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Adverse drug reactions (ADRs) pose substantial public health issues, necessitating
population-specific characterization due to variations in pharmacogenes. This
study delineates the pharmacogenomic (PGx) landscape of the South Korean
(SKR) population, focusing on 21 core pharmacogenes. Whole genome
sequencing (WGS) was conducted on 396 individuals, including 99 healthy
volunteers, 95 patients with chronic diseases, 81 with colon cancer, 81 with
breast cancer, and 40 with gastric cancer, to identify genotype-specific drug
dosing recommendations. Our detailed analysis, utilizing high-throughput
genotyping (HTG) of CYP2D6 and comparative data from the 1,000 Genomes
Project (1 KG) and the US National Marrow Donor Program (NMDP), revealed
significant pharmacogenetic diversity in core pharmacogenes such as CYP2B6,
CYP2C19, CYP4F2, NUDT15, and CYP2D6. Notably, intermediate metabolizer
frequencies for CYP2B6 in SKR (3.28%) were comparable to Europeans (5.77%)
and East Asians (5.36%) but significantly differed from other global populations
(p < 0.01). For CYP2C19, 48.74% of SKR individuals were classified as intermediate
metabolizers, with the *35 allele (2.02%) being unique to SKR, the allele not
observed in other East Asian populations. Additionally, the high-risk *3 allele in
CYP4F2 was significantly more frequent in SKR (34.72%) than in other East Asian
populations (p < 0.01). NUDT15 poor metabolizers were found in 0.76% of SKR,
aligning closely with other East Asians (1.59%), while TPMT poor metabolizers
were predominantly observed in Europeans and Africans, with one case in SKR.
We identified significant allele frequency differences in CYP2D6 variants
rs1065852 and rs1135840. Among the 72 drugs analyzed, 93.43% (n = 370) of
patients required dosage adjustments for at least one drug, with an average of
4.5 drugs per patient. Moreover, 31.31% (n = 124) required adjustments for more
than five drugs. These findings reveal the substantial pharmacogenetic diversity of
the SKR population within the global population, emphasizing the urgency of
integrating population-specific PGx data into clinical practice to ensure safe and
effective drug therapies. This comprehensive PGx profiling in SKR not only
advances personalized medicine but also holds the potential to significantly
improve healthcare outcomes on a broader scale.
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1 Introduction

Therapeutic failure and adverse drug reactions (ADRs)
constitute significant public health challenges (Coleman and
Pontefract, 2016; Schork, 2015). ADRs not only contribute
substantially to the burden and costs associated with
pharmacological treatments (Budnitz et al., 2007; Budnitz et al.,
2011) but the absence of therapeutic efficacy further escalates
healthcare expenditures and resource utilization. This issue
pervades various disease states and drug classes (Zhdanava et al.,
2020; Pilon et al., 2019a; Amos et al., 2018; Olfson et al., 2018; Pilon
et al., 2019b; Pilon et al., 2020; Pan et al., 2018; Rush et al., 2006).
Pharmacogenomics (PGx) emerges as a promising discipline aimed
at optimizing drug selection and dosing to mitigate ADRs and
enhance drug efficacy (Weinshilboum and Wang, 2017; Cecchin
and Stocco, 2020). Studies have consistently shown that genetic
variations affecting drug absorption, distribution, metabolism,
excretion, and toxicity can substantially influence
pharmacological outcomes. The variability in the frequency of
PGx variants across different populations represents a primary
obstacle to the widespread clinical integration of PGx (Al-
Mahayri et al., 2020), highlighting the critical need for
population-specific PGx profiling (Bachtiar and Lee, 2013;
Bonifaz-Peña et al., 2014; Jittikoon et al., 2016; Wilson et al., 2001).

Advancements in next-generation sequencing (NGS)
technologies have introduced various approaches for PGx
profiling. Many studies have adopted whole exome sequencing
(WES) or targeted NGS panels for large-scale PGx assessments
(Al-Mahayri et al., 2020; Gordon et al., 2016), though these strategies
are constrained by their inability to analyze non-coding regions
(Londin et al., 2014). Whole Genome Sequencing (WGS) offers the
most comprehensive approach for PGx profiling, overcoming these
limitations (Londin et al., 2014).

