition/response must be taken into consideration to
individualize the dose needed for desired exposure to maximize
efficacy and minimized adverse events. The variability of drug
exposure places the patient at risk of treatment failure or adverse
events, thereby prolonging hospitalization and the utilization of
intensive care services.

The majority of infants with incessant arrhythmias clinically
respond (i.e., absence of breakthrough tachycardia) to first line
agents such as propranolol and digoxin (Weindling et al., 1996;
Van der Merwe and Van der Merwe, 2004). However, 40%–45% of
infants have breakthrough tachycardia that requires additional
therapy (Seslar et al., 2013). The most common second-line
agents for the chronic management of SVT (e.g., amiodarone,
flecainide, and sotalol) have demonstrated efficacy in controlling
tachycardia, but their narrow therapeutic index requires careful dose
titration and close observation, lengthening hospitalization in acute
care settings. In fact, adding a second-line agent can extend the
length of stay two-fold or more (Seslar et al., 2013). Conversely, the
concern of toxicity may also drive the prescribing clinician to
inadequately underdose patients. In an era of fiscal strain on our
healthcare system, optimized pharmacotherapy tailored to each
patient, including demographic and genetic data, can not only
efficiently provide more accurate dosing but lessen the resource
and economic burden in acute care settings.

Flecainide therapy in children

Flecainide acetate is a benzamide derivative (N-2-
piperidnylmethyl)-2,5-bis (2,2,2-trifluoroethoxymonacetate)), class
1c Vaughn Williams anti-arrhythmic with potent sodium voltage
gated channel blockade used to treat tachyarrhythmias in children
and adults (Till et al., 1989; Zeigler et al., 1988; Flecainide versus
quinidine for treatment of chronic ventricular arrhythmias, 1983;
Wren and Campbell, 1987; Berns et al., 1987; Anderson et al., 1981;
Perry and Garson, 1992; Perry et al., 1989; Aliot et al., 2011).
Flecainide acetate limits the flow of sodium into the myocyte,
prolonging the initial phase of action potential (Figure 1). The
electrophysiological result is slowed atrial and ventricular
conduction and a lengthened ventricular refractory period at low
plasma levels (Hodess et al., 1979; Seipel et al., 1981),
pharmacodynamically resulting in suppression of
tachyarrhythmias. At high plasma levels, depolarization delay
through the cardiac conduction system occurs, causing a
prolonged refractory period in the myocardium which increases
the risk of pro-arrhythmic events (Hodess et al., 1979; Salerno et al.,
1986). This slow dissociation from the sodium channel accounts for
a majority of its longer lasting therapeutic effects (Ikeda et al., 1985).
Flecainide also has binding affinity—albeit lower than sodium
channels—to the delayed rectifying potassium channel (IKr)
(Follmer and Colatsky, 1990; Follmer et al., 1992) and cardiac
ryanodine receptor 2 (RyR2) to block their respective ion
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movement (Ikeda et al., 1985; Salvage et al., 2022; Kryshtal et al.,
2021) (Figure 1). In patients with catecholaminergic polymorphic
ventricular tachycardia (CPVT) where there is enhanced cardiac
RyR2 activity, excessive calcium efflux from the sarcoplasmic
reticulum increases the risk of ventricular arrhythmias (Priori
et al., 2002). Flecainide is known to provide excellent treatment
for preventing ventricular arrhythmias in CPVT (Watanabe et al.,
2009; Watanabe et al., 2013; Kannankeril et al., 2017); it was recently
demonstrated mechanistically that flecainide directly antagonizes
RyR2, leading to its effectiveness in CPVT (Kryshtal et al., 2021).

Flecainide acetate was initially developed in 1972 as a fluorinated
local anesthetic analog of procainamide (class 1a antiarrhythmic)
(Hudak et al., 1984). However, further evaluation in animal models
discovered its anti-arrhythmic properties (Kvam et al., 1984).
Clinical testing and development for human use occurred in the
late 1970s by Riker Laboratories (3M) and it was marketed under the
trade name (Tambocor). It came off patent in 2004 and is now
available in several generic forms. Despite its use for over 30 years,
there is still inadequate pediatric labeling for this agent despite its
common use for refractory tachyarrhythmias (Wong et al., 2006;

Seslar et al., 2013). It is available in intravenous and oral dosage
forms, but it is predominantly given orally in tablet or solution. The
use of flecainide has been limited in some settings, particularly in
patients with acute heart failure and cardiomyopathy due to an
observed increase in mortality after its use in post-myocardial
infarction patients as a part of the multi-center Cardiac
Arrhythmia Suppression Trial (CAST) (Echt et al., 1991). The
result of this study has been extrapolated to pediatric congenital
heart disease (CHD), resulting in decreased use in the CHD
population since the 1990s. However, recent analysis showed an
increased trend in flecainide use in this pediatric CHD population
over the last decade (Moffett et al., 2015).

Most pediatric trials have focused on the efficacy of arrhythmia
suppression and safety (Perry and Garson, 1992; Fish et al., 1991; Till
et al., 1987). In the largest analysis by Perry and Garson (1992),
efficacy, defined by acute arrhythmia suppression, reduction of
arrhythmia frequency, and reduction of incessant tachycardia,
was achieved with flecainide in 70%–80% of patients. However,
20%–30% failed to respond to it. Plasma flecainide levels with an
adequate control of arrhythmias had a range of 200–500 ng/mL

