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Background:Human cancers, including head and neck squamous cell carcinoma
(HNSCC), are complex and heterogeneous diseases driven by uncontrolled cell
growth and proliferation. Post-translational modifications (PTMs) of proteins play
a crucial role in cancer progression, making them a promising target for
pharmacological intervention. This study aims to identify key exercise-related
genes with prognostic value in HNSCC through comprehensive bioinformatics
analysis, with a particular focus on the therapeutic potential of placental growth
factor (PIGF).

Methods: Transcriptome data for HNSCC were obtained from The Cancer
Genome Atlas (TCGA) database. Differently expressed genes (DEGs) were
identified and analyzed for their prognostic significance. Exercise-related gene
sets were retrieved from the Gene Set Enrichment Analysis (GSEA) database.
Functional enrichment analyses, including Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), and GSEA, were conducted.
The biological functions and clinical implications of key genes were further
explored through single-gene expression analysis, immune infiltration analysis,
and in vitro cellular experiments.

Results: The study identified exercise-related genes associated with survival
prognosis in HNSCC. GO and KEGG pathway analyses highlighted the
biological functions of these genes, and Kaplan-Meier survival curves
confirmed their prognostic value. PIGF expression analysis using TCGA data
showed its diagnostic potential, with higher expression linked to advanced
tumor stages. Single-cell sequencing revealed PIGF’s role in the tumor
microenvironment. In vitro experiments demonstrated that PIGF plays a
pivotal role in enhancing cell proliferation and colony formation in HNSCC,
with PIGF knockdown significantly impairing these functions, highlighting its
importance in tumor growth regulation. Additionally, PIGF’s predictive
performance in drug sensitivity across cancer datasets suggests its potential as
a pharmacological target, offering opportunities to modulate the immune
microenvironment and improve therapeutic outcomes in cancer treatment.

Conclusion: This study provides new insights into the molecular mechanisms
underlying HNSCC and identifies exercise-related genes, particularly PIGF, as
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promising biomarkers for clinical treatment and personalized medicine. By
focusing on PTMs and their role in cancer progression, our findings suggest that
targeting PIGF may offer innovative therapeutic strategies.
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head and neck squamous cell carcinoma, exercise-related genes, prognosis,
bioinformatics, immune microenvironment, placental growth factor (PIGF), drug
sensitivity, post-translational modifications (PMTs)

1 Background

Head and neck squamous cell carcinoma (HNSCC)
encompasses malignant tumors in regions such as the oral cavity,
larynx, and nasopharynx (Porcheri and Mitsiadis, 2021; Howard
et al., 2012). According to global cancer statistics, HNSCC has high
incidence and mortality rates worldwide, particularly in certain
regions of Asia where smoking and alcohol consumption are
prevalent (Barsouk et al., 2023; Michmerhuizen et al., 2016).
Early symptoms of HNSCC are often subtle, leading to late-stage
diagnoses in many patients, which not only complicates treatment
but also significantly reduces patients’ quality of life and survival
rates (Johnson et al., 2020). Therefore, investigating the
pathogenesis of HNSCC and identifying effective early diagnostic
markers and therapeutic targets are crucial for improving
patient prognosis.

Currently, HNSCC treatment primarily involves surgery,
radiotherapy, and chemotherapy (Qin et al., 2021; Bozec et al.,
2019). However, due to the heterogeneity of HNSCC, there are
significant differences in disease progression and treatment
responses among patients (Licitra et al., 2016; Alhiyari et al.,
2020). Additionally, advanced HNSCC patients often respond
poorly to conventional treatments, with treatment-related side
effects severely impacting their quality of life. In recent years, a
deeper understanding of the molecular mechanisms underlying
HNSCC has led to the increasing application of novel therapeutic
strategies such as targeted therapy and immunotherapy in
clinical settings, offering new treatment options for HNSCC
patients (Kozakiewicz and Grzybowska-Szatkowska, 2018;
Ghosh et al., 2022). Nevertheless, the efficacy of these novel
therapies is often influenced by individual patient differences,
and some patients may develop resistance (Wallington-Beddoe
et al., 2018). Therefore, formulating personalized treatment plans
based on patients’ molecular characteristics remains a significant
challenge in HNSCC treatment.

Recent studies have highlighted the significant role of
exercise-related genes in cancer biology, revealing their
potential impact on tumor progression and patient prognosis.
Exercise-related genes are known to modulate various
physiological pathways, including metabolism, immune
response, and cellular stress, all of which are critical in cancer
development (Chen et al., 2024a; Zhu et al., 2022; Idorn and Thor
Straten, 2017; Chen et al., 2024b). Understanding the expression
patterns and functions of these genes in HNSCC could provide
valuable insights into novel therapeutic targets and prognostic
markers. In the realm of cancer therapy, protein drugs have
emerged as a promising class of therapeutics due to their high
specificity and ability to target complex molecular interactions
within the tumor microenvironment (Zhang Y. et al., 2023).

Protein drugs, often derived from natural proteins or
engineered for enhanced stability and efficacy, can precisely
modulate key signaling pathways and cellular processes. They
offer unique advantages over small-molecule drugs, including
reduced off-target effects and the capacity to engage with targets
that are traditionally considered “undruggable” by conventional
pharmacological approaches. A pivotal aspect of protein drug
development lies in the understanding of post-translational
modifications (PTMs), which are chemical alterations that
proteins undergo after synthesis. PTMs, such as
phosphorylation, ubiquitination, and glycosylation,
significantly influence protein function, localization, and
stability (Pan and Chen, 2022). In the context of cancer,
PTMs play a crucial role in regulating oncogenes and tumor
suppressors, thereby affecting tumor progression and response to
therapy (Shu et al., 2023). Pharmacological interventions
targeting PTMs hold great promise in cancer treatment, as
they can disrupt aberrant signaling pathways and restore
normal cellular functions.

Bioinformatics is an interdisciplinary field that integrates
biology, computer science, and information technology to analyze
and interpret biomedical data (Chen B. et al., 2022; Huang J. et al.,
2022; Lin et al., 2022). Its application in HNSCC research is
becoming increasingly widespread. Through the analysis of large-
scale genomics, transcriptomic, and proteomic data, researchers can
identify molecular markers related to the occurrence, development,
and prognosis of HNSCC, unveiling the molecular mechanisms of
the disease. For instance, gene expression profiling can reveal
specific gene expression patterns in HNSCC patients, providing a
basis for molecular classification and prognosis assessment (Lee
et al., 2018). Protein-protein interaction network analysis can
identify key regulatory factors and signaling pathways in HNSCC
(Kuang et al., 2016). Additionally, bioinformatics assists in the
screening and validation of drug targets, supporting precision
therapy for HNSCC.

The role of big data and bioinformatics in identifying and
applying biomarkers is increasingly important, particularly in
disease diagnosis and prognosis evaluation (Jiang et al., 2023).
Continuous research into gene expression and regulatory
mechanisms in disease studies has provided essential insights
into disease onset and progression. Through multi-omics analyses
and chemical proteomics studies, scientists have revealed the
significance of gene regulatory networks in cellular function
regulation (Qin et al., 2024). The utilization of big data and
bioinformatics technologies in biomarker identification and
application has become increasingly significant for disease
diagnosis and prognosis evaluation. For instance, deep learning
and multi-omics analyses enable scientists to more precisely
identify and validate disease-related biomarkers (Liang et al.,
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2024; Xia et al., 2024). Research into gene expression and regulatory
mechanisms has deepened, offering critical insights into disease
onset and progression (Wang et al., 2024; Sun et al., 2024).
Identifying gene signatures associated with specific diseases
allows for comprehensive analyses, revealing stress responses
related to cognitive impairment and aging (Lin et al., 2022).
Single-cell RNA sequencing and bioinformatics analyses also help
identify key molecules and pathways related to the tumor
microenvironment, guiding precision therapy (Wang et al., 2024;
Zhang et al., 2024).