The US Food and Drug Administration (FDA) has recognized
PGx markers on over 500 medications (Center for Drug Evaluation
and Research, 2023). Instruments such as the Pharmacogenomics
KnowledgeBase (PharmGKB) (Whirl-Carrillo et al., 2012) and
guidelines from the Clinical Pharmacogenetics Implementation
Consortium (CPIC) (Caudle et al., 2014; Caudle et al., 2014) play
a pivotal role in facilitating the clinical application of PGx tests for
distinct drug-gene interactions, backed by solid evidence.
PharmGKB and CPIC employ star-allele nomenclature system
(Robarge et al., 2007). However, Prioritization in the clinical
implementation of the drug-gene pair differs depending on
populations (Mette et al., 2012; Yasuda et al., 2008; Sirugo et al.,
2019). For example, CPIC suggests employing population-specific
dosing guidelines based on star-alleles for drugs such as warfarin
(Johnson et al., 2017). While there are similarities in physical
features, culture, and lifestyles among East Asians including Han
Chinese and Japanese, genomic differences indicate that South
Koreans should be considered as an independent population
(Wang et al., 2018).

The Korean Variant Archive 2 (KOVA2) comprises a vast
genome repository of the Korean population, encompassing
1896 WGS and 3409 WES datasets, totaling 5,305 individuals
(Lee J. et al., 2022). However, there is currently a shortage of
PGx insights derived from this archive. For instance, genotyping
highly polymorphic pharmacogenes like CYP2D6 is challenging due

to the limitations of WGS. In contrast, our study provides a detailed
PGx analysis of the South Korean (SKR) population using the HTG
method for CYP2D6, offering an additional method compared to
previous studies.

This study aims to enhance therapeutic outcomes by providing
clinicians with novel insights into the PGx diversity of the SKR
population, emphasizing the importance of integrating population-
specific PGx markers into clinical practices for more personalized
and effective healthcare.

2 Materials and methods

2.1 Study cohort

In this study, conducted between 2019 and 2021, we
systematically recruited each of the five participant groups,
comprising both healthy individuals and four distinct disease
groups (chronic diseases, colon cancer, breast cancer, gastric
cancer), from five separate medical institutions. Ethical approval
for this study was granted by the Institutional Review Board of each
group with all donors provided written informed consent if available
(SKKU 2020-03-019-001, 2019-0909-011, 2003-119-1110, 3-2020-
0257, B-2006-621-303). From these participants, we collected blood
samples for the production of genomic data. We prospectively
collected blood samples from a cohort of 356 unrelated SKR
individuals, including healthy individuals, chronic disease
patients, and colon and breast cancer patients, and
retrospectively collected samples from 40 unrelated SKR
individuals (Figure 1). The SKR cohort was collected as part of
“The Korean Healthcare Bigdata showcase Project” through the
Korea Health Industry Development Institute (KHIDI). In
assembling the cohort, our primary objective was to collect a
diverse sample for future studies, including healthy individuals,
patients with various chronic diseases, and those with three
different types of cancer.

2.2 Whole genome sequencing (WGS) and
quality control and variant calling

DNA was extracted from Whole Blood sample using Exgene
blood SV mini kit (GeneAll) according to the manufacturer’s
protocol. Briefly, 200 µL Blood Sample add 20 µL proteinase K,
200 µL. (Optional: add 20 µL of RNase solution (20 mg/mL) to the
sample, pipet 2~3 times to mix and incubate for 2 min at room
temperature.) Add buffer BL in a 1.5 mL microcentrifuge tube and
incubate at 56°C for 10 min. The lysate was 200 µL ethanol (96%–
100%) with vortexing. For the binding of DNA to the spin column,
sample was transferred with 700 µL. Then according to standard
operating procedures, after the binding of DNA to the spin column,
residual contaminants were washed away by buffers BW, TW.
Finally, DNA was eluted in 50 ~ 100 µL buffer AE.

The quality and quantity of purified DNA were assessed by
fluorometry (Qubit, Invitrogen) and gel electrophoresis. Briefly,
100 ng of genomic DNA from each sample were fragmented by
acoustic shearing on a Qsonica 800 R2 instrument. Fragments of
350 bp were ligated to Illumina’s adapters and PCR-amplified.
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500–600 bp is appropriate size for final library. Libraries were
quantified using the TapeStation 4,200 instrument (Agilent
Technologies) and KAPA Library Quantification Kit (KK4824,
Kapa Biosystems).

The resulting purified libraries were applied to an Illumina flow
cell for cluster generation and sequenced using 150 bp paired-end

reads on an Illumina NovaSeq 6,000 (Illumina) sequencer by
following the manufacturer’s protocols.

