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Aim: Programmed cell death (PCD) critically influences the tumor
microenvironment (TME) and is intricately linked to tumor progression and
patient prognosis. This study aimed to develop a novel prognostic indicator
and marker of drug sensitivity in patients with gastric cancer (GC) based on PCD.

Methods:We analyzed genes associated with 14 distinct PCD patterns using bulk
transcriptome data and clinical information from TCGA-STAD for model
construction with univariate Cox regression and LASSO regression analyses.
Microarray data from GSE62254, GSE15459, and GSE26901 were used for
validation. Single-cell transcriptome data from GSE183904 were analyzed to
explore the relationship between TME and the newly constructed model, named
PCD index (PCDI). Drug sensitivity comparisons were made between patients
with high and low PCDI scores.

Results: We developed a novel twelve-gene signature called PCDI. Upon
validation, GC patients with higher PCDI scores had poorer prognoses. A
high-performance nomogram integrating the PCDI with clinical features was
also established. Additionally, single-cell transcriptome data analysis suggested
that PCDI might be linked to critical components of the TME. Patients with high
PCDI scores exhibited resistance to standard adjuvant chemotherapy and
immunotherapy but might benefit from targeted treatments with NU7441,
Dasatinib, and JQ1.

Conclusion: The novel PCDI model shows significant potential in predicting
clinical prognosis and drug sensitivity of GC, thereby facilitating personalized
treatment strategies for patients with GC.
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1 Introduction

Gastric cancer (GC) is a major contributor to the global cancer
burden, with over 968,000 new cases and nearly 660,000 deaths
reported in 2022, ranking fifth in terms of both incidence and
mortality worldwide (Bray et al., 2024). Patients are often diagnosed
at advanced stages owing to subtle early symptoms, and the
prognosis for patients with advanced GC remains unsatisfactory
despite advancements in treatments such as improved surgical
techniques, optimized chemotherapy and the introduction of
immunotherapy and targeted therapy (Guan et al., 2023). The
American Joint Committee on Cancer (AJCC) TNM staging
system is widely used to stage for GC. Recently, the molecular
classification of GC has gradually attracted people’s attention. The
molecular subtypes of The Cancer Genome Atlas (TCGA) include
EBV (Epstein-Barr virus), MSI (microsatellite instability), CIN
(chromosomal instability), and GS (genomically stable), while
those of the Asian Cancer Research Group (ACRG) include MSI-
H (microsatellite instability-high), MSS (microsatellite stable)/
TP53+, MSS/TP53-, and MSS/EMT (epithelial-mesenchymal
transition) (Cancer Genome Atlas Research Network, 2014;
Cristescu et al., 2015). These classifications facilitate stratification
of treatment approaches for GC. However, the variability in drug
response and clinical outcomes, even within the same AJCC TNM
stage or molecular subtype, highlights the need for a refined
classification system to personalize diagnostic and therapeutic
strategies for patients with GC.

Programmed cell death (PCD) is a kind of genetic control,
autonomous and orderly important cell death that involves the
activation, expression, and regulation of a series of genes and
encompasses multiple patterns (Chen et al., 2024). Apoptosis is
characterized by caspase-mediated pathways that lead to cellular
shrinkage, DNA fragmentation, and the formation of apoptotic
bodies, facilitating controlled cell elimination without provoking
inflammation (Obeng, 2021). Necroptosis promotes inflammation
via the necrotic death pathway, which serves as an alternative to
apoptosis when caspase activation is inhibited (Vandenabeele et al.,
2010). Autophagy degrades cellular components under stress and
is linked to pathologies, such as cancer and neurodegenerative
diseases (Levine and Kroemer, 2008). Anoikis is a type of apoptosis
triggered by the loss of cell attachment and prevents metastasis by
inhibiting anchorage-independent growth, which is crucial for
cancer progression (Simpson et al., 2008). Pyroptosis involves
gasdermin-induced membrane pore formation, leading to cell
lysis and inflammation (Zhou et al., 2022). Entotic cell death
occurs when one cell engulfs another, potentially leading to the
death of the internalized cell, which is indicative of the high cellular
stress and observed in tumor environments (Tang et al., 2019).
Parthanatos results from excessive PARP activation, which causes
mitochondrial dysfunction and large-scale DNA fragmentation
(Tang et al., 2019). Ferroptosis is driven by iron-dependent
lipid peroxidation, which has been implicated in cancer and
ischemic damage (Dixon et al., 2012). Netotic cell death
involves the release of neutrophil extracellular traps (NETs),
which help combat infections, but can also exacerbate chronic
inflammation and thrombosis (Boeltz et al., 2019). Lysosome-
dependent cell death occurs via lysosomal membrane rupture,
releasing cathepsins that catalyze apoptosis or necrosis, which