Recent studies indicate that regulating specific biomolecules and
applying certain compounds can address various biological
responses (Du and Liu, 2024). Bioinformatics technology has
been essential in studying gene expression and regulatory
mechanisms, enhancing our understanding of biological processes
(Du and Liu, 2024; Logan et al., 2024). Integrative research combing
clinical and genomics data has developed various models and tools
for predicting disease progression and treatment response,
improving disease prediction accuracy and supporting
personalized medicine (Figueredo, 2024; Li M. et al., 2024).
Through deep learning and multi-omics analyses, scientists can
more accurately identify and validate disease-related biomarkers
(Scimeca et al., 2024). Research analyzing big data and
bioinformatics has revealed associations between physical activity
and cognitive function in older adults, providing new perspectives
for healthy aging (Chen Y. et al., 2022). Studies on gene expression
and regulatory mechanisms in diseases have deepened, using
genome-wide association studies and polygenic risk scores to
predict disease risk and shared phenotypes, offering critical
insights into disease onset and progression (Yan et al., 2024).
Multi-omics integrative analyses and bioinformatics methods
allow researchers to comprehensively understand the
multidimensional characteristics of diseases, advancing the
development of personalized therapies (Chen B. et al., 2022).
Genomics editing technologies have demonstrated significant
potential in metabolic diseases, hormonal systems, and disease
research, driving the development of precision medicine (Liu P.
et al., 2023). The application of these advanced technologies and
methodologies has not only propelled the development of
biomedical research but also provided a solid foundation for the
realization of precision medicine (Huang L. et al., 2022; Huang et al.,
2013; Wang et al., 2005; Huang et al., 2015).

We will investigate the effects of changes in PIGF gene
expression on the biological behaviors of HNSCC cells,
including proliferation, migration, invasion, and apoptosis,
through in vitro cellular experiments. Additionally, we will
explore the relationship between PIGF gene expression and
the tumor immune microenvironment, as well as the potential
mechanisms of PIGF gene in HNSCC. Finally, we will evaluate
the potential of PIGF as a therapeutic target for HNSCC,
providing scientific evidence for the development of new
therapeutic strategies.

Through this study, we aim to provide new insights into the
early diagnosis, treatment strategy formulation, and prognosis
evaluation of HNSCC. Simultaneously, our research will offer a
new perspective on the relationship between exercise and HNSCC
prognosis, providing a theoretical basis for developing exercise-
based preventive and therapeutic strategies for HNSCC.

2 Materials and methods

2.1 Identification of exercise-related
prognostic genes in HNSCC

In this study, we used a large bioinformatics approach to
identify genes associated with exercise and survival prognosis in
HNSCC. Transcriptome data for HNSCC were initially
downloaded from The Cancer Genome Atlas (TCGA)
database. Statistical analyses were conducted to identify genes
exhibiting significant differential expression between HNSCC
tissues and normal tissues. Subsequently, survival analysis was
performed on these differently expressed genes to pinpoint those
closely linked to patient prognosis. Gene sets related to exercise,
encompassing various biological processes associated with
exercise response, were obtained from the Gene Set
Enrichment Analysis (GSEA) database. The intersection
analysis on differentially expressed genes and exercise-related
gene sets was conducted to obtain the key genes using public
GSEA database. We also demonstrated that these genes were not
only exercise-response related but also extremely correlated with
the survival prognosis of HNSCC patients. The identification of
these resplices provides new insights into the molecular biology
underlying HNSCC and may yield novel.

2.2 Functional analysis of exercise-survival
prognosis-related genes in HNSCC

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were conducted on the
selected genes to elucidate their distribution in biological
processes, molecular functions, and cellular components, as
well as their involvement in specific metabolic and signaling
pathways. Gene Set Enrichment Analysis (GSEA) was then
employed to investigate the expression patterns of these genes
under various biological conditions, aiming to identify gene sets
that may influence the survival prognosis of HNSCC patients.
And survival prognosis analysis was conducted to test
relationship between these gene expression levels and overall
survival (OS) rate with disease free survival rate. Single-gene
expression analysis was also conducted to delve into the
expression patterns of each gene and their associations with
the clinical characteristics and prognosis of HNSCC patients.
These identification results are helpful in deepening
understanding of the molecular mechanism for HNSCC and
lay a scientific foundation in exploring novel therapeutic
targets and prognostic biomarkers.

2.3 Pan-cancer expression landscape
analysis of core genes

In the study of HNSCC, tumor samples were divided into two
groups based on high and low PIGF expression levels. Differential
expression analysis was conducted using the limma package,
identifying significantly differently expressed genes, which
were visualized with volcano plots. Protein-protein interaction
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data were filtered through the ComPPI database to exclude
biologically unreasonable interactions, and interaction scores
were introduced to quantify data accuracy. ROC analysis was
performed using the pROC package to calculate the 95%
confidence interval and AUC, and ROC curves were plotted to
evaluate the diagnostic efficiency of gene expression in
distinguishing tumor from normal tissues. The data were
sourced from TCGA-corrected RNA-seq data, generated
through the Firehose pipeline and normalized. Z-score
standardization was used to identify outliers, and the
Wilcoxon rank-sum test assessed expression differences
between tumor and normal tissues. Furthermore, gene
expression was normalized using Z-score after pairing data
from the GTEx database with TCGA data to eliminate
outliers, followed by ROC analysis to evaluate diagnostic
performance. The Wilcoxon rank-sum test was used to
compare PIGF expression between tumor and normal tissues.
Calibration curves and goodness-of-fit tests were applied to
assess the predictive accuracy of the models. GEO datasets
were processed by converting probe matrices to gene matrices
and applying Z-score standardization with the Wilcoxon rank-
sum test evaluating expression differences between tumor and
normal tissues. Additionally, six molecular immune subtypes
associated with tumor characteristics and prognosis were
evaluated using median grouping and chi-square tests to
assess the significance of subtype proportions. The Kruskal-
Wallis rank-sum test compared PIGF expression across
different molecular subtypes, while clinical variables were
statistically analyzed in different expression groups using
median grouping and chi-square tests.

2.4 Prognostic analysis of core gene survival

In tumor tissues, the Pearson correlation between the target gene
and both mRNA and miRNA was calculated, with scatter plots used
to display these relationships. Results were reported only when the
absolute value of the correlation coefficient exceeded 0.3. Gene
expression levels were categorized based on their correlation
strength with the target gene into four classes: strongly positive,
moderately positive, weakly positive, and negative correlations.
These were visualized using a heatmap of contingency tables, and
Fisher’s exact test was employed for statistical analysis. Kaplan-
Meier survival analysis was used to evaluate the correlation between
gene expression levels and patient survival times. Detailed survival
data analysis was performed using the survival package in R. The
survminer package was used to identify optimal cut-off values for
high and low expression groups, ensuring that the sample sizes for
these groups met statistical requirements, typically not less than 30%
of the total sample size. Moreover, a meta-analysis that based on
univariate Cox proportional hazards model was performed by using
the inverse variance method.We chose the hazard ratios (HR) as our
primary measure of effect size, separating potential tumor-
suppressive versus oncogenic actions. This simple classification
approach does not consider the biological aspects of these genes.
The statistical analysis and visualization were performed in R
(version 4.3.2) using the meta package, which provides a range of
functions for conducting meta-analyses and generating forest and

funnel plots, visually presenting the combined effect sizes and
assessing publication bias.

2.5 Core gene GSEA/GSVA
enrichment analysis

The study had used a stratified approach to classify samples as
high or low expression group basing on the top 30% of most
expressed samples versus bottom 30%. This second classification
aimed to find the most extreme gene expression changes associated
with disease states. This was followed up by a differential expression
analysis using the limma package, producing log2 fold changes
(log2FC) and ranking genes that were statistically altered. The
additional analysis utilizes gene sets from the KEGG database
and was performed with fgsea function in the R package fgsea.
Enrichment scores (ES) of gene sets with significant P values were
calculated by using GSEA analysis, and tested for significance/
multiple hypothesis correction was applied. Gene Sets with
uncorrected p-value < 0.05 and corrected p-value < 0.25 were
assumed to have biological significance and visualized as before
based on species partitioning. To explore the states of tumor cells
better in single-cell level, we performed CancerSEA analysis. This
platform creates a merged view of the datasets and uncovers 14 new
functional states that are able to articulate significant aspects of
tumor cell function, making it usable as an effective resource for
conducting meaningful experiments. Using the z-score algorithm
proposed by Lee et al., gene set values were calculated and converted
to z-scores with the GSVA algorithm in the R package GSVA.
Pearson correlation analysis was then employed to explore the
relationships between gene expression and functional states,
calculating the correlation between gene expression and gene set
z-scores. Finally, the gsva function in the GSVA package was used to
score 73 metabolic gene sets from the KEGG database. Based on
these GSVA scores, the limma package was again used to compare
metabolic pathway activities between the high and low expression
groups, revealing the role of metabolic pathways in disease
progression.