The genomic analysis method proceeded as follows: Initially, the
Trimmomatic (v.0.36) (Bolger et al., 2014) was utilized to eliminate
adapter sequences and filter out low-quality reads, where reads with
over 10% N bases or less than Q20 base quality score in more than

FIGURE 1
A workflow of the selection process for core pharmacogenes and the subsequent analysis to determine pharmacogenomic (PGx) characteristics in
the study population. The analysis encompassed whole genome sequencing (WGS) for 396 individuals, complemented by CYP2D6 high-throughput
genotyping (HTG) performed on a subset of 135 individuals from this group. Additionally, the diagram indicates the practicality of utilizing PGx data to
generate personalized medication recommendation reports for this population.
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40% of the read were discarded. Subsequently, the filtered sequences
were aligned to the reference genome (hg19) using the BWA
(v.0.7.17) (Li and Durbin, 2010) with a minimum seed length of
45. Duplication reads resulting from PCR were then eliminated
using the GATK (Depristo et al., 2011) MarkDuplicates (v.4.0.11.0).
Following this, the GATK (Depristo et al., 2011) Base Recalibrator
(v.4.0.11.0) corrected misaligned base quality scores for sequences
with removed duplication reads, and the GATK (Depristo et al.,
2011) Haplotype Caller (v.4.0.11.0) was employed for variant calling.
Annotations for identified variants were subsequently added using
the SnpEff (v.4.3t) (Cingolani et al., 2012).

2.3 High-throughput genotyping (HTG) for
CYP2D6 gene

For genotyping, DNA concentration was normalized to 50 ng/
μL, with A260/280 and A260/230 ratios between 1.5 and 2, verified
by the QuantiFluor® dsDNA system (Promega) and NanoDrop ND-
2000 Spectrophotometer (Biotek). We employed plates with
48 subarrays, each featuring 64 through-holes, for 192 SNVs
across 16 samples, using VIC® and FAM® fluorophore-labeled
probes. Each DNA sample, 2.5 µL, was mixed with an equal
volume of TaqMan® OpenArray™ Master Mix in a 384-well
plate, and loaded using the OpenArray™ AccuFill® system
(Applied Biosystems). Sealed in glass boxes from the
OpenArray™ kits, the plates underwent a 4-h amplification in
the QuantStudio 12K Flex Real-time PCR System (Applied
Biosystems), with analysis conducted using TaqMan® Genotyper
software (Life Technologies).

2.4 Selection of core pharmacogenes

From 25 initial candidates, we identified 21 core pharmacogenes
following CPIC Level A and A/B guidelines. Both GBA and POLG
genes were excluded due to missing allele definition tables of CPIC
guidelines, and IFNL4 was omitted as a polymorphic pseudogene.
MT-RNR were also excluded, the former being a mitochondrial
gene. The finalized list comprises ABCG2, CYP2B6, CACNA1S,
CFTR, CYP2C19, CYP2C9, CYP2D6, CYP3A5, CYP4F2, DPYD,
G6PD, IFNL3, NAT2, NUDT15, RYR1, SLCO1B1, TPMT,
UGT1A1, VKORC1, HLA-A, and HLA-B.

2.5 Allele assignment and phenotype
prediction

To compile a comprehensive PGx haplotyping compendium, we
employed two tools for variant calling in core pharmacogenes.
Stargazer (version 1.0.8) (Lee et al., 2019) was utilized to assign
star-alleles and predict molecular phenotypes in 18 core
pharmacogenes, excluding CYP2D6 and HLA genes. For the high
polymorphism in HLA genes, HLA-A and HLA-B genotyping in
395 WGS datasets was performed using HISAT-genotypes (version
1.3.2) (Kim et al., 2019), excluding one sample due to inadequate
data depth in the HLA region. HISAT-genotype algorithm facilitates
HLA typing and DNA fingerprinting from standard WGS data.

2.6 Comparison of SKR cohort with global
populations

We compared allele and phenotype frequencies of 19 core
pharmacogenes, excluding HLA genes, across various populations
using data from the 1,000 Genomes Project (1 KG) (Auton et al.,
2015). To account for the significant polymorphism among populations,
we subdivided groups that were genetically and geographically similar to
our SKR population. Specifically, the East Asian (EAS) Ancestry group
was segmented into Southern Han Chinese (CHS), Japanese (JPT), Han
Chinese (CHB), Kinh Vietnamese (KHV), and Dai Chinese (CDX) for
more precise comparisons. Our analysis involved using a Fisher-exact
test to compare star-allele and phenotype frequencies in our cohort of
396 SKR individuals with the global data from the 1 KG. Additionally,
allele frequencies of HLA-A and HLA-B loci in SKR population were
compared with those from eight other populations, using data from the
US National Marrow Donor Program (NMDP) (Gragert et al., 2013).
To represent our study population and facilitate these comparisons, we
conducted a principal component analysis (PCA) of HLA gene allele
frequencies, using MATLAB version 19b for all analyses.