are relevant in cancer therapy (Boya and Kroemer, 2008).
Oxeiptosis is caspase-independent and triggered by oxidative
stress through the KEAP1-PGAM5-AIFM1 axis (Holze et al.,
2018). Disulfidptosis involves the disruption of protein disulfide
bonds, which are critical for maintaining cellular function and
integrity, particularly under oxidative stress conditions (Liu et al.,
2024). Cuproptosis results from Cu accumulation, which causes
lipid oxidation and mitochondrial dysfunction (Xie et al., 2023).
Alkaliptosis is characterized by an increase in intracellular pH,
leading to the dysregulation of metabolic and ion transport (Liu
et al., 2020). Overall, PCD involves diverse mechanisms and plays a
regulatory role in maintaining cellular and tissue homeostasis
(Yuan and Ofengeim, 2024). The loss of control over single or
mixed types of PCD can lead to human diseases, including various
cancers (Chen et al., 2024). However, the comprehensive
association between these 14 forms of PCD and GC
remains unclear.

In this study, we aimed to identify PCD-related genes that
significantly affect the prognosis of patients with GC and to
develop a novel indicator, namely, programmed cell death index
(PCDI) to predict their survival and therapeutic response.
Additionally, we explored the potential relationship between the
PCDI and the tumor microenvironment (TME) of GC.

2 Materials and methods

2.1 Data acquisition

Normalized and log2-transformed bulk RNA-sequencing
(RNA-seq) profiles, expressed as transcripts per million (TPM),
along with clinical and survival data for patients with GC and
healthy individuals, were obtained from the University of
California Santa Cruz (UCSC) database (https://xenabrowser.net/).
The “gencode annotation v23”file was utilized for ID-gene mapping.
Masked somatic mutation data were acquired using the
“TCGAbiolinks” package (Colaprico et al., 2016). We also retrieved
additional bulk RNA-seq and survival data for the validation cohorts
(GSE62254, GSE15459, and GSE26901) and a single-cell RNA-seq
profile from GSE183904 from the Gene Expression Omnibus (GEO)
database (Clough and Barrett, 2016). Samples that lacked clinical
information or exhibited more than 90% of the genes with zero
expression were excluded. PCD-related genes were compiled from
peer-reviewed publications, gene set enrichment analysis (GSEA), the
Kyoto Encyclopedia of Genes and Genomes (KEGG), and the Gene
Ontology (GO) databases (Zou et al., 2022; Subramanian et al., 2005;
Kanehisa and Goto, 2000; Gene Ontology Consortium, 2015).

2.2 Identification of expression and variation
levels of PCD-related genes

Differential expression analysis of GC and normal gastric tissue
samples from the TCGA-STAD cohort was performed using the
“limma” package, defining differential expressed genes (DEGs) with
adjusted p < 0.05 and |log2FC| > 1 (Ritchie et al., 2015). Somatic
mutation analysis was conducted using the “maftools” package
(Mayakonda et al., 2018).
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2.3 Prognostic gene signature development
for GC patients

Significant survival-related genes were identified using
univariate Cox regression analysis (p < 0.05). LASSO (least
absolute shrinkage and selection operator) regression,
implemented through the “glmnet” package, was further
employed to refine variables, thereby avoiding collinearity and
overfitting (Engebretsen and Bohlin, 2019). The “lambda.min”
value was selected to control model complexity. The
programmed cell death index (PCDI) for each patient was
calculated as follows: PCDI = ∑n

k�1Coefk * Exp k. Coefk
represents the risk coefficient and Expk represents the gene
expression level. Patients were stratified into high and low PCDI
groups based on the median PCDI. Principal component analysis
(PCA) was conducted using the “stats” package, and Kaplan-Meier
analysis was performed using the “survival” and “survminer”
packages to explore the correlation between overall survival (OS)
time and PCDI.

2.4 Unsupervised clustering of PCDI
model genes

The “ConsensusClusterPlus” package was used for
unsupervised clustering based on 12 model genes to identify
GC subtypes (Wilkerson and Hayes, 2010). The consensus
cluster parameters were set as pItem = 0.8, maxK = 9,
clusterAlg = “km,” and distance = “pearson.” Kaplan-Meier
analysis was used to compare the OS of patients with GC
across different clusters.

2.5 Construction and validation
of nomogram

Both univariate and multivariate Cox regression analyses were
conducted to validate the PCDI as an independent prognostic
indicator for patients with GC, assessing its significance along
with relevant clinical parameters. A prognostic nomogram was
developed for the TCGA-STAD cohort using the “rms” and
“replot” packages. The nomogram’s performance was evaluated
through calibration curves (“rms” package), decision curve
analysis (DCA, “rmda” package), and receiver operating
characteristic (ROC, “timeROC” package) curves (Blanche
et al., 2013).

2.6 Immune cell infiltration and single-
cell analysis

The “CIBERSORT” package was used to estimate the fractions of
22 types of immune cells in each sample, and the immune cell
infiltration levels were compared between the low- and high-PCDI
groups (Chen et al., 2018). Single-cell RNA-seq data analysis of
GSE183904 was performed using the “Seurat” packages (Butler
et al., 2018).