2.6 Sensitivity of core genes to
immunotherapy

Gene expression data from multiple publicly available datasets of
cancer patients undergoing immunotherapy were utilized. To assess the
diagnostic performance of PIGF expression in distinguishing between
responders and non-responders to immunotherapy, ROC curve
analysis was conducted using the pROC package in R. The area
under the curve (AUC) and 95% confidence intervals (CI) were
calculated, and smoothing techniques were applied to the ROC
curves for improved visualization. Patients were categorized into
high and low PIGF expression groups based on the median
expression level of PIGF. A Chi-square test was performed to
examine the differences in the proportions of responders and non-
responders between these two groups. Furthermore, the Wilcoxon
rank-sum test was employed to compare gene expression differences
between responders and non-responders, and gene expression levels
were standardized into Z-scores for statistical comparison.
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2.7 Immune infiltration analysis of
core genes

The TIMER 2.0 database was employed to collect and analyze
immune infiltration data from TCThe TIMER 2.0 database was
used in this study to obtain immune infiltration data from the
TCGA tumor samples5. We developed a comprehensive
immune-related long non-coding RNAs database and
discovered that multiple algorithms can evaluate the
abundance of different types of immune cells in tumor tissues,
and analyze their relationship with gene expression. This
approach served data quality and provenance, giving a holistic
overview on the interaction of immune cells to gene expression.
The bar of scatter plots shows us correlation coefficient, which
clearly describes the relationship between immune cell type and
gene expression. Samples were bimodalized based on median of
gene expression as an robust estimator to differentiate between
low and hight expressions people— the healthy group in blue line
while ICH is presented by red solid line. To find whether the
immune cell contents in high and low expression groups had
statistical differences, Wilcoxon rank sum test was performed as a
nonparametric method applied to comparisons among different
kinds of data distributions. Heatmaps were generated to show key
immune cell types in detail.

2.8 Mutation analysis of core genes

Whole-genome CRISPR screening data were obtained from the
DepMap portal, and dependency scores for approximately
17,000 candidate genes were analyzed using the CERES
algorithm. The pan-cancer mutation landscape of core genes was
visualized using the plotmafSummary function from the maftools
package. To assess the independence between gene expression levels
and specific gene mutation types the independence_test function
from the R coin package, based on permutation tests, was employed.
Genes with a mutation rate exceeding 10% and a p-value less than
0.01 were identified and visualized to highlight significant
associations between gene expression and mutation types. In the
TCGA-HNSC project, copy number variation (CNV) analysis was
performed using the GISTIC score method to identify genomics
CNVs. The CNV profile of 451 samples was visualized using bar
plots, which reflected chromosomal copy number changes.
Quantitative measures of genomics alterations, such as FGA,
FGG, and FGL, were defined based on the genomics distance of
clonal regions. When analyzing differences between specific gene
expression subgroups, ANOVA was used, followed by Tukey’s
Honest Significant Difference (TukeyHSD) test for multiple
comparisons if ANOVA indicated significance. This approach
was used to identify specific group differences. The correlation
between CNV scores and gene expression levels was analyzed
using scatter plots combined with Spearman’s rank correlation
coefficient, which measures the monotonic relationship between
two variables. CNV data were obtained from the TCGA Genome
Characterization Center andmeasured through whole-genome
arrays. Gene-level copy number estimates were derived using the
TCGA FIREHOSE pipeline and GISTIC2 method. The Kruskal-
Wallis test, a non-parametric method for comparing multiple

samples, was employed to compare gene expression differences
among different CNV types (ranging from −2 to 2).

2.9 Single-gene pan-cancer single-cell
sequencing analysis

Single-cell gene expression data for HNSCC were obtained from
the TISCH database. Heatmaps, generated using the pheatmap
package, effectively revealed gene expression patterns at the
single-cell level across different cancer types. Hierarchical
clustering analysis, performed using Euclidean distance and
Ward’s minimum variance method, uncovered intrinsic patterns
of gene expression and their conservation across various cancers.
Additionally, UMAP (Uniform Manifold Approximation and
Projection) was utilized to explore expression patterns in high-
dimensional data, preserving the original data topology during
dimensionality reduction. By using UMAP analysis of gene
expression data for CENPF, we could render a clearer depiction
of the patterns underlying adding new observations to key biological
discovery. To determine significant differences in specific gene
expression between cell types, the Kruskal-Wallis rank sum (KW)
test was applied as a non-parametric method suitable for un-
normally distributed samples. Furthermore, UMAP visualization
of the AUC cell scoring capturing heterogeneity of pathway activity
in individual cells was performed. Methodology for spatial
transcriptomics can be found in the supplementary methods.

2.10 Cell proliferation assay

Cell proliferation was determined by the cell counting Kit-8
(CCK-8, Beyotime Biotechnology Co., Ltd., Shanghai, China) at 0 h,
24 h and 48 through various treatments. The cells were then cultured
in 96-well plates (Thermo Fisher Scientific. MA, United States) and
exposed to respective interventions for another 24 h essentially as
described above briefly After that, 10 μL of CCK-8 solution was
added to each well and incubated for another 2 h. Absorbance
(450 nm) was determined by a Microplate Reader (Bio-Rad,
Hercules, CA). Cell viability was evaluated by calculating the
ratio of the average absorbance of the treated groups to that of
the control group, expressed as a percentage ([Absorbance of treated
group/Absorbance of control group] × 100%).

2.11 Clonogenic assay for cell proliferation

Cells in the logarithmic growth phase were collected and diluted
to a concentration of 500 cells/mL. Each well of a 6-well plate was
pre-wetted with 1 mL of culture medium before adding 1 mL of the
cell suspension. Three replicate wells were prepared for each
group. The cells were incubated overnight in a 37°C, 5% CO2

incubator to allow for attachment. Subsequently, cells were
collected and 5 × 10̂4 cells per well were added to the
corresponding wells, with the medium being changed every
2 days. After 12 days, the medium was discarded, and the wells
were washed twice with PBS. Cells were then fixed by adding 1 mL of
methanol to each well and incubating at room temperature for
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FIGURE 1
Identification and Multigene Analysis of Exercise-Survival Prognosis-Related Genes in HNSCC. (A) Venn diagram showing the intersection of
exercise-related genes, tumor-related genes, and survival prognosis-related genes in HNSCC. (B) Pie chart depicting the distribution of core genes
enriched in various biological processes and pathways based on Gene Ontology (GO) analysis. (C) Dot plot displaying Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis for the core genes, highlighting significant pathways involved in HNSCC. (D) Enrichment plot from
Gene Set Enrichment Analysis (GSEA) indicating the enrichment of core genes in specific biological pathways or processes. (E) Survival curve based on the
single-sample Gene Set Enrichment Analysis (ssGSEA) score for a core gene in the HNSCC patient cohort from GSE126 datasets. (F) Survival curve based
on the ssGSEA score for a core gene in the HNSCC patient cohort from the GSE525 datasets. (G) Kaplan-Meier survival analysis for a core gene in the
HNSCC patient cohort from the GSE407 datasets. (H) Kaplan-Meier survival analysis for a core gene in the HNSCC patient cohort from the

(Continued )
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20 min. After removing the methanol, 1 mL of 0.1% crystal violet
was added for staining at room temperature for 20 min. The wells
were then washed with PBS until the background was clear, followed
by photographing and counting the colonies.