2.7 Analysis of the distribution of drugs
associated with pharmacogenes

We analyzed prescription recommendations as per CPIC
guidelines for medications requiring dose adjustment or
discontinuation. We defined the drug categories based on required
recommendations: “Standard” (no change), “Up” (increased dose),
“Down” (decreased dose), “Alternative” (recommend against use, with
alternative suggestions), and “Consider implications” (requires further
consideration) (Supplementary Table S4). Volatile anesthetic agents,
including desflurane and sevoflurane; proton pump inhibitors (PPIs),
such as omeprazole and pantoprazole; and non-steroidal anti-
inflammatory drugs (NSAIDs), like celecoxib and ibuprofen, were
systematically grouped. Special categorizations were applied to drugs
necessitating dosage modifications for pediatric patients. For drug
phenotypes labeled as “Indeterminate”, which signify ambiguous drug
recommendations, a conventional approach was adopted, with
outcomes detailed accordingly. Notably, G6PD was associated with
35 drugs requiring prescription adjustments according to the
2022 CPIC guidelines (Gammal et al., 2023). Warfarin,
necessitating a dose control algorithm (Johnson et al., 2017), was
omitted. Thiopurine medications—mercaptopurine, azathioprine, and
thioguanine—require gene-specific dosage adjustments (Relling et al.,
2019). Phenytoin dosing was evaluated based on CYP2C9 alleles, using
the CPIC diplotype-phenotype table (Karnes et al., 2021), with a focus
on loading doses. For voriconazole and clopidogrel, adult-specific
guidelines were applied (Lee C. R. et al., 2022; Moriyama et al., 2017).

3 Results

3.1 Star-allele distributions by populations

The overall workflow of this study includes the selection of core
pharmacogenes and pharmacogenetic analyses such as genotyping
and phenotyping (Figure 1). We conducted an analysis of star-allele
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distributions among core pharmacogenes, excluding CYP2D6 and
HLA genes, within a cohort of 396 SKR individuals. Figure 2A
illustrates the frequencies of distinct star-alleles across these core
pharmacogenes. Notably, genes such as CACNA1S, CFTR, G6PD,
IFNL3, RYR1, and VKORC1 exhibited a dominant star-allele
frequency of 100% as reference star-alleles, indicating a high level of
genetic uniformity within the SKR population for these specific genes.
In contrast, genes like CYP2B6, CYP2C9, and NUDT15 displayed a
broader spectrum of star-alleles with substantially lower frequencies,
suggesting the presence of genetic diversity within the population.
DPYD, NAT2, and SLCO1B1, in particular, demonstrated diverse star-
allele distributions; DPYD featured six alleles, and SLCO1B1 had eight,
highlighting a wide range of PGx variability.

HTG via the OpenArray platform was performed on
135 participants, targeting 15 CYP2D6 variants, including frame
shift deletion, intron, and missense mutation types. The genotyping
data exhibited an average call rate of 93.00%, with the highest call rate
at 97.79% and the lowest at 83.09%. Analysis revealed that, with the
exception of three out of the 15 variants, all participants displayed the
wild type genotype for the remaining variants (Figure 2B).

We conducted a comparative analysis of star-allele frequencies
between the SKR population and global populations from the 1 KG,
highlighting the distinct genetic landscapes across core
pharmacogenes, excluding CYP2D6 and HLA genes (Supplementary
Figure S1; Supplementary Table S5).

Phenotypes derived from these star-alleles reveal substantial
frequency variances between the SKR and 1 KG populations,
including EAS subgroups (Figure 3). SKR exhibited the closest
distribution to the EAS among major populations. However,
significant PGx differences exist among EAS, notably in CYP2B6,
CYP2C19, CYP4F2, NUDT15, and TPMT where SKR displayed
distinct distribution patterns compared to other populations (see
Supplementary Tables S6–S8).