2.7 Functional enrichment analysis

Functional enrichment analyses were carried out using the
“clusterProfiler” and “org.Hs.eg.db” packages to identify relevant
KEGG pathways based on DEGs (Wu et al., 2021). Gene set
variation analysis (GSVA) was utilized to analyze differences in
KEGG pathways between the high- and low-PCDI groups using the
“msigdbr,” “GSVA,” and “GSEABase” R packages (Liberzon et al.,
2015; Hänzelmann et al., 2013). The possible GO biological
processes of the marker genes in each cell type were also identified.

2.8 Drug sensitivity analysis

Drug sensitivities were predicted using the “oncoPredict”
package, and the Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm (http://tide.dfci.harvard.edu/) was used to
predict responses to immunotherapy between the low- and high-
PCDI groups (Maeser et al., 2021).

2.9 Statistical analysis

All statistical analyses were conducted using the R software
(version 4.2.3). For parametric variables, comparisons between
different groups were made using Student’s t-test or one-way
ANOVA. For nonparametric variables, the Wilcoxon rank-sum
test or Kruskal–Wallis test was used. Correlations between
variables were assessed using Spearman’s rank-order correlation
for nonparametric data and Pearson’s r correlation for parametric
data. Categorical data were analyzed using the Chi-square test.
Survival analyses were performed using the log-rank test.
Statistical significance was set at p < 0.05.

3 Results

3.1 Study workflow

After excluding samples that lacked clinical information or
exhibited more than 90% of the genes with zero expression, we
selected 323 patients with GC from the UCSC Xena database for
the training cohort, along with 208 normal samples. Moreover,
300 patients from GSE62254, 192 from GSE15459, and 109 from
GSE26901 were included in the GEO database as validation
cohorts. We also incorporated single-cell RNA transcriptome
datasets, including 10 GC samples and 5 normal samples from
GSE183904. Moreover, after eliminating duplicate genes, a total
of 1151 PCD-associated genes were included in subsequent
analyses, including 580 apoptosis genes, 52 pyroptosis genes,
87 ferroptosis genes, 367 autophagy genes, 15 entotic cell death
genes, 101 necroptosis genes, 14 cuproptosis genes,
9 parthanatos genes, 8 netotic cell death genes, 7 alkaliptosis
genes, 220 lysosome-dependent cell death genes, 5 oxeiptosis
genes, 17 disulfidptosis genes, and 36 anoikis genes
(Supplementary Table 1). A flowchart of the study is shown
in Figure 1A.
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FIGURE 1
Workflow and DEGs landscape of PCD-Related Genes (A) Schematic diagram of the study’s design. (B) Heatmap displaying the PCD-related DEGs
between GC and normal tissues in the TCGA-STAD cohort. (C) Volcano plot illustrating the PCD-related DEGs. Downregulated DEGs are indicated in
green, upregulated DEGs in pink, and non-significant genes in grey. Labeled points represent DEGs with an adjusted p-value <0.01 and |log2FC| > 2.5. (D)
GO enrichment analysis for the PCD-related DEGs. (E) KEGG enrichment analysis for the PCD-related DEGs. GC, gastric cancer. LASSO, least
absolute shrinkage and selection operator. PCD, programmed cell death. DEGs, differentially expressed genes. logFC, log2 (fold change). GO, Gene
Ontology. BP, biological process. CC, cellular component. MF, molecular function. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 2
Prognostic Gene Signature Development for GC Patients (A) Selection of model genes by LASSO regression in the TCGA-STAD cohort. (B) Ten-fold
cross-validation of the model. (C)Heatmap depicting the 12 model genes alongside clinical features. (D–H) Violin plots comparing differences in survival
status, gender, MSI, TCGA molecular subtyping, stage, and TNM classification between high- and low-PCDI groups. Notations for significance are as
follows: ns (not significant): p > 0.05; *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001. PCDI, programmed cell death index. MSI, microsatellite
instability. EBV, Epstein-Barr virus. CIN, chromosomal instability. GS, genomically stable. MSS, microsatellite stable. MSI-L, microsatellite instability-low.
MSI-H, microsatellite instability-high. LASSO, least absolute shrinkage and selection operator.
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3.2 Landscape of PCD-related DEGs in GC

A total of 303 DEGs were identified in the TCGA-STAD cohort,
with 269 upregulated and 34 downregulated genes in tumor samples
compared to those in normal samples (adjusted p < 0.05, |log2FC| > 1).
All DEGs are listed in Supplementary Table 2. Visualization of the
scaled RNA levels of these DEGs is provided as heat maps in Figure 1B,
and a volcano plot of these genes is shown in Figure 1C, with notable
genes highlighted (|log2FC| > 2.5, adjusted p < 0.01). GO and KEGG
pathway enrichment analyses revealed the involvement of these DEGs
in pathways associated with apoptosis, autophagy, and necroptosis
(Figures 1D, E). Mutation analysis of PCD related genes in patients
with GC from the TCGA-STAD cohort showed that approximately
81.35% (253/311) had mutations, with TP53 having the highest
mutation frequency at 46%, followed by others ranging from 7% to
16% (Supplementary Figure 1A).