FIGURE 1
Flecainide pharmacodynamic pathways. Flecainide can antagonize three major pathways, resulting in its pharmacologic effects. The majority of its
pharmacodynamic effect is through antagonism of voltage-gated sodium channels (Nav1.5). Alternative pathways include antagonism of 1) the ryanodine
receptor (RyR2) on the sarcoplasmic reticulum, resulting in lower intracellular calcium, and 2) the delayed rectifying potassium channel (IKr), resulting in
diminished potassium export. Created in BioRender. Walton and Wagner (2024) https://BioRender.com/p71p206.
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(Perry and Garson, 1992). It is unknown if those patients with failed
efficacy achieved the targeted plasma exposure necessary for success.
Till et al. (1989) observed a large degree of variability of dosing in
weight-based and dosing by body surface area, with poor correlation
between the dose received to exposure obtained among infants and
children on chronic flecainide therapy. Flecainide has also been used
in the treatment of fetal supraventricular tachycardia (Tamirisa
et al., 2022; Miyoshi et al., 2019; Strizek et al., 2016; Ekiz et al.,
2018; Allan et al., 1991) with very little peripartum flecainide toxicity
reported due to wider therapeutic drug monitoring in the
management of fetal arrhythmias (Hall and Ward, 2003).
Interindividual variation has been observed in adults (Homma
et al., 2005) due to additional co-morbidities (e.g., liver and/or
renal impairment) (Forland et al., 1988; McQuinn et al., 1988) or
other factors that disrupt flecainide disposition (e.g., ADME:
absorption, distribution, metabolism, excretion) (Caplin et al.,
1985; Padrini et al., 1993; Zordan et al., 1993; Doki et al., 2006;
Doki et al., 2009; Lim et al., 2008; Lim et al., 2010). It is very plausible
that other factors—ontogeny and genetic variation—contribute to
the variability observed in flecainide disposition and response in
developing children. Those specific factors are discussed in more
detail below.

Impact of ontogeny and genetic variation on
flecainide disposition and response

There is a paucity of evidence regarding pediatric drug
disposition, which limits optimal pediatric drug-dosing strategies
to best effect and least potential toxicities (i.e., dose-optimization).
Given the continued number of pediatric tachyarrhythmia cases per
year, the pediatric cardiology community needs to develop dose
optimization guidelines tailored to the individual pediatric patient.
To achieve this goal, a full understanding of the
dose–exposure–response continuum in pediatric patients dosed
with flecainide must be understood, and subsequent studies are
needed to address knowledge gaps and leverage existing data related
to ontogeny and the genetic variation of relevant drug disposition
pathways. The purpose of the remainder of this review is to present
three topics that should be considered when assimilating current
knowledge for application to problems related to variability in drug
disposition and response in children. Such a systematic approach
has been previously used to address the knowledge gaps for other
pediatric therapeutics agents (Leeder et al., 2010; Wagner and
Leeder, 2012; Walton and Wagner, 2024) and will be applied
here to identify the knowledge deficits related to the contribution

of ontogeny and genetic variation on flecainide disposition and
response in children, with implications for the design of prospective
clinical trials.

Essential concepts for evaluating
variability in flecainide disposition and
response in children

1. Existing data regarding drug properties and gene products that
are quantitatively relevant in the disposition (absorption,
distribution, metabolism, and excretion) and response of
flecainide therapy.

Essential to this systematic review is knowledge of the necessary
patient and drug properties that could influence drug disposition.
For example, flecainide is a highly lipophilic drug agent (logP 3.8)
and should hypothetically demonstrate less dependency on protein-
mediated cellular translocation (e.g., drug transporter influx/efflux);
it is thus more likely to passively diffuse across the cellular lipid
bilayer for distribution (De Schryver et al., 2019). Flecainide should
have a lower systemic exposure (e.g., plasma drug concentration)
and larger volume of distribution than other anti-arrhythmic drugs
that are more hydrophilic (e.g., atenolol) (Kirch and Gorg, 1982).

Flecainide easily distributes into plasma with modest protein
binding (approximately 35%–55%) (Zordan et al., 1993; Conard and
Ober, 1984). There is an equivocal amount of literature to suggest
whether flecainide, as a basic drug, has preferential binding to
albumin versus α1-acid glycoprotein (Zordan et al., 1993; Conard
et al., 1984). In healthy adults, there is very little inter-individual
variability (age or gender) in regards to protein binding (Zordan
et al., 1993). Conversely, in a developing infant, the level of serum
proteins is reduced relative to adults (Wagner and Abdel-Rahman,
2013; Cartlidge and Rutter, 1986; Kanakoudi et al., 1995). Overall,
the relative degree of free flecainide could be higher and could
thereby influence the dose–exposure–response relationship. Protein
binding can be altered in adults after myocardial infarctions, with
more α1-acid glycoprotein available for protein binding. However,
flecainide is a more poorly bound basic compound, so there is 20%
increase in free drug concentration after acute myocardial infarction
(Caplin et al., 1985). Perhaps this was the factor that contributed to
increased mortality in the CAST trial. In CHD, it is unclear whether
the concentration of serum proteins is decreased even further than
neonates with structurally normal hearts. The degree of protein
binding and lipophilicity should be considered for optimizing drug
treatment; however, there is no data to suggest that a specific gene is

TABLE 1 Flecainide drug distribution pathways.

Absorption Distribution
Hepatic/renal

uptake

Metabolism
Phase 1

Metabolism
Phase 2

Excretion
Efflux

Flecainide • Passive diffusion (major) • Passive diffusion • CYP2D6, R(−)>S(+)! • Unknown • Passive diffusion
• H+ tertiary amine antiporter*
• MDR1 (P-gp)*
• OCT2*
• PEPT1*

• OCT2 (kidney)* • CYP1A2, S(+)>R(−)# • MDR1 (P-gp)*

*unknown impact; !major pathway, #minor pathway.
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responsible for dose-exposure in this respect. Finally, there has been
a high correlation (~80–100%) of maternal and fetal plasma
flecainide concentrations late in pregnancy (i.e., third trimester)
(Allan et al., 1991; Bourget et al., 1994), suggesting a robust
transplacental transport of flecainide to the fetus.