The frequency of intermediate metabolizers of the CYP2B6 gene
in SKR (3.28%) was similar to that of Europeans (EUR) (5.77%)
compared to EAS (5.36%), but significantly different from other
major populations such as Admixed Americans (AMR) (17.86%),
South Asians (SAS) (15.13%), and Africans (AFR) (27.84%) (p <
0.01) (Supplementary Table S8). According to the phenotype
definitions provided by stargazer (Sahana et al., 2022), the *9/
*9 genotype was classified as an intermediate metabolizer (3.28%
in SKR), aligning closely with EAS frequencies (5.36%), but with
notable difference observed among subpopulation within EAS.
Although there was a slight variance in frequency compared to
geographically proximate populations like the CHB (2.91%) and JPT
(7.69%), SKR exhibited considerably lower frequencies than CDX
(13.98%) despite belonging to the same EAS (p < 0.01)
(Supplementary Table S7). Additionally, ultrarapid metabolizers
were observed in all major populations except for SKR.

In the analysis of CYP2C19 gene, 48.74% of SKR population
were identified as intermediate metabolizers, a proportion similar to
EAS (48.81%) but significantly higher than AMR (16.43%). For the
poor metabolizer phenotype, the frequency in SKR (13.64%) is
slightly higher than in EAS (11.71%) and CHB (10.68%), but
lower than in JPT (16.35%). Notably, the *2 allele of
CYP2C19 shows a lower frequency in SKR (26.39%) compared to
other EAS populations (31.25%), indicating substantial inter-
population genetic diversity. Moreover, the *35 allele, not
observed in other EAS groups, is present in the SKR population
at a frequency of 2.02%, emphasizing unique genetic traits within the
SKR cohort. Certain drugs should be avoided by
CYP2C19 phenotypes, including intermediate metabolizers, likely
poor metabolizers, and poor metabolizers (Lee C. R. et al., 2022;
Moriyama et al., 2017; Bousman et al., 2023; Hicks et al., 2017; Lima
et al., 2021). The analysis of diplotypes among intermediate and
poor metabolizers, including specific percentages, highlights the

FIGURE 2
Distribution of star-alleles and variants in core pharmacogenes, excluding HLA genes, from a total of 21. (A) Star-allele frequencies within core
pharmacogenes, excluding CYP2D6 and HLA genes, in a cohort of 396 South Korean (SKR) individuals, presented as percentages. The x-axis categorizes
the identified star-alleles for each gene, whereas the y-axis quantifies their respective frequencies as percentages within the SKR group (n = 396). (B)
Frequencies of variants for CYP2D6 gene were determined in a population of 135 individuals from South Korea, and the results were expressed as
percentages. The x-axis represents the observed types of variants for the CYP2D6 gene, while the y-axis represents the corresponding percentages in
SKR population (n = 135). Dot colors represent variant call rates, ranging from black (0.83) to red (0.98).
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complex genetic variations influencing drug metabolism and
reinforces the need for personalized pharmacogenetic approaches
in clinical settings.

The prevalence of the high-risk *3 allele in the CYP4F2 gene,
associated with decreased function (Johnson et al., 2017), varies
significantly across EAS populations. Specifically, the prevalence
in SKR (34.72%) is significantly higher than in JPT (23.08%),
CHB (21.84%), and EAS which is 21.43% (p < 0.01)
(Supplementary Table S6).

NUDT15 poor metabolizer phenotype is most prevalent among
EAS (Moriyama et al., 2016). Our study found that more than 92%
of individuals from populations other than EAS and SKR carried the
wild-type allele of NUDT15 gene. The poor metabolizer phenotype
was identified only in EAS (1.59%), AMR (0.58%), and SKR (0.76%).
As previously noted, NUDT15 poor metabolizers are predominantly
found in EAS, including SKR. Furthermore, TPMT poor
metabolizer phenotype is frequently identified among EUR and
AFR (Relling et al., 2019). In our research, most individuals with

intermediate and poor metabolizer phenotypes were from the AFR
population. Additionally, we detected a case of the poor metabolizer
phenotype in one sample, which is SKR. This highlights the unique
genetic profile of the SKR, emphasizing the importance of
population-specific PGx analysis.