3.3 Prognostic gene signature development
for GC

Survival data were analyzed using univariate Cox regression,
identifying 95 survival-related genes in the TCGA-STAD and
387 genes in the GSE62254 cohort, with a cutoff of p < 0.05. The
intersection of these datasets yielded 60 genes, from which a 12-gene
signature was developed using LASSO regression analysis in the
TCGA-STAD cohort (Figures 2A, B). The genes comprising this
signature included five from apoptosis, three from lysosome-
dependent cell death, two from ferroptosis, one from autophagy,
one from necroptosis, and one from oxeiptosis. The correlation
between these genes is displayed in Supplementary Figure 2A.
Expression levels were compared using the Wilcoxon test, and
their influence on OS was assessed using Kaplan-Meier analysis
(Supplementary Figures 2B, 3). We derived a programmed cell death
index (PCDI) for each patient using the formula: PCDI =
(−0.148926368 × DDIAS exp.) + (0.123056640 × PTTG1IP exp.)
+ (0.162336324 × SERPINE1 exp.) + (−0.025673067 ×
TMEM102 exp.) + (0.092603159 × UACA exp.) +
(0.004036669 × CBS exp.) + (0.078952093 × TF exp.) +
(−0.104077494 × CDC37 exp.) + (−0.042814168 × PGAM5 exp.)
+ (−0.019573107 × AP1S1 exp.) + (0.016993747 × KIT exp.) +
(0.045710490 × RAB34 exp.). Patients in the TCGA-STAD cohort
were stratified into high- and low-PCDI groups based on the median
PCDI. We found that the PCDI was independent of the node stage,
metastasis stage, and TNM stage. However, the PCDI was
significantly associated with T stages (T1-T4), the survival status
(alive or dead), MSI status, and GC TCGA molecular subtypes
(Figures 2C–H). Notably, patients with T2-T4 stages and proficient
mismatch repair (pMMR), defined as microsatellite stability (MSS)
and low microsatellite instability (MSI-L), exhibited higher PCDI
scores than those with high microsatellite instability (MSI-H). In
terms of the TCGA molecular subtype, PCDI levels were ranked as
follows: GS > CIN > EBV andMSI. Additionally, we investigated the
mutation status of the top tenmutated PCD-related genes and found
that mutations were more prevalent in the low-PCDI group for
certain genes, such as PIK3CA, DIDO1, ATM, WDFY3, HERC1,
BIRC6, and PRKDC (all p < 0.05; Supplementary Figure 1B). Among
the model genes, AP1S1 exhibited more mutations in low-PCDI

patients (p < 0.05; Supplementary Figure 1C). GSVA was employed
to further explore the differences in the KEGG pathways among the
two groups. Bar plots depicting the top ten upregulated and
downregulated pathways in each cohort are presented in
Supplementary Figures 4A–D. The most frequently upregulated
pathways included “ECM receptor interaction” and “tryptophan
metabolism,” while the most commonly downregulated pathway
was “terpenoid backbone biosynthesis” (Supplementary Figure 4E).
Additionally, nine PCD genes associated with these pathways were
analyzed, and the protein-protein interaction (PPI) network analysis
is displayed in Supplementary Figure 4F.

3.4 Training and validation of the gene
signature prediction model

We assessed the OS between different PCDI groups within the
TCGA-STAD cohort and found that patients with high-PCDI scores
exhibited lower survival rates (Figure 3A). Principal component
analysis (PCA) confirmed a satisfactory classification based on PCDI
(Figure 3B). A marked difference in OS time was noted between the
high- and low-PCDI groups, with the latter showing lower death
rates (HR = 2.60, 95% CI: 1.83–3.37, p < 0.0001; Figure 3C). The
validation cohorts (GSE62254, GSE15459, and GSE26901) were also
analyzed, demonstrating that a high PCDI score was predictive of
poor survival outcomes (Figure 3A). PCA validated the separation of
these groups (Figure 3B), and Kaplan-Meier analysis confirmed the
significantly lower OS rates in the high-PCDI group (all p <
0.05; Figure 3C).