An additional drug-specific factor is the stereoselectivity of
flecainide, which is a racemic mixture of R (−) and S (+)
enantiomers (Gross et al., 1989) with equivalent ventricular
antiarrhythmic properties in animal models (Banitt et al., 1986).
In animal cardiac myocyte models, there is a greater decrease in the
maximum upstroke velocity of the action potential in Purkinje fibers
with the S (+) enantiomer than the R (−) but no difference in action
potential amplitude or conduction time (Smallwood et al., 1989).
However, there are still inadequate data to support stereoselectivity
influencing response in humans. Additionally, these data support
only sodium channel antagonism and do not evaluate the RyR2 and
IKr effects. These alternative flecainide receptors must be explored in
future research. The relevant patient-specific (i.e., flecainide
disposition) pathways are described in detail below and
summarized in Table 1.

Absorption

Given its lipophilic nature, flecainide displays near complete
absorption in its unchanged form from the gastrointestinal tract
(Conard and Ober, 1984) and does not undergo any consequential
pre-systemic biotransformation, with greater than 90%–95% of the
unchanged dose reaching systemic circulation (Conard and Ober,
1984). The time to peak concentration (tmax) is 2.7±1.5 h in
children and is similar in adults (Perry et al., 1989; Conard and
Ober, 1984). However, Till et al. (1989) reported a 1-month-old
infant with a tmax of 4.8 h and maximal concentration very near
toxicity, showing that variability in the neonatal population does exist.
Flecainide toxicity has previously been reported in the neonatal period,
and this could be a constellation of developmental patient-specific
factors (e.g., protein binding, absorption rates, peripheral tissue
distribution, differential metabolism) (Palmen et al., 2023;
Karmegaraj et al., 2017; Jang et al., 2013; Poh et al., 2020; Romain
et al., 1999; Ackland et al., 2003). This degree of variability regarding
absorption in the neonatal and younger infant population as referenced
by Till et al. (1989) does require further investigation. The prompt
gastrointestinal absorption of the majority of patients suggests that the
mechanism could also occur via a transporter-mediated process;
however, there are few in vitro and in vivo data to suggest a
definitive mechanism of absorption across the enterocyte. It is
notable that the absorption of flecainide can be impaired with the
co-ingestion of milk (Russell andMartin, 1989; Thompson et al., 2012).
The human peptide transporter (PEPT) 1, encoded by SLC15A1, is a
proton-coupled peptide cotransporter on the luminal surface of the
enterocyte (Liang et al., 1995), and peptide by-products of milk proteins
can inhibit this transporter (Fujisawa et al., 2006). Nevertheless, it
remains unknown if flecainide is a substrate for PEPT1. Another uptake
transporter, H+/tertiary amine antiporter, also appears to be involved in
flecainide uptake in vitro (Horie et al., 2014). The excellent
bioavailability profile suggests that flecainide fails to be a significant
substrate for enterocyte efflux transporters contributing to pre-systemic
clearance back into the intestinal lumen. Despite being a substrate and

inhibitor of the organic cation transporter (OCT) 2 (Zolk et al., 2009),
which is expressed on the basolateral membrane of enterocytes (Jonker
and Schinkel, 2004), there are no data that suggest that this transporter
affects bioavailability (Cascorbi, 2011; Nies et al., 2011; Keppler, 2011).
Digoxin is a substrate for the multidrug resistance protein 1 (MDR1),
alternatively known as p-glycoprotein (P-gp)) (Cascorbi, 2011), and no
significant changes in digoxin pharmacokinetics have been reported
when co-administered with flecainide. However, Horie et al. (2014)
suggest otherwise, concluding that MDR1may be a barrier to flecainide
absorption. Absorption kinetics have been shown to affect flecainide
exposure (Cmax and AUC) in solution versus tablet form (Deneer et al.,
2004). Therefore, the rate and degree of flecainide transport across the
enterocyte cellular membrane can affect systemic exposure. Flecainide’s
specific mechanism of absorption and relative contribution to the
dose–exposure–response continuum needs further elucidation in
order to be considered a source of potential variability.

Distribution

Drug-specific parameters related to drug distribution (e.g.,
lipophilicity, protein binding affinity) were described above.
Xenobiotic transporters, as described earlier, can contribute to
the dose–exposure–response continuum. Transporters observed
in the enterocyte may also contribute to drug distribution in the
hepatocyte and myocyte (Nigam, 2015; Ho and Kim, 2005). Recent
studies have identified mRNA expression of at least 14 influx and
efflux transporters in the cardiac myocyte (McBride et al., 2009;
Grube et al., 2006). Currently, there is no compelling data to suggest
that flecainide is a substrate for any of these transporters, but this
requires further research. Given its lipophilic nature, most of
flecainide’s hepatic uptake is associated with passive diffusion.
However, given flecainide’s association with OCT2, which is
primarily expressed on the basolateral cellular surface of renal
tubules (Choi and Song, 2008), this protein could contribute to
the observed variability in drug clearance and, by extension,
systemic exposure the pediatric population. For instance,
inhibition studies with cimetidine, a potent OCT2 inhibitor, have
demonstrated reduced renal excretion of flecainide (Somogyi and
Muirhead, 1987), and Zolk et al. (2009) describes flecainide having
at least modest inhibition of OCT2. Together, these data suggest that
flecainide has some degree of binding affinity to OCT2. Conversely,
Horie et al. (2014) described OCT proteins not contributing to the
renal transport of flecainide to renal tubule cells for elimination.
Notably, there were no specific proteins (e.g., OCT1 vs. OCT2) that
were illuminated in this work, and thus it cannot be definitively
concluded that OCT2 fails to transport flecainide. The binding
affinity and uptake of flecainide to OCT2 must be explored with
future in vitro cellular investigation.