The genotyping of 15 variants within the CYP2D6 gene through
HTG limited the scope of phenotypic interpretation due to the
restricted variant selection. This HTG data underscored significant
inter-population variations in the allele frequencies of CYP2D6 gene
variants, thereby highlighting the importance of population-specific
pharmacogenetic diversity (Supplementary Figure S2;
Supplementary Table S1). Notably, the intron variant
g.42523805C>T (rs28371725) showed genetic diversity across
regions in EAS (3.77%), contrasting with its prevalence in SKR
(1.68%). In CHB (3.40%), the variant frequency was higher than in
SKR, but is was significantly lower in JPT (0.48%), highlighting the
genetic heterogeneity among regional cohorts. Moreover, the
missense mutation variants g.42526694G>A (rs1065852) and

FIGURE 3
Comparison of phenotype frequencies between SKR population and 1,000 Genomes Project (1 KG) populations. Distribution of predicted
phenotypes for core pharmacogenes, excluding CYP2D6 and HLA genes. The x-axis represents individual populations, while the y-axis shows the
proportion of predicted phenotypes for each gene. Unique colors correspond to each distinct predicted phenotype in these graphs. SKR, South Korean
(our study cohort); AFR, Africans; AMR, Admixed Americans; SAS, South Asians; EUR, Europeans; EAS, East Asians; CHS, Southern Han Chinese; JPT,
Japanese; CHB, Han Chinese; KHV, Kinh Vietnamese; CDX, Dai Chinese.
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g.42522613G>C (rs1135840) exhibited higher allele frequencies
within SKR. The rs1065852 variant had the highest frequency in
EAS (57.14%) among global populations. Within EAS
subpopulations geographically close to SKR, the highest
frequencies were observed in CHB (60.19%), followed by SKR
(44.64%) and JPT (36.06%). Similarly, the rs1135840 variant was
most prevalent in EAS (64.01%), with the highest frequencies in
CHB (71.26%), SKR (35.42%), and JPT (34.18%). Particularly, the
CYP2D6 enzyme is pivotal in the hydroxylation and demethylation
processes of drugs with clinical importance (Gardiner and Begg,
2006). In SKR population, the CYP2D6 gene variant rs1065852 was
identified as the predominant allele, as illustrated in Figure 2B.

3.2 HLA allele frequencies: comparative
study between SKR and others using the
NMDP database

Due to the high polymorphism in HLA genes, we applied HISAT-
genotypes (Kim et al., 2019) for HLA-A and HLA-B genotyping
across 395 SKR WGS datasets, excluding one sample for inadequate
HLA region coverage. In our analysis of 395 SKR individuals, we
assessed the frequencies of HLA-A and HLA-B star-alleles (Figure 4;
Supplementary Tables S2, S9). Among these, six HLA-A and five
HLA-B star-alleles showed frequencies above 5%, with four HLA-A
alleles surpassing the 10% mark. Our study also identified 42 HLA-A

and 44 HLA-B star-alleles with frequencies below 1%. The most
frequent diplotypes were A*31:01:A*33:03 (7.59%) for HLA-A and
B35:01:B35:01 (4.56%) for HLA-B (Supplementary Table S10).

HLA-A*02:01 was notably prevalent in SKR (15.32%). Its
frequency was comparable in Korean (KORI) (18.57%) and Japanese
(JAPI) (14.80%) populations (Gragert et al., 2013). However, it was less
frequent in Chinese (NCHI) (9.46%), despite all being EAS.
Contrastingly, this allele appeared at much lower frequencies in other
Asian groups, South Asian (AINDI) (4.92%) and Other Southeast Asian
(SCSEAI) (5.78%). Additionally, A*24:02 (15.19%), A*33:03 (12.79%),
and A*11:01 (10.38%) each exhibited frequencies exceeding 10% in the
SKR. A*24:02 in JAPI (35.30%) and A*11:01 in NCHI (27.51) both
exhibited notably higher frequencies compared to SKR. In the HLA-B
locus, B*44:03 was the most prevalent in SKR (9.24%), with KORI
showing a similar frequency (8.50%). The allele frequency in JAPI was
slightly lower (6.05%), and lower in NCHI (1.41%).

PCA was utilized to explore star-allele frequency variation across
nine populations, including our study cohort (Figure 5). The analysis
revealed that the first three principal components accounted for 45.03%,
21.72%, and 16.10% of the total frequency variation, respectively. The
first principal component significantly differentiated populations by
continent, whereas the second principal component distinctly separated
EAS populations. Importantly, the first and second principal
components showed a close genetic affinity between SKR and the
NMDP SCSEAI and JAPI populations. Our findings demonstrate a
notable concordance with the KORI, reinforcing the alignment of our

FIGURE 4
Frequency distribution of HLA-A and HLA-B in the SKR population. The genotypes are sorted in descending order based on their frequencies, with
the highest frequency genotypes positioned on the left side of the graph for (A) the HLA-A gene and (B) the HLA-B gene.
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study outcomes with existing benchmarks. Although classified under
the EAS, our comparative analysis revealed differences with the JAPI
and NCHI populations, highlighting the necessity for population-
specific PGx profiling.