2.12 Transwell and scratch assays for
assessing cell invasion and migration

SCC4 cells were seeded into 6-well plates at a density of 5 × 105

cells per well. After 12 h of incubation, a sterile pipette tip was used
to create scratches along predefined tracks. Detached cells were
washed away with PBS, and photographs were taken. The plates
were then returned to the incubator for an additional 24 h, followed
by another round of photography to capture cell migration. For the
Transwell assay, treated SCC4 cells were seeded into the upper
chamber of Transwell inserts pre-coated withMatrigel at a density of
1 × 105 cells per well. The lower chamber was filled with 600 μL of
culture medium containing 5% fetal bovine serum. The cells were
incubated for 24 h, after which they were fixed with 4%
paraformaldehyde for 20 min and stained with 0.1% crystal violet
for 10 min. The number of invading cells was then observed under a
microscope and photographed.

2.13 Statistical analysis

The statistical analysis was conducted using SPSS software
version 26.0 (SPSS Inc., Chicago, United States). The results are
expressed as the mean ± standard deviation. For comparisons
between two groups, Student’s t-test was utilized, while one-way
ANOVA was applied for comparisons across multiple groups.
Statistical significance was defined as P-value < 0.05.

3 Results

3.1 Identification and multigene analysis of
exercise-survival prognosis-related genes
in HNSCC

The results of this study present the identification and multigene
analysis of exercise-survival prognosis-related genes in HNSCC, as
illustrated in Figure 1. The Venn diagram (Figure 1A) highlights the
intersection of exercise-related genes, tumor-related genes, and
survival prognosis-related genes in HNSCC, pinpointing core
genes crucial for survival prognosis influenced by exercise. The
distribution of these core genes across various biological processes
and pathways is depicted in the GO analysis pie chart (Figure 1B),
emphasizing their involvement in diverse cellular functions. Further

insights are provided by the KEGG pathway enrichment analysis
(Figure 1C), which identifies significant pathways involving these
core genes. The GSEA plot (Figure 1D) demonstrates the
enrichment of core genes in specific biological pathways or
processes, indicating their functional relevance in the context of
HNSCC and exercise. Survival analyses using the ssGSEA score are
presented for different HNSCC patient cohorts (Figures 1E, F,
datasets GSE126 and GSE525), revealing the association between
core gene expression levels and overall survival. Additional Kaplan-
Meier survival analyses (Figures 1G, H, datasets GSE407 and
GSE123) consistently show the correlation between core gene
expression and patient survival, reinforcing their prognostic
value. A meta-analysis of survival data (Figure 1I) confirms the
significant prognostic impact of these genes across multiple datasets.
Multivariate Cox regression analyses (Figures 1J–M) further
illustrate the independent prognostic value of these genes,
highlighting their potential as biomarkers for HNSCC prognosis.
These comprehensive analyses demonstrate the critical role of
exercise-survival prognosis-related genes in HNSCC and their
potential as prognostic biomarkers, providing valuable insights
into the molecular mechanisms of HNSCC influenced by exercise.

3.2 Expression of PIGF in HNSCC using
TCGA data

The study focused on analyzing the expression pattern of the
PIGF gene in HNSCC using data from The Cancer Genome Atlas
(TCGA). Figure 2A displays a volcano plot generated through
differential expression analysis. The diagnostic potential of PIGF
in distinguishing tumor tissues from normal tissues is evaluated by
the ROC curve in Figure 2B, which presents an AUC value
indicating PIGF’s predictive ability. Further analysis in Figure 2C
shows a violin plot comparing PIGF expression levels between
normal and tumor tissues, approaching statistical significance
(p = 0.06), while Figure 2D presents a paired sample plot
indicating a non-significant difference (p = 0.318). The
expression pattern across different tumor stages is shown in
Figure 2E, with significant differences (p = 0.021) between early-
stage (Stage I-II) and advanced-stage (Stage III-IV) HNSCC.
Figure 2F’s ROC curve assesses the diagnostic performance of
PIGF in differentiating early from advanced stages,
demonstrating moderate efficacy. Figure 2G visualizes the gene
interaction network with PIGF as the central node, indicating its
interactions with other genes. Finally, Figure 2H shows the median
expression levels of PIGF at different tumor stages, emphasizing the
dynamic changes in expression during tumor progression. The
expression level of PIGF was significantly upregulated in stage III
and IV HNSCC, showing a linear relationship, indicating a
correlation with disease severity. However, the expression level of

FIGURE 1 (Continued)

GSE123 datasets. (I) Forest plot of hazard ratios from ameta-analysis of survival data, showing the combined effect size and confidence intervals for
core genes acrossmultiple datasets. (J–M) Forest plots of hazard ratios frommultivariate Cox regression analysis for multiple core genes, illustrating their
independent prognostic value in HNSCC.
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PIGF in stage II HNSCC is lower than that in stage I. These results
collectively underscore the significant upregulation of PIGF in
HNSCC, its diagnostic potential, and its variable expression
across different tumor stages, enhancing our understanding of its
role in cancer progression.

3.3 Multidimensional analysis of PIGF gene
in HNSCC

A comprehensive analysis of the PIGF gene in HNSCC using
TCGA-GTEX data provides significant insights into its

FIGURE 2
Expression of PIGF in HNSCC using TCGA data. (A) Volcano plot visualizing the differential expression of PIGF using the limma package. The log2 fold
change is plotted against the -log10 adjusted p-values. Significant upregulation of PIGF is indicated by red dots, while significant downregulation is
indicated by green dots. (B) ROC curve evaluating the diagnostic performance of PIGF expression in distinguishing tumor tissues from normal tissues. The
Hosmer-Lemeshow goodness-of-fit test is included, with the predicted probability plotted against the actual rate. The curve reflects the ability of
PIGF to predict tumor presence, with an AUC value provided. (C) Violin plot comparing the expression levels of PIGF between normal and tumor tissues in
HNSCC. Statistical significance is indicated (p = 0.06). (D) Paired sample plot showing the expression of PIGF inmatched normal and tumor tissues, with a
p-value indicating the significance of the difference. (E) Violin plot depicting the expression of PIGF in HNSCC across different tumor stages (Stage I-II vs.
Stage III-IV). Statistical significance is indicated (p = 0.021). (F)ROC curve assessing the diagnostic performance of PIGF expression in differentiating early-
stage (Stage I-II) from advanced-stage (Stage III-IV) HNSCC. The AUC value and confidence interval (CI) are provided. (G) Interaction analysis of PIGF with
other genes, visualized as a network. The central node represents PIGF, with edges indicating interactions with other genes. The thickness of the edges
correlates with the strength of interaction. (H)Median expression levels of PIGF in HNSCC across different tumor stages (Stage I, II, III, IV), represented by
the Z-score of expression values. Each bar indicates the median expression level for the corresponding stage, with significant differences highlighted.
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diagnostic and clinical relevance (Figures 3A–F). Figure 3A
shows the ROC curve assessing the diagnostic efficiency of
PIGF expression between tumor and normal groups, including
the Hosmer-Lemeshow test with a p-value of 0.096, indicating a
good model fit. Figure 3B further highlights the diagnostic
performance of PIGF expression in distinguishing tumor from
normal tissue in HNSCC, with an area under the curve (AUC) of
0.660 and a 95% confidence interval of 0.597–0.724,
demonstrating high diagnostic accuracy. The differential
expression of the PIGF gene across various tumor subtypes of
HNSCC is depicted in Figure 3C. The violin plot illustrates the
distribution of PIGF mRNA levels in atypical, basal, classical, and
mesenchymal subtypes, with a significant p-value of less than
0.001, indicating notable differences among subtypes. Figure 3D
presents a heatmap showing expression differences of the PIGF
gene in HNSCC patients from TCGA, categorizing expression

levels into high and low groups and correlating these with patient
subtypes. Figure 3E shows a density map comparing the
estimated expression of PIGF, showing the obvious differences
between normal and tumor tissues. The results showed that the
expression level of PIGF in tumor tissues was significantly higher
than that in normal tissues. Chi square test results (Figure 3F)
highlighted the association between PIGF expression level and
various clinical characteristics of hNSC patients, including
alcohol consumption, HPV status, lymph node involvement,
tumor stage, gender, targeted therapy, radiotherapy, tumor
grade and patient age, discriminated between high expression
group and low expression group and provided the relevant p
value. The results showed that patients with high PIGF
expression had later tumor stage, more lymph node
involvement, and were more sensitive to targeted therapy and
radiotherapy. These findings collectively reveal the

FIGURE 3
PIGF in HNSCC Analyzed with TCGA-GTEX Data. (A) ROC curve assessing the diagnostic efficiency of PIGF expression between tumor and normal
groups. (B) ROC curve evaluating the diagnostic performance of PIGF expression distinguishing tumor from normal tissue in HNSCC. (C) Differential
expression of PIGF gene across various tumor subtypes of HNSC. The violin plot displays the distribution of PIGF mRNA levels in atypical, basal, classical,
and mesenchymal subtypes with a significant p-value <0.001. (D) Heatmap illustrating the expression difference of the PIGF gene in HNSCC from
TCGA patients. The data include expression levels categorized by high and low expression groups, along with the corresponding patient subtypes. (E)
Density plot depicting the estimated expression of PIGF in HNSCC using data from GSE30784. The plot compares the expression levels between normal
and tumor tissues, highlighting significant differences. (F) Chi-square test results showing the association between PIGF expression levels and various
clinical traits in HNSCC patients.
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multidimensional characteristics of the PIGF gene in HNSCC,
underscoring its potential as a diagnostic biomarker and its
association with clinical traits.