3.5 Unsupervised clustering of PCDI
model genes

To explore the unidentified subtypes of GC, 12 PCD-related
model genes were used to perform a consensus cluster analysis in the
TCGA-STAD cohort. We found that when k = 2, the differences
among the subgroups were obvious, which indicated that the
323 patients with GC could be well classified into two clusters
(Figures 4A, B). An obvious difference was found between the OS
time and the two clusters (HR = 2.16, 95% CI: 1.48–3.17, p < 0.0001;
Figure 4C). Cluster 1 was associated with a favorable prognosis,
whereas cluster 2 was associated with a poor prognosis. Similar
results were found in the GSE62254 (HR = 1.76, 95% CI: 1.28–2.42,
p = 0.000057), GSE15459 (HR = 1.66, 95% CI: 1.10–2.51, p = 0.026),
and GSE26901 cohorts (HR = 2.08, 95% CI: 1.15–3.77, p = 0.0055;
Figures 4A–C). Moreover, the alluvial diagrams showed that the
majority of cluster 1 was associated with a low PCDI, whereas the
majority of cluster 2 was associated with a high PCDI (Figure 4D).

3.6 Establishment and assessment of the
nomogram survival model

Univariate and multivariate Cox regression analyses were
conducted to evaluate the PCDI as an independent prognostic
factor. The univariate analysis identified PCDI as a risk factor
(HR = 4.25, 95% CI: 2.69–6.73, p < 0.001), which was confirmed by
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multivariate analysis adjusting for confounding factors (HR = 4.53, 95%
CI: 2.79–7.36, p < 0.001; Figure 5A). A nomogram incorporating the
age, stage, and PCDI was established to predict the 1-, 3-, and 5-year OS
rates (Figure 5B). A significant survival differencewas observed between
high- and low-score groups (HR = 3.64, 95% CI: 2.56–5.18, p < 0.0001;
Figure 5C). Calibration curves demonstrated the accuracy of this model
in predicting the OS rates, supported by decision curve analysis (DCA)
and area under curve (AUC) assessments, confirming the model’s high
predictive accuracy (Figures 5D–F).

3.7 Dissection of tumor microenvironment
based on PCDI

Further analyses were conducted to elucidate the differences in
the TME features between the PCDI groups. We explored PCDI at
the single-cell level using data fromGSE183904. Major cell types and

tissue origins were annotated (Figures 6A, B). The detailed marker
genes are shown in Supplementary Figure 5. Bar plots showed the
cellular compositions of different samples (Figure 6C). A bubble plot
illustrates the proportion of cells expressing the model genes and the
average expression levels of these genes across various cell types
(Figure 6E). We found that cells with high-PCDI scores were
primarily enriched in endothelial cells (ECs), fibroblast_COL1A1,
and fibroblast_RGS5 cells (Figures 6D, F). The PCDI scores of these
3 cell types derived from tumor tissues were significantly higher than
those derived from normal tissues (Figure 6G). The top 50 marker
genes of the ECs were linked to angiogenesis and transforming
growth factor beta (TGF-β) related pathways. The top 50 marker
genes of the fibroblast_COL1A1 were associated with extracellular
matrix (ECM) organization and cell motility regulation pathways.
Additionally, the top 50 marker genes of the fibroblast_RGS5 were
enriched in the myofibril assembly, wound healing, and muscle-
related pathways (Figure 6H; Supplementary Table 3). CIBERSORT

FIGURE 3
Internal Training and External Validation of the Gene Signature Prediction Model (A) Distribution of the scaled PCDI stratified by survival status and
overall survival across the TCGA-STAD, GSE62254, GSE15459, and GSE26901 cohorts. (B) PCA plots demonstrating PCDI stratification within each
cohort. (C) Kaplan-Meier survival analyses comparing OS in low- and high-PCDI groups across the cohorts. PCDI, programmed cell death index. PCA,
Principal component analysis. OS, overall survival.
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algorithms were employed to measure the enrichment scores of
immune-related cells in the two PCDI groups, which revealed higher
levels of resting CD4+ memory T cells and lower levels of activated
CD4+ memory T cells in the high-PCDI group than in the low-PCDI
group, suggesting that the reduction in activated resting CD4+

memory T cells may contribute to a poor prognosis in high-
PCDI GC patients (Supplementary Figure 6).

3.8 Efficacy of PCDI in predicting drug
sensitivity

We assessed the relationship between the PCDI scores and drug
sensitivity by calculating the half-maximal inhibitory concentration
(IC50) values for various drugs in patients with GC. The correlation
landscape between drug sensitivity and PCDI is shown in Figures 7A–K.

FIGURE 4
Unsupervised Clustering of PCDI Model Genes (A) Stratification of GC patients into two molecular clusters at k = 2, based on the PCDI model gene
profile. (B) CDF plots illustrating the consensus clustering stability for each k value ranging from 2 to 9. (C) Kaplan-Meier survival analysis comparing the
prognosis of GC patients across the two identified molecular clusters. (D) Alluvial diagram depicting the relationships among molecular clusters, survival
status, and PCDI group classification in GC patients. GC, gastric cancer. PCDI, programmed cell death. CDF, cumulative distribution function.