3.3 Analysis of the distribution of phenotypes
and drugs associated with pharmacogenes

In this study, prescription recommendations for drugs linked to
21 core pharmacogenes were evaluated, adhering to Level A and A/B
guidelines and focusing on phenotype-based directives. Figure 6A
displays a comprehensive comparison of all relevant drug-gene
pairs, excluding the CYP2D6 gene, with categorization based on
drug actions and corresponding guidelines.

Clopidogrel, an antiplatelet medication critical for managing
heart disease risk, necessitated significant prescription adjustments.
A notable 62.4% (n = 247) of the SKR population exhibited a
CYP2C19 molecular phenotype contraindicating its use in both
cardiovascular and neurovascular contexts (Coukell and Markham,
1997). Enfuvirtide, utilized in AIDS treatment, required dosage
modifications in 34.8% (n = 138) of individuals, deviating from
standard guidelines, with 3.2% (n = 13) needing a reduced dose of
200 mg/day (Chen et al., 2002). Tacrolimus, essential for preventing
post-transplant immune rejection, demanded increased doses
beyond the standard regimen for 42.4% (n = 168) of participants
(Hooks, 1994). Within the statin category, aimed at lowering LDL
cholesterol to manage hyperlipidemia, lovastatin and simvastatin
were deemed unsuitable for 22.5% (n = 90) of the study population,
indicating a need for alternative lipid-lowering strategies (Nissen

et al., 2005). HLA-B specific drugs such as abacavir and allopurinol
(Martin et al., 2012; Hershfield et al., 2013) showed that 10.9% (n =
43) of carriers of HLA-B*58:01 should avoid allopurinol, while one
individual (0.3%) was recommended to discontinue abacavir due to
HLA-B*57:01 carriage.

Our analysis included drugs influenced by multiple genes
(Figure 6A; Supplementary Table S3). A total of 72 drugs were
analyzed, revealing that 93.43% (n = 370) of patients required
adjustment for at least one drug, averaging 4.5 drugs per patient
(Figure 6B). Notably, 31.31% (n = 124) of patients needed
adjustments for more than five drugs, up to a maximum of 15 drugs.

4 Discussion

The evolution of personalized medicine significantly alters the
paradigm of drug prescription and administration, highlighting the
essential role of genetic testing in pinpointing individual metabolic
variations for medications (Franceschini et al., 2018). Our research
employs WGS and HTG techniques to map the PGx landscape of
20 critical pharmacogenes, including HLA genes and CYP2D6 gene, in
SKR population (Jia and Zhao, 2014). The focus on CYP2D6 gene,
known for its high polymorphism, necessitated this specific HTG
approach, as WGS alone was insufficient for accurate genotyping of
highly polymorphic genes. To address this issue, we employed targeted
HTG for 15 specific variants within CYP2D6, thereby ensuring more
precise genotyping for genes with high polymorphism. Some
limitations of WGS, for example, repetitive regions where WGS will
not map uniquely, accessing to high GC content regions, resolution of
complex regions of the genome (e.g., HLA), and detecting structural

FIGURE 5
PCA Plot of HLA-A and HLA-B Star-Alleles Between SKR and NMDP Populations. This plot displays the first and second principal components
comparing our study population (SKR, South Koreans living in South Korea) with clusters from the National Marrow Donor Program (NMDP) populations.
SKR, South Korean (our study population); KORI, Korean Reference; JAPI, Japanese; NCHI, Chinese; AAFA, African American; AFB, African; AINDI, South
Asian Indian; EURCAU, European Caucasian; SCSEAI, Other Southeast Asian; MSWHIS, Mexican or Chicano.
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FIGURE 6
Analysis of Personalized Medication Dosing Recommendations in the SKR Population. (A)Within a SKR cohort of 396 individuals, the distribution of
drug dosing recommendations is categorized as “Standard” (standard dose), “Down” (reduced dose), “Alternative” (advising against use, with alternative
options provided), “Up” (increased dose), and “Unknown” (indeterminate dosing for certain phenotypes). (B) Distribution of recommended dosing
modifications for each individual following CPIC guidelines. The x-axis represents the count of medications necessitating dosing modifications for
each individual, while the y-axis denotes the frequency corresponding to each quantity of medications with recommended adjustments, presented as a
percentage.
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variation and large segmental duplications, can be solved by utilizing
long-read sequencing (Pollard et al., 2018).