3.4 Analysis of PIGF gene Interactions

Pearson correlation analysis is used to identify significant
interactions between PIGF expression and various related
mRNAs and miRNAs. Figure 4A presents a heatmap displaying
the correlation matrix between PIGF mRNA and other mRNAs,
with color intensity indicating the correlation strength—blue for
negative and red for positive correlations. Figure 4B features a scatter
plot with a regression line, illustrating the Pearson correlation
between PIGF mRNA expression and a specific related mRNA.
The x-axis represents PIGF mRNA levels, and the y-axis represents
the related mRNA levels, highlighting the direction and strength of

the correlation. Furthermore, Figures 4C–L depict scatter plots
showing the correlation between PIGF mRNA and various
miRNAs. Each plot, such as Figure 4C, includes the correlation
coefficient and p-value, indicating a statistically significant positive
correlation. The analysis reveals moderate to strong correlations
between PIGF mRNA and these mRNAs and miRNAs, with
significant p-values. These findings suggest that PIGF may play a
crucial role in the regulatory network involving these genes,
providing a foundation for future studies on the functional
implications of PIGF interactions in the studied condition.

3.5 PIGF gene prognostic survival analysis

A comprehensive analysis is conducted to evaluate the
prognostic significance of PIGF gene expression across various
survival outcomes using internal and external datasets. Kaplan-

FIGURE 4
Analysis of PIGF Gene Interactions. (A, B) Pearson correlation analysis scatter plots showing the relationship between PIGF mRNA expression and
various related mRNAs. (A) Heatmap displaying the correlation matrix between PIGF mRNA expression and other mRNAs. The color intensity represents
the strength of the correlation, with blue indicating negative correlation and red indicating positive correlation. (B) Scatter plot with a regression line
depicting the Pearson correlation between PIGF mRNA expression and a specific related mRNA. The x-axis represents the expression levels of PIGF
mRNA, while the y-axis represents the expression levels of the relatedmRNA. The distribution of data points and the regression line illustrate the direction
and strength of the correlation. (C–L) Pearson correlation analysis scatter plots showing the relationship between PIGF mRNA expression and various
related miRNAs. Each plot represents the correlation of PIGF mRNA with a different miRNA.
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FIGURE 5
PIGF Gene Prognostic Survival Analysis. (A–D) Kaplan-Meier survival analysis for four survival metrics including Overall Survival (OS), Disease-
Specific Survival (DSS), Progression-Free Interval (PFI), and Disease-Free Interval (DFI). Each plot represents the survival curves for different quartiles (Q1-
Q4) of PIGF expression levels, with Q1 representing high expression of PIGF and Q4 representing low expression of PIGF. Log-rank test p-values are
provided to show the statistical significance of differences between the curves. (A)Overall Survival (OS): Log-rank test P = 0.13. (B) Progression-Free
Interval (PFI): Log-rank test P = 0.002. (C)Disease-Specific Survival (DSS): Log-rank test P = 0.232. (D)Disease-Free Interval (DFI): Log-rank test P = 0.363.
(E, F)Meta-nalysis of univariate Cox regression survival analysis across multiple datasets. Forest plots showing the hazard ratios (HR) and 95% CI for PIGF
expression in different studies. (E) Univariate Cox regression analysis combining multiple datasets. The pooled HR indicates the overall effect of PIGF
expression on survival. (F) Hazard ratios from individual studies in the TCGA datasets for different survival outcomes. The random effects model is used,

(Continued )
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Meier survival analysis is performed for four key survival outcomes:
Overall Survival (OS), Disease-Specific Survival (DSS), Progression-
Free Interval (PFI), and Disease-Free Interval (DFI). Survival curves
are stratified by quartiles (Q1-Q4) of PIGF expression levels (Figures
5A–D). The results indicate no significant difference in OS (log-rank
test P = 0.13; Figure 5A), a significant difference in PFI (log-rank test
P = 0.002; Figure 5B), no significant difference in DSS (log-rank test
P = 0.232; Figure 5C), and no significant association with DFI (log-
rank test P = 0.363; Figure 5D). A meta-analysis of univariate Cox
regression survival analysis across multiple datasets determines that
higher PIGF expression correlates with an increased risk of poor
survival outcomes (Figures 5E, F). External GEO datasets analysis
validates these findings in head and neck squamous cell carcinoma
(HNSCC), with significant associations observed in datasets
GSE10406 (P = 0.004; Figure 5G), GSE84318 (P = 0.016;
Figure 5H), and GSE53161 (P = 0.001; Figure 5I), though no
significant association is found in GSE24362 (P = 0.348;
Figure 5J). Further independent prognostic analysis confirmed
the significance of PIGF expression independent of clinical
variables through both univariate and multivariate Cox regression
analyses (Supplementary Figures 1A–D). Expression levels are
correlated with overall survival status (Supplementary Figure 1E),
and a Chi-square test indicated no significant distribution difference
across expression quartiles (P = 0.706; Supplementary Figure 1F).
Restricted cubic spline models explored non-linear risk associations
adjusted for relevant covariates, showing estimated log hazard ratios
with 95% confidence bands (Supplementary Figures 1G–J). Kaplan-
Meier survival curves stratified by expression levels reveal significant
differences, particularly for OS and DSS (Supplementary Figures
1K–N). This analysis underscores the significant prognostic value of
PIGF gene expression for various survival outcomes, suggesting its
potential as a biomarker for cancer prognosis.

3.6 Core gene GSEA/GSVA enrichment
analysis in HNSCC

The analysis of core genes in HNSCC provides comprehensive
insights into their roles in tumor progression and patient survival
outcomes through various Kaplan-Meier (KM) survival analyses,
GSEA, and GSVA. Figures 6A–E demonstrate KM survival analyses
for the four subgroups of dual-gene molecular subtypes based on
CD274 expression. These figures show that high CD274 expression
correlates with poorer survival outcomes. Similarly, Figures 6F–J
demonstrate that elevated PDCD1 expression is associated with
reduced survival rates. Figure 6K highlights significant pathways
identified through GSEA for hallmark gene sets, revealing differently
regulated biological processes. The KEGG gene set enrichment
analysis in Figure 6L identifies critical signaling pathways
involved in HNSCC, including those related to immune response

and apoptosis. Figure 6M uses the clusterProfiler package to
compare high and low expression groups, showcasing normalized
enrichment scores (NES) for significantly enriched pathways,
thereby emphasizing the diverse biological functions influenced
by core genes. Differential GSVA scores for metabolic pathways
in Figure 6N indicate altered metabolic activities linked to core gene
expression. The heatmap in Figure 6O illustrates the correlation
between immune response signatures and genome state,
highlighting the interplay between immune activity and genetic
alterations. Figure 6P represents PIGF expression across various
immune stimulators, underscoring its role in modulating immune
responses. Finally, Figure 6Q presents Pearson correlation analyses
between z-scores of core gene expression and tumor state
parameters, offering insights into the relationships between core
gene expression and tumor-related parameters. This comprehensive
analysis provides a detailed perspective on the functional roles of
core genes in HNSCC, emphasizing their potential as prognostic
biomarkers and therapeutic targets.