Metabolism

Flecainide is metabolized in the hepatocyte to m-O-dealkylated
flecainide (MODF) and subsequently oxidized to m-O-dealkylated
lactam flecainide (MODLF) (Figure 2). These two major metabolites
have low potency, with MODF having only 20% relative anti-
arrhythmic activity, and MODLF has no detectable
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antiarrhythmic activity in animal models (Conard and Ober, 1984;
McQuinn et al., 1984). Metabolism is incomplete with nearly 25%–
40% flecainide acetate excreted in its unchanged form (Conard and
Ober, 1984). Approximately 15% of the administered dose is
recovered in the urine for each major metabolite (Conard and
Ober, 1984; McQuinn et al., 1984). The elimination half-life is
highly variable in adults ranging 7–30 h (Conard and Ober,
1984; McQuinn et al., 1984) and can be prolonged in different
disease states (i.e., congestive heart failure, hepatic or renal
impairment) (Conard and Ober, 1984). In vitro, CYP2D6 appears
to be the most important enzyme contributing to the dealkylation of
flecainide (Doki et al., 2009). CYP1A2 also contributes to MODF
formation in vitro but to only 1/6 of that in CYP2D6 (Doki et al.,
2009). In vivo, the conversion of flecainide to MODF via
CYP2D6 has been verified, with poor metabolizers (PM) of
CYP2D6 having a significantly higher area under the curve
(AUC) than extensive metabolizers (EM) after a single dose
(Mikus et al., 1989). CYP2D6 phenotype at steady state yielded a
similar pharmacokinetic profile but unchanged pharmacodynamic
parameters (e.g., QRS duration) (Funck-Brentano et al., 1994;
Tenneze et al., 2002). Additionally, the co-administration of
cimetidine, a potent CYP2D6 inhibitor, resulted in a ~30%
increase in flecainide AUC (Tjandra-Maga et al., 1986a),
suggesting that CYP2D6 has a significant role in flecainide
metabolism. However, CYP1A2 may serve as an alternative route

of metabolism in CYP2D6 PMs and could mitigate the effects of
CYP2D6 genetic variation. Notably, these trials involved a small
number of CYP2D6 PMs. In the larger cohort by Doki et al. (2006),
the CYP2D6 genotype did have an impact on flecainide clearance in
adults with SVT. Beyond genetic variation, differences in flecainide
clearance have been observed between genders, with male
participants having ~30%–35% lower systemic exposure of
flecainide relative to female participants (Doki et al., 2007). This
might be partially related to higher expression of CYP1A2 in male
participants than female participants (Ou-Yang et al., 2000);
however, sex-related differences in CYP2D6 are debated, with
data to suggest no difference in some substrates (Bebia et al.,
2004) and a difference noted for others (e.g., metoprolol) (Luzier
et al., 1999). Stereoselective metabolism has been observed in human
liver microsomes with enhanced CYP2D6 clearance (~2.5-fold)
noted for R (+) flecainide compared to S (−) flecainide (Doki
et al., 2015). Additionally, there is slightly more S (−) flecainide
clearance than R (+) flecainide in similar microsomal incubations
with CYP1A2 (Doki et al., 2015).

The MODF and MODLF metabolites are subject to conjugation
and found predominantly in their conjugated form; phase
2 metabolism is thus likely to occur with these drug substrates
(Conard and Ober, 1984; McQuinn et al., 1984). However, the
specific phase II metabolism enzyme (e.g., UGT, SULT) that leads to
the conjugation of flecainide is unknown but requires further
elucidation, as it could be a source of interindividual variability
in drug biotransformation amongst patients.

Excretion

A majority of flecainide following oral dosing is excreted in the
urine as flecainide and metabolites (~85%) and 5% in the feces,
suggestive of minimal biliary excretion (Conard and Ober, 1984;
McQuinn et al., 1984). Horie et al. (2014) suggest that that
MDR1 may have a more important role in the renal tubular
secretion of flecainide. In their cellular models, co-incubation
with potent MDR1 inhibitors (quinidine, carvedilol, and
amiodarone) resulted in the enhanced apical to basolateral
(i.e., drug influx) transport of flecainide due to the inhibition of
MDR1, which is typically expressed at the apical surface and is
responsible for efflux back into the intestinal lumen or renal tubules
in humans. However, it does not appear to be influential in excretion
to the intestinal lumen, as the reported bioavailability is 60%–85%
(Tjandra-Maga et al., 1986b); its influence on the renal excretion of
flecainide remains unknown. As is the case with many other drugs,
more data are needed on the contribution of drug transporters to
drug disposition regarding hepatic/renal uptake and enterocyte/
renal excretion.

Response

Flecainide, as a Class Ic antiarrhythmic, predominantly inhibits
cardiac voltage-gated sodium Nav1.5 channels which are expressed
in cardiac myocytes (Fozzard and Hanck, 1996; Dong et al., 2020).
This sodium channel subtype carries a unique glycosyl moiety and is
composed of an α-subunit and interacts with β-subunits (Jiang et al.,

FIGURE 2
Flecainide metabolism pathway. Flecainide undergoes
predominantly CYP2D6-mediated metabolism with a minor
contribution from CYP1A2 to form an inactive metabolite,
m-O-dealkylated flecainide (MODF). Created in BioRender.
Walton and Wagner (2024) https://BioRender.com/h94f985.
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2020). The pore-forming α-subunit is composed of four domains,
each with six membrane-spanning segments (Catterall, 2000), and
flecainide binds directly to this pore region (Jiang et al., 2020).
Nav1.5 channels are additionally unique in that they have a loss of
disulfide-bonding capability at the Navβ subunit-interaction sites
(Jiang et al., 2020). Nav1.5 channels are responsible for the influx of
sodium during rapid depolarization, controlling the rate and
homogeneity of cardiac myocyte action potential. Flecainide is
able to bind to the central cavity, partially closing the influx of
sodium ions and thereby slowing cardiac conduction rates (Jiang
et al., 2020). Although other sodium channels are expressed in
human cardiac myocytes, if the function of Nav1.5 channels is
diminished, the other channels cannot surmount efficient offset
to prevent lethal arrhythmias (Jiang et al., 2020). Thus,
Nav1.5 channels represent the most important channel for
action-potential depolarizations. Not surprisingly, aberrations of
the Nav1.5 protein are associated with electrophysiologic
pathologies that include long QT syndrome (LQT) type 3,
Brugada syndrome, congenital AV block, drug-induced LQT,
atrial fibrillation, and sick sinus syndrome (Abriel, 2010).
Additionally, regulatory protein (e.g., β subunit, caveolin-3, α-1-
syntrophin) aberrations can result in LQT 9, 10, 12, Brugada
syndrome, cardiac conduction disease, and atrial fibrillation
(Abriel, 2010).