Frontiers in Pharmacology frontiersin.org08

Lin et al. 10.3389/fphar.2024.1477363

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1477363


FIGURE 5
Establishment and Evaluation of the Nomogram Survival Model (A) Univariate and multivariate analyses assessing clinicopathologic features and
PCDI within the TCGA-STAD cohort. (B)Development of a nomogram for predicting 1-year, 3-year, and 5-year OS rates for GC patients. (C) Kaplan-Meier
survival analyses based on the nomogram scores for the GC patient groups. (D) Calibration plots depicting the predicted probabilities for 1-year, 3-year,
and 5-year OSwithin the TCGA-STAD cohort. (E)DCA evaluating the nomogram’s utility in predicting 1-year, 3-year, and 5-year OS. (F)ROC analysis
validating the nomogram’s predictive accuracy across each cohort. PCDI, programmed cell death index. OS, overall survival. GC, gastric cancer. DCA,
decision curve analysis. ROC, receiver operating characteristic.
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FIGURE 6
Single-Cell Analysis Based on PCDI (A) t-SNE plot visualizing of all cell types from 10 GC tissues and five normal tissues derived fromGSE183904. (B)
t-SNE plot showing the cellular origin as either tumor or normal tissue. (C) Bar plots depicting the proportions of cell types of each patient. (D) t-SNE plot
visualizing the PCDI scores of different cell types. (E) Bubble plot illustrating the proportion of cells expressing model genes and the average expression
levels of these genes across various cell types. (F) Violin plot displaying PCDI scores in each cell type. (G) Violin plots comparing the PCDI scores of
endothelial, fibroblast_COL1A1 and fibroblast_RGS5 cells between normal and tumor tissues. (H) Bar plots showcasing GO_BP pathway enrichment for
the top 50 marker genes in endothelial, fibroblast_COL1A1 and fibroblast_RGS5 cells. GC, gastric cancer. T, tumor. N, normal. PCDI, programmed cell
death index. GO_BP, biological process pathways of Gene Ontology database.
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We found that some commonly used drugs for GC, such as 5-
fluorouracil (5-FU), oxaliplatin, cisplatin, epirubicin, docetaxel,
paclitaxel, irinotecan, and gemcitabine, had higher IC50 values in
the high PCDI group, indicating resistance. In contrast, the
IC50 values for NU7441, Dasatinib, and JQ1 were lower in the
high-PCDI group, suggesting sensitivity to these drugs.
Additionally, the TIDE score assessment revealed that patients
with low PCDI were associated with lower TIDE scores,
suggesting that these patients may benefit more from
immunotherapy (Figure 7L).

4 Discussion

In this study, we performed a comprehensive analysis of
14 diverse PCD modalities and established a signature called the
PCDI to predict the prognosis of patients with GC within the
TCGA-STAD cohort. This signature was further validated with
excellent performance across three external cohorts. A
nomogram integrating clinical characteristics with the PCDI was
constructed, demonstrating robust predictive capabilities.

Moreover, our findings highlight a significant correlation between
the PCDI, the TME, and drug sensitivity in GC, all of these
underscoring the potential clinical utility of the PCDI in guiding
personalized treatment decisions.

Functional enrichment analysis of PCD-related DEGs revealed
significant enrichment of cell death pathways such as apoptosis,
autophagy, and necroptosis, further validating the robustness of our
model construction. This underscores the close association between
various PCD patterns and the development and metastasis of
tumors. Consequently, we identified PCD-related genes that
significantly affected the survival of patients with GC for
subsequent analyses. We developed and validated a prognostic
signature comprising 12 PCD-related genes (CBS, SERPINE1,
RAB34, KIT, TF, AP1S1, PGAM5, TMEM102, CDC37, DDIAS,
PTTG1IP, and UACA) in patients with GC. CBS is a crucial enzyme
in the methionine metabolism pathway. It was reported that high
CBS levels were associated with a poor OS rate in GC patients
receiving adjuvant chemotherapy (Zhao et al., 2021). Our study
revealed that the CBS expression was lower in GC samples, and the
relatively lower expression was associated with a better prognosis.
SERPINE1, known for its role in angiogenesis and metastasis, is