3.7 Single-cell sequencing analysis of PIGF
in HNSCC

Our study provides an in-depth analysis of PIGF gene
expression in HNSCC using single-cell sequencing data. Figures
7A–C present UMAP plots displayingmajor cell lineages (A), single-
cell PIGF gene expression (B), and density contour lines (C) in
HNSCC, highlighting the distribution and expression patterns of
PIGF across different cell populations within the tumor
microenvironment. Figures 7D–F show UMAP plots depicting
differential expression of core genes across various cell types in
HNSCC, illustrating the variability in gene expression among
different cell populations. Figure 7G represents pathway
differences between core gene-positive and core gene-negative
groups across various cell types, with a dot plot displaying
enriched pathways in each cell type, indicating functional
pathways associated with PIGF expression. Figure 7H utilizes
spatial transcriptomic deconvolution to show cellular
composition with the maximum value for each spot, providing a
spatial map of cell distribution within the tumor. Figure 7I illustrates
the Spearman correlation between gene expression and
microenvironment components at single-cell resolution, revealing
interactions between gene expression and the tumor
microenvironment. Figure 7J demonstrates the differential
expression of PIGF in malignant, mixed malignant, and normal
regions, suggesting its potential role in tumor progression. Figure 7K
shows PIGF expression across different tumor stages allowing
comparison across various stages of tumor development.
Figure 7L presents the active landscape of core gene set scores in
microzones, identifying regions within the tumor with high or low

FIGURE 5 (Continued)

and heterogeneity statistics are provided. (G–J) External GEO datasets survival prognostic analysis of PIGF expression. (G) Kaplan-Meier survival
curve in HNSCC (GSE10406) with a p-value of 0.004. (H) Kaplan-Meier survival curve in HNSCC (GSE84318) with a p-value of 0.016. (I) Kaplan-Meier
survival curve in HNSCC (GSE53161) with a p-value of 0.001. (J) Kaplan-Meier survival curve in HNSCC (GSE24362) with a p-value of 0.348.

Frontiers in Pharmacology frontiersin.org12

Shi et al. 10.3389/fphar.2024.1476076

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1476076


FIGURE 6
Core Gene GSEA/GSVA Enrichment Analysis. (A–E) Kaplan-Meier (KM) survival analysis for the four subgroups of dual-gene molecular subtype
based on CD274 expression. Each subplot represents different survival curves comparing high and low expression groups of CD274, with statistical
significance evaluated using log-rank tests. (F–J) Kaplan-Meier (KM) survival analysis for the four subgroups of dual-gene molecular subtype based on
PDCD1 expression. Each subplot represents different survival curves comparing high and low expression groups of PDCD1, with statistical
significance evaluated using log-rank tests. (K) GSEA for hallmark gene sets. This analysis compares the enrichment scores of high expression vs. low
expression groups, highlighting significant pathways. (L) KEGG gene set enrichment analysis compares the enrichment scores between high and low
expression groups, identifying key signaling pathways involved. (M) Multiple gene set enrichment analysis performed using the clusterProfiler package.
The comparison is between high expression group to low expression group across various gene sets. The bar plot shows the normalized enrichment
scores (NES) for significantly enriched pathways. (N) Differential GSVA scores for metabolic pathways between high and low expression groups of the
core gene. The bar plot displays pathways with significant differences in GSVA scores, indicating altered metabolic activities. (O) Immune Response and
Genome State heatmap. This heatmap illustrates the correlation between immune response signatures and genome state across different samples,
indicating the interplay between immune activity and genetic alterations. (P) Landscape of PIGF in Immunostimulator. Heatmap representation of PIGF
expression across various immune stimulators, highlighting its role in modulating immune responses. (Q) Pearson correlation analysis between z-scores
of core gene expression and z-scores of 14 tumor state parameters. Scatter plots depict the correlation between core gene expression and various
tumor-related parameters, with the Pearson correlation coefficient (r) and statistical significance (p-value) annotated.
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FIGURE 7
Single-cell sequencing analysis of PIGF in head andneck squamous cell carcinoma (HNSCC). (A–C)UMAPplots displayingmajor cell lineages (A) and single-
cell PIGF gene expression (B) with density contour lines (C) in HNSCC single cells. The color gradient represents the expression levels of PIGF, with higher
expression shown in darker colors. (D–F)UMAP plots showing differential expression of core genes across different cell types in HNSCC. Cells are colored based
on core gene expression levels, highlighting the variability in gene expression among different cell populations. (G)Pathway differences between core gene-
positive and core gene-negative groups across various cell types. Dot plot representing thepathways enriched in each cell type,with the sizeof the dots indicating
thenumber of genes involved and the color gradient representing the significanceof the enrichment (p-values). (H) Spatial transcriptomic deconvolution showing
the cellular composition with the maximum value for each spot. Each spot represents a spatial location on the tissue, and colors indicate different cell types. (I)

(Continued )
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activity of specific gene sets. Figure 7M shows differences in AUC
scores of gene sets betweenmalignant, mixedmalignant, and normal
microzones, highlighting significant differences in gene set activity

among the different regions. This detailed single-cell sequencing
analysis reveals the complex role of PIGF in the tumor
microenvironment of HNSCC. Additionally, in vitro cell

FIGURE 7 (Continued)

Spearman correlation between gene expression and microenvironment components at single-cell resolution. The heatmap shows the correlation
values, with blue indicating negative correlation and red indicating positive correlation. (J) Bar plot illustrating the differential expression of PIGF in
malignant regions, mixed malignant regions, and normal regions. The y-axis represents the expression level of PIGF, and the x-axis categorizes the
regions into malignant, mixed, and normal. (K) Heatmap of PIGF expression across different tumor stages in OV. The color gradient indicates the
expression levels, with red representing higher expression and blue representing lower expression. (L) Active landscape of core gene set scores in
microzones. The plot shows the activity scores of core gene sets in different microzones, with colors indicating varying levels of gene set activity. (M) Bar
plot illustrating the differential expression of AUC scores in malignant regions, mixed malignant regions, and normal regions. All these spatial
transcriptomics data were sourced from the GSE181300 dataset in GEO (https://www.ncbi.nlm.nih.gov/geo).

FIGURE 8
Impact of PIGF Expression onCell Proliferation andColony Formation in HNSCCCell Lines. (A) The relativemRNAexpression of Placenta Growth Factor
(PIGF) in different experimental groups: Negative Control (NC), sh1-PIGF (PIGF knockdown), sh1-PIGF+EV (empty vector), and PIGF-OE (PIGF
overexpression). The results indicate a significant decrease in PIGF expression in the sh1-PIGF group compared to the NC and other groups, confirming the
efficiencyof PIGF knockdown and overexpression constructs. Data are presented asmean± standarddeviation (SD)with statistical significance denoted
byns (non-significant) or specific p-values (p<0.001). (B)Representative images showing the colony-forming ability of colorectal cancer cells under different
treatments: NC, sh1-PIGF, sh1-PIGF+EV, and sh1-PIGF+PIGF-OE. Cells are stained with crystal violet, and colonies are visually assessed. Knockdown of PIGF
(sh1-PIGF) results in amarked reduction in colony numbers compared to the NC, while overexpression of PIGF (PIGF-OE) reverses this effect, demonstrating
the role of PIGF in promoting cell proliferation. (C) NC, sh1-PIGF, sh1-PIGF+EV, and sh1-PIGF+PIGF-OE. The results, expressed as a percentage of cell
viability, show that PIGF knockdown significantly reduces cell proliferation compared to the control and overexpression groups. Statistical analysis indicates
highly significant differences between the groups (p < 0.001). (D)Visualization ofMYC and Ki67 expression asmarkers of cell proliferation in colorectal cancer
cells. MYC (red) and Ki67 (green) are shown in theNC, sh1-PIGF, PIGF-OE, and sh1-PIGF+PIGF-OE groups. Themerged images depict the overall expression
pattern, highlighting reduced MYC and Ki67 expression in the sh1-PIGF group compared to others, consistent with decreased cell proliferation and tumor
growth potential upon PIGF silencing. (E) Predictive performance of PIGF acrossmultiple datasets, with notable variation in its predictive efficacy. PIGF shows
strong predictive performance in the PIGF_GBM-PRJNA482620 dataset. (F) A forest plot depicting the performance of PIGF-associated models across
various cancer types and immunotherapy-relatedmetrics, such as TIDE, MSI score, TMB, CD274 expression, andCD8 infiltration. Variability in performance is
noted, with certain datasets showing enhanced predictive accuracy for PIGF’s role in tumor immunology.
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experiments demonstrates that silencing PIGF affects cell
proliferation, apoptosis, and the expression of related factors,
suggesting potential molecular targets for the HNSCC treatment.