As well as slowing sodium influx resulting in slowing conduction
rates, flecainide has binding affinity to the ryanodine receptor
(RyR2) found on the sarcoplasmic reticulum of cardiac myocytes
(Watanabe et al., 2009). RyR2 is a tetramer of four 565,000-D RyR
polypeptides, each of which binds one 12,000-D FK506 binding
protein (FKBP12 and FKBP12.6) as well as large cytoplasmic
scaffolding amenable to channel modulation (Marks, 1996). The
main mechanism of ion channel manipulation occurs through
phosphorylation via protein kinase A, allowing the dissociation of
FKBP12.6 from RyR2 and opening the channel access for calcium
entrance to the cytosol; this is further supported by the
hyperphosphorylation of RyR2 in channels which are deemed
“leaky” (Marks, 1996). Flecainide’s affinity to RyR2 antagonizes
calcium release into the cytoplasm—essential for
excitation–contraction coupling (Watanabe et al., 2009). This
pleotropic effect is particularly advantageous for
catecholaminergic polymorphic ventricular tachycardia (CPVT),
where a gain-of-function mutation of the RyR channels results in
increased calcium influx and increasing cell excitability (Kryshtal
et al., 2021). As such, flecainide, through its antagonism of RyR2, can
result in diminished intracellular calcium (Kryshtal et al., 2021).
However, the specific mechanism by which this reduces ventricular
arrhythmias in CPVT is uncertain. The data are equivocal on
whether flecainide disrupts sodium channel function in isolation
(Liu et al., 2011; Bannister et al., 2016; Bannister et al., 2015; Sikkel
et al., 2013) and an alternative mechanism of disruption of calcium
release through the direct engagement of RyR2 (Kryshtal et al.,
2021). Notwithstanding, there is a complex role for flecainide
engagement with RyR2 channels. For example, there are multiple
binding sites, four known inhibitory sites, and one activating site, as
well as dynamic voltage dependance for each (Salvage et al., 2022).
This differs from the single binding site found on NaV1 channels.
Flecainide can engage with the activating site of RyR2, which may
explain the former’s documented proarrhythmic effects (Salvage

et al., 2021). Collectively, the specific mechanisms by which
flecainide attenuates ventricular arrhythmias in patients with
CPVT must be explored in order to improve individualized
treatment plans and mechanisms for new drug discovery.

Although the antiarrhythmic efficacy of flecainide has primarily
been attributed to its effects on the fast inward Na + current, the
blockade of the delayed rectifier K+ channel (IKr) channel may be
complimentary to the electrophysiological effects on cardiac
myocytes. At low doses, flecainide inhibits the rapid component
of IKr (Follmer and Colatsky, 1990; Anno and Hondeghem, 1990;
Tamargo et al., 2004). Follmer and Colatsky (1990) investigated the
blockage of the IKr channel by flecainide in cat ventricular myocytes,
showing that the estimated amount of IKr channel-block during the
normal course of flecainide therapy could approach ~25%–63%. The
IKr channel has been identified in human atrial and ventricular
myocytes but is differentially expressed with higher levels in the left
atrium and ventricular endocardium (Grant, 2009). The IKr channel
is characterized by rapid activation and inactivation and strong
inward rectification at positive potentials (Tamargo et al., 2004).
This channel plays an important role in governing the cardiac
action-potential duration and refractoriness. Inhibition of the IKr
channel underlies an increase in action-potential duration produced
by flecainide. As such, the clinical significance of IKr blockade may
relate to the former’s ability to prolong the duration of premature
electrical responses elicited early in diastole (Nakaya et al., 1989;
Olsson and Edvardsson, 1981). For example, Somberg et al. (1987)
showed that the suppression of sustained ventricular tachycardia
during electrophysiological testing has been associated with a
significantly greater prolongation of refractoriness in flecainide
responders than with non-responders. The IKr channel is
encoded by the genes KCNH2 (α subunit; associated protein
hERG) and KCNE2 (β subunit; associated protein MiRP1)
(Tamargo et al., 2004; Schmitt et al., 2014). In humans, hERG
expression is higher in the ventricles than the atria (Pond et al.,
2000). KCNH2 and KCNE2 have been identified among the loci of
mutations associated with congenital long QT syndrome (e.g.,
LQT2 and LQT6), which is a complex arrhythmogenic disease
associated with prolonged QT interval and resultant polymorphic
ventricular tachycardias, causing syncope and sudden death.

2. Existing data pertaining to allelic variation in the relevant genes
that are associated with functional consequences in humans.