FIGURE 7
Drug Sensitivity Prediction and Comparison Based on PCDI (A–K) Boxplots illustrating the comparison of IC50 values of various drugs between
high- and low-PCDI groups, along with the correlation between IC50 and PCDI values in the TCGA-STAD cohort. (L) Boxplots showing the comparison
of TIDE scores between high- and low-PCDI groups, and the correlation between TIDE scores and PCDI values in the TCGA-STAD cohort. Significance
levels are indicated as follows: ns (not significant): p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. PCDI, programmed cell death index.
IC50, half-maximal inhibitory concentration. TIDE, Tumor Immune Dysfunction and Exclusion.
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highly expressed and significantly associated with a poor prognosis
in GC, corroborating our findings (Li et al., 2019). RAB34, which
regulates cell morphology and motility, showed no significant
differences in expression between GC and normal tissues;
however, higher levels of RAB34 in GC tissues were associated
with a worse prognosis, consistent with findings in other cancers,
such as breast cancer, hepatocellular carcinoma, and glioma (Sun
et al., 2018a; Wu et al., 2017; Hou et al., 2022). KIT, a classical proto-
oncogene that encodes a receptor tyrosine kinase responsive to stem
cell factor, has been found to promote tumor development and
progression in various cancers through overexpression or mutations
(Sheikh et al., 2022). Our findings suggested that higher KIT
expression levels in GC tissues were associated with a poorer
prognosis. TF, which is a type of iron-binding protein involved
in iron transport, was found to be highly expressed in GC, and its
high expression was linked to poor prognosis in our study (Torti and
Torti, 2013). AP1S1, a part of the adaptor protein complex involved
in clathrin-mediated endocytosis, is highly expressed in breast
cancer and glioblastoma and is associated with poor prognosis
(Zheng et al., 2022; Wu et al., 2022). In contrast, our research
indicated that although AP1S1 was overexpressed in GC tissues
compared to normal tissues, it served as a protective factor in our
model. PGAM5, an atypical mitochondrial serine/threonine
phosphatase, promotes GC cells proliferation by positively
regulating the PI3K/AKT signaling pathway (Meng et al., 2023).
Our study observed significantly elevated PGAM5 levels in GC
tissues; however, patients with higher PGAM5 levels had a better
prognosis. TMEM102 is a transmembrane protein that has been
identified as a proapoptotic molecule involved in GM-CSF
deprivation-induced apoptosis (Kao et al., 2008). Overexpression
of TMEM102 implicates poor prognosis and chemoresistance in
patients with epithelial ovarian carcinoma (Tai et al., 2022).
TMEM102 was significantly upregulated in GC tissues compared
to normal tissues, suggesting its potential as a prognostic factor for
GC. CDC37 is a key determinant of client kinase recruitment to the
HSP90 chaperoning system. Patients with CDC37-high metastatic
colorectal cancer benefited more from anti-VEGF therapy (Arai
et al., 2024). CDC37 serves as a protective factor against GC, which
was confirmed in our study (Wang et al., 2023). DDIAS stimulates
cancer cell proliferation and cell cycle progression by inhibiting
DNA damage-induced apoptosis (Im et al., 2023). Although
significantly higher expression levels of DDIAS were observed in
GC tissues than in normal tissues, DDAIS served as a protective
factor in the model. PTTG1IP is an oncogenic protein that
participates in the metaphase-anaphase transition of the cell cycle
through the activation of securin (PTTG1) (Repo et al., 2017). The
overexpression of PTTG1IP was associated with poor prognosis in
epithelial ovarian cancer, thyroid cancer and head and neck
squamous cell carcinoma (Ma et al., 2023; Read et al., 2018; Read
et al., 2017). Our study revealed similar results. Higher UACA
expression in normal cells results in lower extracellular Par-4
levels, leading to reduced tumor apoptosis and worse prognosis
(Burikhanov et al., 2013). UACA is upregulated in hepatocellular
carcinoma and promotes cell proliferation and invasion (Sun et al.,
2018b). Additionally, its elevated expression is associated with poor
OS in breast cancer (Zhu et al., 2022). Similar trends were
observed in GC, indicating worse prognosis with higher UACA
expression.

To explore the potential relationships between the PCDI and
other clinical characteristics, we conducted subgroup analyses on
PCDI. The results revealed that a high PCDI score was significantly
associated with mortality outcomes. No significant differences were
noted in the PCDI across subgroups based on sex, the AJCC Stage, N
stage, or M stage, indicating PCDI’s robust independence as a novel
clinical feature for GC patients. Additionally, we observed that PCDI
levels were significantly lower in patients with T1 tumors than in
those with T2-4 tumors. Intriguingly, we detected variations in
PCDI across TCGA molecular subtypes, with patients with GS
and CIN patients generally exhibiting higher PCDIs, whereas
patients with EBV and MSI patients presented with lower PCDIs.
Research has shown that MSI and EBV subtypes generally have
better prognoses, while GS subtypes have the worst prognoses (Sohn
et al., 2017). Furthermore, EBV and MSI subtypes are likely to
benefit from immunotherapy, whereas the CIN and GS subtypes are
less responsive to such treatments (Alsina et al., 2023). Our findings
are consistent with these observations. Additionally, among
different MSI statuses, patients with MSI-H had lower PCDI
than in MSI-L and MSS patients, and had a better prognosis,
which was consistent with the TCGA molecular subtype. Overall,
these findings underscore that the PCDI is a relatively independent
prognostic marker. The independent prognostic value of PCDI was
further validated using both univariate and multivariate Cox
regression analyses. Moreover, we developed a nomogram model
that incorporated the PCDI with relevant clinical parameters. The
effectiveness of this model was validated, and its clinical utility was
demonstrated. The prognostic nomogram model exhibited strong
predictive capabilities for 1-, 3-, and 5-year OS, highlighting its
potential for enhancing patient management and outcome
prediction in clinical settings.