3.8 The impact of PIGF on HNSCC cell
proliferation, colony formation, and
immunotherapy drug sensitivity

This study evaluated the role of PIGF in the proliferation and
colony formation of HNSCC cells, as well as its potential as a drug
target. By knocking down (sh1-PIGF) or overexpressing (PIGF-OE)
PIGF in different experimental groups, real-time quantitative PCR
data indicated a significant reduction in PIGF mRNA expression in
the sh1-PIGF group, while the PIGF-OE group showed a notable
increase, confirming the efficiency of both knockdown and
overexpression constructs (Figure 8A). Functional analysis
revealed that colony formation in the sh1-PIGF group was
significantly reduced, suggesting that PIGF knockdown inhibited
cell proliferation. Conversely, PIGF-OE reversed this effect, further
demonstrating the critical role of PIGF in promoting HNSCC cell
proliferation (Figure 8B). Similarly, the CCK-8 assay showed that
PIGF knockdown significantly reduced cell viability, while PIGF
overexpression restored the proliferative ability of the sh1-PIGF
group (Figure 8C). Immunofluorescence staining demonstrated that
the expression of proliferation markers MYC and Ki67 was
markedly reduced in the sh1-PIGF group, whereas both markers
were upregulated in the PIGF-OE group, supporting the hypothesis
that PIGF promotes tumor cell growth by regulating proliferation-
related pathways (Figure 8D). To further explore the potential of
PIGF as a drug target, we analyzed its predictive performance across
multiple cancer datasets (Figure 8E). In the GBM dataset, PIGF
exhibited strong predictive power, particularly in the PIGF_GBM-
PRJNA482620 dataset. Moreover, analysis of several cancer
immunotherapy-related metrics (e.g., TIDE, MSI score, TMB,
CD274 expression, CD8 infiltration, IFNγ expression) revealed
significant variability in PIGF’s predictive performance across
different datasets, with high predictive accuracy observed in
glioblastoma and certain melanoma datasets (Figure 8F). These
findings suggest that PIGF may play a role in modulating the
immune microenvironment, making it a potential target for
cancer immunotherapy.

4 Discussion

By considering various bioinformatics analysis and cellular
experiments, this research revealed a cluster of genes related to
exercise for HNSCC prognosis. Specifically, we focus on the PIGF
gene, which exhibits significant differential expression in SCC4 cells
of HNSCC and shows a close association with tumor diagnostic
efficacy, immune therapy response, and immune cell infiltration
levels. These findings provide new perspectives on the molecular
mechanisms underlying HNSCC and could inform the development
of novel therapeutic strategies. The relationship between PIGF gene
expression and the tumor immune microenvironment is a
significant discovery of this study. We observe that PIGF
expression levels are significantly associated with the infiltration

degree of various immune cell subsets. Single-cell sequencing
analysis further elucidates the complex role of the PIGF gene in
the tumor microenvironment, revealing its multifaceted
involvement in HNSCC progression and highlighting its potential
as a therapeutic target.

The study underscores the importance of understanding gene
expression and regulatory mechanisms in diseases contexts,
providing an essential basis for understanding the occurrence
and development of diseases (Mei et al., 2024). As the critical
ontogeny of protein-protein interaction networks and their
alterations involved in biological systems have been extensively
investigated, they play a crucial role in cell signaling as well as
function regulation (Wu et al., 2024; Wu et al., 2023). Meanwhile,
discovering gene expression along with its regulatory schemes has
brought new insights into deciphering disease complexity of onset or
progression where much attention deserves to be paid (Chen N.
et al., 2024; Ren et al., 2023). Single-cell RNA sequencing has
illuminated cellular response mechanisms in diverse
environments (Liu Q. et al., 2023). These studies not only
elucidate disease mechanisms but also supply a strong theoretical
framework and experimental evidence for subsequent therapies
(Gao et al., 2024). Adopting the multi-omics approaches, such as
chemical proteomics, deep learning and bioinformatics technologies
combined with multiple methodologies could achieve a better
understanding of disease mechanism and more accurate
development of therapeutic strategies (Liu W. et al., 2024). The
long-term analysis of gene expression and regulatory mechanisms in
diseases is an indispensable prerequisite for understanding the
pathogenesis and progress of a disease (Wong et al., 2023;
Monsour and Borlongan, 2023). Through the analysis of
pharmacological action, multi-omics data is integrated with
advanced bioinformatics techniques to uncover potential
therapeutic drug effect and further elucidate the mechanisms of
action for drugs; this lays a stable theoretical foundation in clinical
application and research. Polymorphism and disease association
have been the mainstay of in-depth study for role determination,
gene expression as well regulatory mechanisms which are very
crucial info with respect to pathologic genome action on about
onset and progression of a pathological state (Liu L. et al., 2024). As
long as these strategies are fully invested, they will not only improve
the scientific depth and breadth of research but also lay a solid
foundation for follow-up clinical applications (Zhang J-F. et al.,
2023). Validation of effects in vivo through animal models and by
observation of histopathological changes using histology and
immunohistochemical analysis provide important support for
further research (Xing et al., 2024). Animal models are essential
for studying drug efficacy, and validated animal models can simulate
the pathophysiological processes of diseases (Qin et al., 2023). The
continuous study of gene expression and regulatory mechanisms in
diseases provides new insights into disease progression and
therapeutic response by analyzing the immune microenvironment
and tumor heterogeneity (Liu J. et al., 2024).

Among these PTMs, the upregulation of placental growth factor
(PIGF) has been paid particular attention for its function associated
with immune microenvironment in HNSCC (Albonici et al., 2019;
Zhang and Han, 2020). PLGF is a member of the vascular
endothelial growth factor (VEGF) family and plays roles in
angiogenesis, immune cell recruitment, modulation of
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inflammatory responses as well as tumor immune evasion. Recent
bioinformatics analyses highlight PIGF as a potential driver, and
biomarker of response in HNSCC spreading its role from
tumorigenesis to treatment responsivity. PIGF is a member of the
platelet-derived growth factor family encoded by exons 1 and/or 2,
which have been described to be modulated production thanks to
alternative splicing forms (Vuorela et al., 1997). PIGF is a ligand that
can regulate angiogenesis, cell proliferation and migration or
invasion in various physiological and pathological settings (De,
2012; Yoo et al., 2015). PIGF plays an important role in the
development of a variety of cancers, including oncology studies
(Zou et al., 2022). PIGF stimulates tumor cell proliferation,
migration and invasion through the binding of its receptor
PDGFR-α which leads to downstream signaling pathways
activation and also promotes the formation vascular system that
will supply nutrients and oxygen needed by tumor (Wang et al.,
2023). Another study suggested that PIGF was related to the ability
of a tumor cell to evade immune responses and resistance against
therapeutic interventions. The expression level of PIGF in HNSCC is
closely associated with the aggressiveness, lymph node metastasis
and prognosis of these tumors. However, the specific mechanisms of
PIGF in HNSCC are not yet fully understood and require
further research.