We emphasize the importance of genetic testing for precise drug
dosage adjustments to mitigate elevated adverse effect risks.
Although our findings provide a summarized assessment of these
risks, it is crucial to independently evaluate drug efficacy and adverse
effect risks, highlighting the necessity for further studies to explore
the exact impact of these genetic variants on drug responses.
Moreover, our analysis reveals distinct PGx traits within SKR
compared to other EAS groups, such as CHB and JPT (Figure 3).
Notable findings include the unique prevalence of certain star-alleles
like CYP2C19*3 and CYP2C19*35, which are associated with
particular metabolizer phenotypes, suggesting specific drug
dosages should be carefully considered to avoid adverse
outcomes. The comparative rarity of the CYP2B6*9 within SKR
implies that most SKR might tolerate standard doses of Efavirenz
(Desta et al., 2019), a critical consideration for HIV treatment
protocols. Our comparative analysis of star-allele frequencies
among EAS and other populations, supported by the HLA PCA
plot (Figure 5), confirms the accuracy of our PGx profiling as
validated by the KORI. This underscores the importance of
conducting population-specific PGx research to accurately adjust
drug therapies to the unique genetic makeup of the SKR.

The comprehensive analysis not only offers groundbreaking
insights into the PGx distinctions of the SKR but also sets a new
precedent for future research aimed at enhancing personalized
medicine strategies. Through the examination of genotype
distributions and phenotype-related drug recommendations, we
discovered that a substantial segment of SKR requires adjusted
drug prescriptions aligned with their distinct genetic profiles.
Specifically, among the 396 participants in our study,
370 individuals (93.43%) were identified as needing one or more
drug modifications (Figure 6B). This research represents a notable
advancement in personalized healthcare, emphasizing the need for
further investigation into the specific PGx profiles of SKR and their
implications for personalized medicine. We can leverage the
population-specific PGx information of the SKR population to
make personalized PGx reports. In our study, most individuals
were recommended adjusted prescriptions, which can aid medical
personnel or patients in decision-making. Consequentially, we
anticipate that this approach will streamline the treatment process
and enhance cost-effectiveness. Looking forward, future research
could benefit from advancements in sequencing technologies,
including the long-read sequencing and cost-effective strategies.
These advancements hold potential for enhancing genotyping
accuracy in high-polymorphic pharmacogenes such as CYP2D6,
thus facilitating deeper exploration and comprehension of PGx.

This study has several limitations. First, we secured WGS data
from a total of 396 South Korean individuals, despite challenges
related to privacy protection regulations, difficulties in obtaining
consent, and the high cost of data production. To more accurately
represent the South Korean population, a larger database is needed,
which remains a priority for future research. Second, we did not
integrate other pharmacogenomics (PGx) databases such as
PharmGKB and Dutch Pharmacogenetics Working Group
(DPWG). These databases differ from CPIC in how they define
phenotypes based on genotypes, making data integration
challenging. However, the genes classified as CPIC Level A and

A/B are supported by high or moderately high levels of evidence in
PharmGKB and DPWG (Alshabeeb et al., 2022). In future studies,
we plan to incorporate data from PharmGKB, CPIC, and DPWG for
more comprehensive analyses. The lack of integration in this study is
a limitation we aim to address in future work. Third, while rare
variants are currently recognized for explaining the missing
heritability in drug response phenotypes, we considered this a
complex topic that requires a separate research design. As a
result, incorporating rare variant analysis into this study was
challenging. Given the scope of this study, rare variant analysis
requires a more comprehensive approach, which we believe is an
important direction for future research (Kozyra et al., 2017;
Ingelman-Sundberg et al., 2018; Lauschke and Ingelman-
Sundberg, 2016; Silgado-Guzmán et al., 2022).

In conclusion, our study represents a pioneering effort in PGx
profiling within the SKR population using WGS, demonstrating
accurate genotyping in highly polymorphic genes like
CYP2D6 using HTG method. Moreover, our comparison analysis
with global populations and within EAS subgroups highlighted
significant differences, emphasizing the importance of
comprehensive population-specific analyses in PGx research.
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