Genetic variation associated with flecainide
disposition

There is a lack of data for the exact mechanism for flecainide
absorption across the enterocyte. Several enterocyte transporters
may play a role in absorption variability. Although PEPT1 could
play a role in flecainide absorption, genetic variation affecting
PEPT1 expression is rarely observed considering its interaction
with milk-based products (Anderle et al., 2006). MDR1—encoded
by the gene ABCB1—protein aberrations have affected drug
disposition for other cardiovascular agents (e.g., simvastatin,
atorvastatin, quinidine, digoxin) (Cascorbi, 2011; Keskitalo et al.,
2008), but limited data exist for flecainide (Horie et al., 2014; Hu
et al., 2012). Several single nucleotide polymorphisms (SNPs) (e.g.,
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SLC22A2) are associated with diminished OCT2 expression and
function (Klaassen and Aleksunes, 2010). In vitro, SLC22A2 variants
(SLC22A2 c.596C>T, c.602C>T, c.808 G>T) were associated with
diminished metformin, a known OCT2 substrate, OCT2-mediated
transport activity (Song et al., 2008). In vivo, available data with
patient’s dosed with metformin have demonstrated diminished
renal clearance in those with the SLC22A2 c.808G>T (p.A270S)
variant (Wang et al., 2008). However, there is no in vitro or in vivo
data to suggest differences in OCT2-mediated flecainide transport,
which remains to be explored.

The vast majority of the literature regarding the influence of
genetic variation on flecainide disposition lies with cytochrome
p450. Mikus et al. (1989) found the first evidence of altered
flecainide disposition without renal, liver, or cardiac function
abnormalities observed in poor metabolizers (PMs) of sparteine/
debrisoquin, now known as CYP2D6. That study with healthy
volunteers revealed a nearly 1.7-fold increase in AUC and
elimination half-life and nearly 40% reduction in flecainide
clearance. Not surprisingly, there was a 1.8-fold increase of
unchanged flecainide in the urine in CYP2D6 PMs, consistent
with inadequate flecainide alkylation to MODF, which occurs
predominantly via CYP2D6 (Gross et al., 1989). As noted above,
flecainide is a racemic mixture of R (−) and S (+) enantiomers, and
preferential stereoselectivity has been demonstrated, with the R (−)
enantiomer having greater CYP2D6 intrinsic clearance relative to
the S (+) enantiomer in human liver microsomal incubations (Doki
et al., 2015). Interestingly in patients with normal
CYP2D6 expression (denoted as EMs), there has been no
significant difference in AUC or clearance observed between the
enantiomers (Gross et al., 1989; Doki et al., 2015). However, Gross
et al. (1989) demonstrated in a cohort of PMs an approximate 30%
increase in R (−) flecainide exposure (AUC) compared to S (+)
flecainide and a subsequent 30% decrease in oral clearance,
suggesting that CYP2D6 does have some stereoselective effect on
flecainide. However, no difference in antiarrhythmic activity have
been observed between the two enantiomers (Banitt et al., 1986). It
remains unknown if S (+) enantiomers have a separate metabolism
pathway and whether it contributes to inter-individual variability.
More broadly, increased flecainide systemic exposure and
diminished oral clearance of flecainide in PMs compared to EMs
has been observed, demonstrating that CYP2D6 does impact
flecainide disposition (Doki et al., 2006; Doki et al., 2009; Lim
et al., 2008; Lim et al., 2010; Gross et al., 1989; Mikus et al., 1989).
The CYP2D6*10 allele—phenotypically an intermediate metabolizer
(IM) —does appear to significantly affect flecainide exposure. Lim
et al. (2008), in a small single dose study, described a trend toward
increased AUC compared to wild-type controls. In a larger andmore
heterogenous study, Doki et al. (2006) observed a 2- and 1.5-fold
difference in the concentration to dose (C/D) ratio and clearance
between IMs and homozygous EMs, respectively. However, there
were no poor metabolizers included in this study. Funck-Brentano
et al. (1994) and Tenneze et al. (2002) have found that
CYP2D6 polymorphisms do not significantly alter flecainide’s
pharmacokinetics or pharmacodynamics. However, these studies
described the parameters based on phenotypic profiles as opposed to
genotype, which is not reported. As previously described,
CYP1A2 contributes to MODF formation; however, there are
insufficient pediatric data to suggest that

CYP1A2 polymorphisms contribute to alterations of flecainide’s
dose–exposure–response relationship. Doki et al. (2009) suggested
that elderly patients with age-related decreased expression of
CYP1A2 had a 1.5-fold higher exposure to flecainide acetate than
middle aged-patients. More importantly, this effect was much more
dramatic in CYP2D6 PMs as CYP1A2 is an alternate pathway in
CYP2D6 PMs. Overall, the CYP2D6 genotype appears to influence
the pharmacokinetics of flecainide, with more data needed to
ascertain this effect on pharmacodynamic endpoints, whether
that be decreased arrhythmia or adverse pro-arrhythmic events.

Genetic variation associated with
flecainide response

Nav1.5 channels, encoded by the gene SCN5A, represent the
majority of the pharmacodynamic effects of flecainide (Jiang et al.,
2020; Abriel, 2010). Most SCN5A mutations result in cardiac
electrophysiologic pathology, and less is known regarding the
effect of SCN5A genetic variation on flecainide’s response. One
gene variant in SCN5A (c.5369A>G, D1790G), located in the
C-terminus location of the protein and associated with LQT3,
has demonstrated that carriers of the mutation had a significant
response to flecainide compared to controls (Benhorin et al., 2000).
Despite concerns about sodium channel function in those with
SCN5A c.5369A>G mutations, there is no evidence that the α-
subunit properties were affected; in fact, the pathophysiologic effects
of this protein aberration are due to changes in α- and β-subunit
interactions (An et al., 1998). Conversely, a SCN5A c.5624T>C
mutation (M1875T), a gene responsible for familial atrial
fibrillation located in the C-terminus, results in an attenuated
flecainide response compared to controls (O’Reilly et al., 2023).
Another rare gain of function mutation of SCN5A (c.665G>A,
R222Q), associated with multifocal ectopic Purkinje-related
premature contractions syndrome, leads to premature action
potentials during repolarization. Those with SCN5A c.665G>A
have been successfully treated with flecainide, resulting in
reduced ectopic beat burden (Ventrella et al., 2024; Calloe et al.,
2018; Ter Bekke et al., 2018; Leventopoulos et al., 2021). Overall,
mutations in SCN5A mutations are quite promising for future
investigations related to the variability of flecainide’s response
independent of the abovementioned flecainide
disposition pathways.