We observed varying correlations between PIGF mRNA and
other mRNAs, suggesting that PIGF may have multifaceted roles
within the tumor microenvironment of HNSCC (Shiah et al., 2021;
Bebek et al., 2011). The presence of both positive and negative
correlations indicates that PIGF may function synergistically with or
in opposition to other genes, reflecting its involvement in different
signaling pathways (Carmeliet et al., 2001; Gerritsen et al., 2003). For
example, its interaction with immune-related genes could either
promote or suppress immune responses, depending on the cellular
context. The negative correlation with CD274 (PD-L1), a key
immune checkpoint molecule involved in cancer immune
evasion, suggests that higher PIGF expression may be associated
with lower PD-L1 levels in HNSCC, potentially reducing immune
suppression (Mann et al., 2023; Boschert et al., 2020). This finding
aligns with previous studies, which have shown that PIGF
expression can be inversely related to immune checkpoint
proteins, likely due to its role in modulating the immune
microenvironment. Notably, miRNAs positively correlated with
PIGF, such as hsa-let-7b-5p and hsa-miR-29c-3p, are known for
their roles in regulating tumor growth and immune responses
(Salehi et al., 2018; Salehi et al., 2020). This indicates broader
regulatory mechanisms influencing cell proliferation, migration,
and immune cell infiltration. The observed negative correlations
with miRNAs such as hsa-miR-30c-5p and hsa-miR-29b-3p suggest
that these miRNAsmay have tumor-suppressive functions, and their
reduced expression, in combination with elevated PIGF levels, could
promote tumor progression by enhancing angiogenesis and
reducing immune cell infiltration (Kontomanolis et al., 2019;
Orso et al., 2020). This underscores the potential of PIGF and its
related miRNAs as therapeutic targets to inhibit tumor growth and
modulate the immune landscape in HNSCC. These findings suggest
that PIGF plays a dual role in HNSCC by influencing both the
angiogenic process and immune response. Its complex interactions
with various mRNAs and miRNAs highlight its potential as a
therapeutic target. Future research should focus on elucidating

the exact mechanisms by which PIGF modulates the tumor
microenvironment, particularly in the context of its interactions
with miRNAs and immune checkpoint pathways.

The open access and interdisciplinary application of the
aforementioned studies further promote the development of
precision medicine, emphasizing the importance of
comprehensive data analyses and multidimensional assessment in
modern medicine (Oinaka et al., 2024). Our cellular experiments
confirm that silencing PIGF significantly inhibited HNSCC cells
viability and invasive ability. MTT assays, colony formation assays,
Transwell assays, and scratch assays collectively demonstrate the
critical role of PIGF in HNSCC cell growth and metastasis. In
Figure 2H, we observed a significant upregulation of PIGF in stage
III and IV head and HNSCC, which was linearly correlated with
disease severity. However, the expression level of PIGF in stage II
was unexpectedly lower than that in stage I, despite the expectation
that PIGF expression would gradually increase with tumor
progression. Several potential explanations may account for this
anomaly. First, stage II tumors may be influenced by unique
microenvironmental factors, such as hypoxia, nutrient
availability, or fibroblast activity levels, which differ from those in
stage I or more advanced tumors. These factors could render the
tumor microenvironment less conducive to PIGF expression.
Additionally, variations in inflammation and immune responses
between stage II and other stages may also contribute to differences
in PIGF expression. Second, the sample size effect may play a role, as
stage II tumors might have a smaller or more heterogeneous sample
population, which could impact the observed expression pattern.
Biological variability between tumors at the same stage may also
result in differing PIGF expression levels, with stage II tumors
potentially comprising subpopulations characterized by lower
inherent PIGF expression. Finally, stage II tumors may involve
distinct molecular pathways or regulatory mechanisms that
influence PIGF expression differently compared to early or late-
stage tumors. These genetic or epigenetic alterations might uniquely
affect PIGF regulation in stage II, further contributing to the
observed expression pattern. Future studies should focus on
examining the tumor microenvironment, immune responses, and
molecular pathways unique to stage II HNSCC, as well as exploring
potential genetic and epigenetic differences that may regulate PIGF
expression. Additionally, expanding the sample size and conducting
deeper molecular characterization may help elucidate the biological
factors contributing to these observed discrepancies.

In recent years, exercise, as a healthy lifestyle, has been shown to
be closely related to the prognosis of various cancers (Idorn and
Thor Straten, 2017). Exercise can improve the overall health of
patients, enhance immune function, and reduce chronic
inflammation, potentially lowering cancer risk and improving
cancer patient prognosis (Thomas et al., 2021; Hojman, 2017).
Moderate exercise has been shown to benefit HNSCC patients by
improving quality of life, alleviating treatment-related side effects,
and enhancing survival rates (Avancini et al., 2023). However, the
mechanisms by which exercise influences the occurrence and
development of HNSCC and whether exercise-related genes exist
remain unclear. Investigating the relationship between exercise and
HNSCC prognosis, as well as the role of exercise-related genes in
HNSCC, is crucial for developing new preventive and therapeutic
strategies (Sun et al., 2020; Jin and Yang, 2019). Our study
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successfully identifies exercise-survival prognosis-related genes in
HNSCC and conducts multi-gene analysis. This analysis not only
validates the prognostic value of individual genes but also
demonstrates the potential of these genes as a collective in
predicting HNSCC prognosis. Overall, the results of this study
provide new molecular targets and insights for personalized
treatment and prognosis evaluation in HNSCC. In this work, we
conducted a comprehensive multi-omics investigation, integrating
large-scale genomic, transcriptomic, and proteomic datasets to gain
a deeper understanding of the molecular mechanisms underlying
the biological processes of interest. Rigorous bioinformatics analyses
were performed to ensure the robustness and reliability of our
findings. Furthermore, we performed integration of the multi-
omics datasets using advanced computational approaches, such
as correlation analysis and network-based integration, to gain a
comprehensive and coherent understanding of the underlying
biological mechanisms. These studies not only deepen our
understanding of disease mechanisms but also provide a solid
theoretical foundation and experimental evidence for future
therapeutic strategies (Zeng et al., 2024). By integrating multiple
research methods and technologies, including small molecule
compound screening, multi-omics analysis, deep learning, and
bioinformatics technologies, scientists are continuously exploring
and developing new therapeutic strategies, offering new possibilities
for precision medicine and personalized treatment (Yin et al., 2024;
Li T. et al., 2024).

5 Conclusion

In this study, we identified and analyzed exercise-related genes
with prognostic significance in HNSCC through comprehensive
bioinformatics and cellular experiments. Among these, the PIGF
gene demonstrated notable differential expression in HNSCC
tissues, and its association with immune cell infiltration, tumor
diagnostic efficacy, and therapeutic response positions it as a key
biomarker. Furthermore, PIGF’s role in modulating PTMs such as
phosphorylation and ubiquitination underscores its potential in
regulating cancer progression and immune evasion. These
findings provide new insights into the molecular mechanisms
underlying HNSCC and suggest that targeting PTMs in PIGF
could open novel therapeutic avenues. Future research should
further explore the mechanistic roles of PTMs in PIGF
regulation, advancing personalized treatment strategies for
HNSCC patients.
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PIGF Gene Survival Prognosis Analysis Supplementary. (A–D) Independent
prognostic analysis to observe whether the association between the PIGF
gene and tumor survival is independent of traditional clinical variables, such
as age, gender, grade, stage, tumor purity, lymphocyte infiltration, and other
factors were considered. Statistical methods used include Univariate Cox
(UniCox) and Multivariate Cox (MultiCox) regression analyses. Hazard ratios
(HR) with 95% confidence intervals (CI) and p-values are reported for each
variable. (E) PIGF expression versus survival status plot. The top plot displays
PIGF expression levels in high and low-expression groups, while the
bottom plot correlates these groups with overall survival status (alive or dead)
(F) Chi-square test to examine the distribution of survival status (alive vs.
dead) across different expression quartiles (Q1-Q4) of PIGF. The p-value
indicates the significance of the observed distribution differences. (G–J)
Restricted cubic spline models exploring the non-linear risk association of
the PIGF gene with four survival outcomes: overall survival (OS), disease-
specific survival (DSS), progression-free interval (PFI), and disease-free
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interval (DFI). The splines are adjusted for relevant covariates, and the plots
show the estimated log hazard ratios with 95% confidence bands across
the range of PIGF expression. (K–N) Kaplan-Meier survival analysis for the
four survival outcomes: OS, DSS, PFI, and DFI, stratified by high and low PIGF

expression groups. Survival curves are presented with log-rank test
p-values to assess the statistical significance of the differences between
groups. Each plot shows the number of patients at risk over time and the
median survival times.
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