Single-cell analysis revealed that the cell types with high PCDI
scores mainly included ECs and two clusters of fibroblast cells.
Furthermore, the PCDI scores of these cells from tumor tissues were
significantly higher than those from normal tissues. The marker
genes of ECs were primarily enriched in angiogenesis and TGF-β
related pathways. Angiogenesis is essential for tumor progression
because tumor-endothelial interactions promote malignant
vascularization and influence the proliferative and metastatic
potential of cancer cells (Yao and Zeng, 2023). TGF-β stimulates
the secretion of factors like VEGF-A, which further promotes
angiogenesis. The newly formed vessels provide nutrients for
cancer growth and dissemination (Derynck et al., 2021). In
addition, TGF-β signaling plays a crucial role in cancer resistance
to chemotherapy, targeted therapy, and immunotherapy (Zhang
et al., 2021). We speculated that some of the identified ECs were
tumor-associated ECs (TAECs). The marker genes of fibroblast_
COL1A1 were enriched in the pathways related to ECM formation.
Cancer-associated fibroblasts (CAFs) can remodel the ECM by
secreting large amounts of collagen and fibronectin, creating
barriers that hinder the penetration of drugs and immune cells
into tumors, thereby reducing treatment efficacy (Biffi and Tuveson,
2021). The marker genes of fibroblast_RGS5 were associated with
myofibril assembly and wound healing, suggesting that these cells
might linked to myofibroblastic CAFs (myoCAFs) (Mellone et al.,
2022). MyoCAF-rich stroma is linked to a poor prognosis and
contributes to several hallmarks of malignancy (Mellone et al.,
2022). Moreover, myoCAF-rich cancers have low levels of
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infiltrating T cells and promote resistance to various
immunotherapies (Mellone et al., 2022). Collectively, we
hypothesized that PCDI model genes may be involved in the
transition of ECs to TAECs and fibroblasts to CAFs, which plays
a significant role in tumor onset and progression, and ultimately
leads to adverse prognoses. In addition, analysis of immune cell
infiltration indicated that a decrease in the transition of CD4+

memory T cells from a resting state to an activated state might
contribute to the poor prognosis of GC patients with a high PCDI.

Using drug sensitivity prediction, we discovered that patients
with a high PCDI were resistant to traditional chemotherapeutic
drugs, such as 5-FU, oxaliplatin, cisplatin, epirubicin, docetaxel, and
paclitaxel, which may explain their poor prognosis. However, we
were surprised to identify NU7441, Dasatinib, and JQ1 as potential
therapeutic drugs for patients with a high PCDI score. NU7441, a
DNA-PKcs inhibitor, has been found to increase the sensitivity of
radioresistant GC cells to radiotherapy through the cleaved-
caspase3/γH2AX signaling pathway (Geng et al., 2019).
Dasatinib, a multi-target kinase inhibitor that targets BCR-ABL,
SRC family kinases, and various cancer kinases, has been identified
as an efficient inhibitor of GC proliferation (Montenegro et al.,
2020). Additionally, Dasatinib synergizes with platinum-based
drugs to combat GC (Wang et al., 2022). JQ1, a BRD4 inhibitor,
potently inhibited of the cell growth and malignant progression of
GC by downregulating chromatin accessibility and inactivating the
RUNX2/NID1 signaling pathway (Zhou et al., 2020). Moreover, the
application of BRD4 inhibitors can enhance the anti-tumor effects of
Dasatinib in GC (Shen et al., 2022). Although the results indicate
that GC patients with a high PCDI may benefit less from
immunotherapy, the aforementioned targeted therapies could
achieve promising therapeutic effects.

In this study, we developed a predictive model based on PCD-
related genes to offer insights into the prognostic potential of PCD in
GC. However, there are several limitations. Firstly, the model was
developed using retrospective data, which may have introduced
biases affecting the generalizability of our findings. Future
prospective studies and validations in independent cohorts are
essential to confirm the clinical utility of the PCDI. Secondly, the
functional roles of specific model genes in the context of GCmay not
have been explored. Although our analysis identified certain genes as
potential biomarkers, further investigation is required to understand
the molecular mechanisms by which these genes affect GC
progression and patient outcomes. Expression should be
confirmed not only at the RNA level, but also at the protein level
and in terms of functional activity. Thirdly, the decision-making
utility of our predictive model has not yet been tested in clinical
trials. Its effectiveness in guiding treatment decisions, particularly
for targeted therapy in GC patients with a high PCDI, requires
validation through adequately powered, multicenter, phase
3 randomized controlled trials. Further studies are needed to
elucidate the role of these genes in GC and confirm the
predictive accuracy of this model in clinical applications.

5 Conclusion

In conclusion, we identified 12 PCD-related genes that were
strongly associated with GC prognosis. Additionally, we proposed a

novel signature, the PCDI, which demonstrated robust performance
for predicting the survival and therapeutic response, and showed
potential utility in assisting clinicians in providing more efficient
and personalized treatments for patients with GC.
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