Ryanodine receptor 2 proteins, encoded by the gene RYR2, are
one of the largest ion channels found on the sarcoplasmic reticulum
of cardiac myocytes and are instrumental in the regulation of
cardiomyocyte excitation–contraction coupling (Steinberg et al.,
2023). The gain or loss of function mutations in the RYR2 gene
can result in CPVT or calcium-release deficiency syndrome (CRDS),
respectively (Steinberg et al., 2023). In CPVT, the gain of function
mutations lead to increased calcium release during diastole, resulting
in premature depolarizations and subsequent ventricular
arrhythmia (Wleklinski et al., 2020; Liu et al., 2006). A majority
of these mutations are located within the N-terminus of RyR2. There
has been an absence of specific RYR2mutations that have resulted in
alterations of flecainide response; however, like SCN5A, it requires
more in-depth analysis to determine gene variants that might
predict responders versus non-responders.
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The IKr channel is encoded by the genes KCNH2 (α subunit;
associated protein hERG) and KCNE2 (β subunit, associated protein
MiRP1) (Tamargo et al., 2004; Schmitt et al., 2014). KCNH2 and
KCNE2 have been identified as loci of mutations associated with
LQT2 and LQT6 of the Romano–Ward variant of congenital LQTS,
respectively (Schmitt et al., 2014; Roden et al., 2002; Splawski et al.,
2000). More than 100 mutations in the KCNH2 gene have been
described, including frameshifts, insertions, deletions, and missense
and nonsense mutations (Schmitt et al., 2014; Splawski et al., 2000;
Zhou et al., 1998; Rajamani et al., 2002). Mutant channels result in a
net reduction in outward K+ current during repolarization that can
result from different mechanisms, including the generation of
nonfunctional channels, altered channel gating, and abnormal
protein trafficking (Tamargo et al., 2004). Such variations may
play a role in the variability observed with flecainide response
and represent an area of potential research.

3. Existing data pertaining to the developmental profile
(ontogeny) of the key pathways involved in flecainide
disposition and response.

Ontogenic differences in flecainide
disposition

Specific patient factors (e.g., percentage of fat stores, systemic
protein concentration) can be developmental in nature and thereby
influence drug disposition differently for developing children
relative to fully matured adults (Kearns et al., 2003; Wagner and
Abdel-Rahman, 2013). Flecainide’s moderate lipophilicity is highly
relevant for developing children, where drug distribution could
potentially be more discordant than adults due to alterations in
the percentage of weight for water and fat stores in infants. For
example, ~80% of a newborn’s weight is composed of water, with
many limitations in fat stores (Kearns et al., 2003). These steadily
increase during infancy; the adult percentage of weight comprised of
fat is achieved at approximately 36 months (Wagner and Abdel-
Rahman, 2013; Funk et al., 2012). Thus, infants with a smaller
percentage of fat stores could theoretically have less passive diffusion
into their peripheral tissues and higher systemic exposure after a
dose of a lipophilic agent (i.e., flecainide). The volume of distribution
(Vd) in adults after oral dosing is very large (~512L), suggesting that
the agent has a high degree of lipophilicity (Holmes and Heel, 1985),
although its modest protein binding suggests otherwise. As noted
above, neonates and young infants have diminished fat stores
compared to adults (Wagner and Abdel-Rahman, 2013), and it
could theoretically be expected that flecainide, with its modest
lipophilic profile, would demonstrate lower Vd in infants and
young children. However, this is largely not observed in other
lipophilic drugs, as they tend to freely associate with cellular
components in tissues (e.g., heart) other than adipose. For
example, some drugs with large Vds accumulate in tissues
through their affinity for acidic subcellular compartments (e.g.,
lysosomes), which are enriched in the liver, lung, heart, brain,
and kidneys (MacIntyre and Cutler, 1988; Yokogawa et al., 2002).
This developmental change in tissue distribution, especially in the
heart, could be another source of variability in the
dose–exposure–response relationship in the developing infant.

The degree of distribution to peripheral tissues, including adipose
tissue, for lipophilic drugs is controversial (Kyler et al., 2019).
Overall, there are few concrete data to confirm higher systemic
exposure amongst infants compared to adults due to limitations in
fat stores, but this must be explored in the future for those dosed
with flecainide.

It is not known if flecainide’s protein binding is altered in
neonates and further varied in neonatal cardiovascular disease
states. Quantitatively, it known that that albumin and α1-acid
glycoprotein concentrations are lower in neonates and could
result in higher unbound flecainide than adults (Koukouritaki
et al., 2004). Additionally, the reduced binding affinity of fetal
albumin and the presence of endogenous or exogenous
substances that compete for protein binding sites, including free
fatty acids, bilirubin, and other drugs, have been described for other
drug agents (Windorfer et al., 1974; Nau et al., 1984; Rane et al.,
1971). Notwithstanding, this impact of protein binding on the
distribution of flecainide in the developing child, especially
neonates, requires further study.

As summarized in Table 1, MDR1, OCT2, and
PEPT1 transporters and CYP1A2 and CYP2D6 have become the
best proteins (genes) to evaluate for precision-based flecainide
therapy for pediatrics. Admittedly, there are still some knowledge
gaps in regard to transporter ontogeny. Peptide transporters in
chicks increase expression from the late embryonic stages to
birth, where such expression peaks (Zwarycz and Wong, 2013).
The trajectory of peptide transport expression for infants and small
children remains unknown and requires further elucidation. Within
the last decade, the proteomic evaluation of pediatric and adult
hepatic tissue has demonstrated some ontogenic changes in influx
and efflux drug transporters (Prasad et al., 2016). Of the proteins
evaluated, OCT1, OATP1B3, andMDR1 had significant increases in
protein expression from the neonatal period to adulthood, with
MDR1 demonstrating significant changes at each age
group. Notably, OCT2 was not evaluated in this cohort but
should be evaluated in future iterations.

The ontogeny of CYPs in humans occurs in distinct patterns that
are isoenzyme-specific (Hines, 2008). CYP2D6 is a member of a
gene locus that contains no other significant members, but it alone is
responsible for the metabolism of over 10% of clinically relevant
drugs (Williams et al., 2004). The ontogeny of CYP2D6 is
characteristic of a Group 3 pattern of expression proposed by
Hines (2008). This translates to functional activity that is
detectable but low at birth (~5% of that observed in adults),
increasing to nearly 70% of that seen in adults at 5 years of age
(Treluyer et al., 1991); a majority of that maturation occurs in the
first few months (Treluyer et al., 1991; Blake et al., 2007; Stevens
et al., 2008). However, the in vivo functionality of CYP2D6 in genetic
variants did not change as a function of age, suggesting concordance
between the phenotype and genotype within the first month of life
(Blake et al., 2007). For a neonate with SVT, this could be a potential
source of variability and contribute to the toxicity experienced in
some neonates compared to older infants (Palmen et al., 2023).

CYP1A2 ontogeny is relevant to flecainide disposition, especially
in CYP2D6 PMs (Doki et al., 2009), as described above.
CYP1A2 expression decreases in late adulthood and has a
functional effect on flecainide exposure and disposition (Doki
et al., 2009). This exact mechanism could also negatively affect
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our neonatal population where CYP1A2 expression is low. In vitro
and in vivo, CYP1A2 is not detected in fetal liver samples (Hakkola
et al., 1994; Bieche et al., 2007; Lee et al., 1991; Yang et al., 1995;
Cazeneuve et al., 1994; Sonnier and Cresteil, 1998). Even after
parturition, CYP1A2 ontogeny is delayed, with expression ten-
fold less than in adults (Cazeneuve et al., 1994; Carrier et al.,
1988). Even in young infants (1–3 months) and young children
(1–9 years), expression of CYP1A2 is only 10%–15% and 50%–55%
of adult levels, respectively (Sonnier and Cresteil, 1998). However,
CYP1A2 maturation can be accelerated in formula-fed infants
compared to breastfed (Blake et al., 2006; Le Guennec and Billon,
1987) and also should be considered in developing children who are
prescribed flecainide.

Ontogenic differences in
flecainide response

Overall, little is known about the ontogeny of the proteins
related to flecainide response. In murine models, Nav1.5 channels
are expressed in fetal life with ~30% expression relative to adult
levels. Expression increases postpartum within the first 2 weeks of
age and approaches ~60% expression relative to adult levels during
adolescence (Haufe et al., 2005). The ontogenesis of Nav1.5 channels
in human cardiac myocytes remains unknown. Amphipod
embryologic and development studies support RyR2 upregulation
throughout the developmental process, although more so during the
middle and late stages (McAndry et al., 2022). RyR2 is critical for the
development of cardiac functioning and continues to play a vital role
in excitation–contraction coupling in the heart throughout human
life, exemplified the presence of mutations/genetic variance and
arrythmia development (McAndry et al., 2022). Although attention
has been paid to structural components and expression patterns of
the IKr channel, as described above, less is known about the
developmental pattern or ontogeny of the IKr channel in humans.
This represents an area of future research to better understand the
differences seen in flecainide response.

Summary

Flecainide is a highly effective drug therapy for the prevention
of lethal arrhythmia in the pediatric population. However, its
narrow therapeutic index makes drug dosing decisions
challenging for clinicians. There are no current Clinical
Pharmacogenetics Implementation Consortium (CPIC)
guidelines to assist with flecainide dosing for both the adult and
pediatric populations. There are Dutch Pharmacogenomic
Working Group (DPWG) guidelines for flecainide dosing based
on the CYP2D6 genotype. Those with IM (e.g., CYP2D6 *1/*7) and
PM (CYP2D6 *3/*3) phenotypes are recommended to start dosing
at 75% and 50% of the standard dose, respectively, with
simultaneous pharmacokinetic (e.g., plasma flecainide level) and
pharmacodynamic (e.g., ECG QRS/QT duration) assessments at
baseline and during treatment (PharmGKB API, 2024). Although
stereoselective flecainide CYP2D6-mediated metabolism was not
demonstrated in those with normal CYP2D6 function, despite R
(+) flecainide’s enhanced affinity to CYP2D6, it was determined

that genotypes associated with diminished CYP2D6 function had
diminished R (+) flecainide metabolism. Animal models suggest
no pharmacodynamic differences between the enantiomers. There
are no human data to validate this observation, and this requires
investigation. Although the CYP2D6 genotype appears to represent
the majority of inter-individual variability, several other co-
variates have been outlined within this review as opportunities
for further investigation. For example, drug transporters could
play a complimentary role to CYP2D6 and, by extension, the
CYP1A2 genotype that is responsible for the variability in
flecainide’s systemic exposure. Priority should be given to the
influence of MDR1 and OCT2 on flecainide’s systemic exposure
and the consequences of the gene variation of these transporters.
For neonates with incessant tachyarrhythmia and who are
refractory to first-line treatment (e.g., beta blockers), the
challenges for precision dosing are more complex given the age-
related changes to protein binding and CYP ontogeny.
Collectively, these ontogenic factors must be evaluated to
determine the role of development on flecainide systemic
exposure variability. Future research must collect those in vitro
and in vivo data to develop and validate mechanistic
pharmacologic models (e.g., popPK, PBPK) that will take into
consideration multiple co-variates that can be used to ultimately
develop individualized dosing tools for pediatric and maternal-
fetal patients dosed with flecainide.
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