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Background: Prostate cancer is one of the leading causes of cancer-related
deaths in men. Its molecular pathogenesis is closely linked to various genetic and
epigenetic alterations, including posttranslational modifications like
SUMOylation. Identifying biomarkers that predict outcomes and specific
therapeutic targets depends on a comprehensive understanding of these
processes. With growing interest in SUMOylation as a mechanism affecting
prostate cancer-related genes, this study aimed to investigate the central role
of SUMOylation in prostate cancer prognostics, focusing on the significance
of NOP58.

Methods: We conducted a comprehensive bioinformatics analysis, integrating
differential expression analysis, survival analysis, gene set enrichment analysis
(GSEA), and single-cell transcriptomic analyses using data from The Cancer
Genome Atlas (TCGA). Key genes were identified through intersections of
Venn diagrams, Boralta algorithm signatures, and machine learning models.
These signaling mechanisms were validated through experimental studies,
including immunohistochemical staining and gene ontology analyses.

Results: The dual-gene molecular subtype analysis with SUMO1, SUMO2, and
XPO1 genes revealed significant differences in survival outcomes across
molecular subtypes, further emphasizing the potential impact of NOP58 on
SUMOylation, a key post-translational modification, in prostate cancer.
NOP58 overexpression was strongly associated with shorter overall survival
(OS), progression-free interval (PFI), and disease-specific death in prostate
cancer patients. Immunohistochemical analysis confirmed that NOP58 was
significantly overexpressed in prostate cancer tissues compared to normal
tissues. ROC curve analysis demonstrated that NOP58 could distinguish
prostate cancer from control samples with high diagnostic accuracy. Gene
Ontology analysis, along with GSVA and GSEA, suggested that NOP58 may be
involved in cell cycle regulation and DNA repair pathways. Moreover,
NOP58 knockdown led to increased BCL2 expression and decreased
Ki67 levels, promoting apoptosis and inhibiting cell proliferation. Colony
formation assays further showed that NOP58 knockdown inhibited, while its
overexpression promoted, colony formation, highlighting the critical role of
NOP58 in prostate cancer cell growth and survival. Additionally, NOP58 was
linked to drug responses, including Methotrexate, Rapamycin, Sorafenib, and
Vorinostat.

Conclusion: NOP58 is a key regulator of prostate cancer progression through its
mediation of the SUMOylation pathway. Its expression level serves as a reliable
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prognostic biomarker and an actionable therapeutic target, advancing precision
medicine for prostate cancer. Targeting NOP58 may enhance therapeutic efficacy
and improve outcomes in oncology.
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Background

Prostate cancer (PCa) is one of the most prevalent male
malignancies and its morbidity and mortality are high worldwide
(Enikeeva et al., 2024). Although there has been significant progress
in the diagnosis and treatment of prostate cancer over recent years,
its molecular nature is complex and characterized by multiple
interacting biological mechanisms which require comprehensive
investigation (Nevedomskaya and Haendler, 2022; Wasim et al.,
2022). Prostate cancer is a typical malignant carcinoma of the
prostate, which has its own unique genes, and from this
background many molecular mechanisms related to its onset
have been clarified including genetic mutations, epigenetic
modification, post-translational modifications, etc., in which
SUMOylation is acrucial post-translational modification with
wide biological functions (Samaržija, 2021; Sun et al., 2023).

SUMOylation (Small Ubiquitin-like Modifier) is a process in
which SUMO proteins attach to target proteins post-translationally
(Eifler and Vertegaal, 2015; Raju, 2019). This process is an important
feature of numerous cellular biology processes such as
transcriptional regulation, DNA repair, signal transduction and
cell cycle control mechanisms (Soutourina and Werner, 2014;
Tunçer and Kavak, 2020). SUMOylation is a reversible and
dynamic posttranslational modification that modulates the
stability, subcellular localization, and interaction networks of
target proteins to regulate cell function and fate (Sahin et al.,
2022; Huang et al., 2024). In recent years, a growing number of
researches have demonstrated that SUMOylation is associated with
the initiation and progression of human cancer (Du et al., 2021; Qin
et al., 2021).

Although much of the cancer research has already recognized
the role of SUMOylation, its distinct mechanisms and actions in
prostate cancer remain largely unknown (Vlachostergios and
Papandreou, 2012; Wang and Yu, 2021). The occurrence and
progression of prostate cancer are mediated by multiple
molecular and cellular pathways, and SUMOylation may be
involved in the development of PCa by regulating critical
proteins in these pathways (Wang and Yu, 2021; Ballar
Kirmizibayrak et al., 2020). The occurrence and progression of
prostate cancer are mediated by multiple molecular and cellular
pathways, and SUMOylation may be involved in the development of
PCa by regulating critical proteins in these pathways (Sun et al.,
2023; Wu et al., 2020).

The specific objectives of this study were to discover the key
genes associated with SUMOylation activity that could predict the
prognosis of patients with prostate cancer (Sun et al., 2023; Liu et al.,
2020). Bioinformatics methods, such as differential expression
analysis, survival analysis, gene set enrichment analysis (GSEA),
single-cell transcriptomics will be used to show how these genes are

involved throughout the progression of prostate cancer (Khan et al.,
2022; He et al., 2019). In the present study, we showed that NOP58 is
a critical regulator in th SUMOylation pathway by comprehensive
analysis. The diagnostic and therapeutic biomarker value of
NOP58 was extended in this study by immunohistochemistry,
gene ontology and pathway analysis.

Utilizing bioinformatics, the present study was conducted to
identify and analyze the prognostic-related modification of SUMO
ubiquitination in genes asso-ciated with prostate cancer (Sun et al.,
2023; Wang and Yu, 2021). Utilizing bioinformatics, the present
study was conducted to identify and analyze the prognostic-related
modification of SUMO ubiquitination in genes asso-ciated with
prostate cancer (Liu et al., 2022; Boldrini et al., 2021). Survival
prognosis analysis of OS/PFI/DSS were then conducted; these results
indicated that several genes might have a prognostic value in
prostate cancer survival outcomes (Clayman et al., 2020; Reyes
et al., 2021). The VennDiagram.R package was utilized to
determine the intersection of OS-PFI-DSS related genes (Zhou
et al., 2024; Chen et al., 2022). These intersecting prognostic
genes were then subjected to binary Boruta analysis to pinpoint
key genes closely linked to prostate cancer (Liu et al., 2020; He et al.,
2019). In addition, a suite of ten machine learning algorithms (GLM,
Elastic Net, GBM, SVM, KNN, RF, Naive Bayes, stepLDA, Logit, and
PLS) was applied to refine the selection of genes closely related to
prostate cancer (Passera et al., 2021). Differential expression analysis
was conducted on these genes, with those exhibiting p < 0.05 and a
fold change in expression ≥2 being identified as differentially
expressed genes. Subsequently, single-gene survival regression
analyses (OS/PFI/DSS/DFI) were performed on the core
differentially expressed genes identified.

Furthermore, the expression landscape of NOP58 in prostate
cancer was thoroughly investigated, demonstrating significant
findings across various analyses. Immunohistochemical staining
revealed marked NOP58 protein presence in prostate cancer
tissues compared to adjacent non-cancerous tissues (Yu et al.,
2004). The core gene interaction network highlighted NOP58’s
central role (Papasaikas et al., 2015; Cervantes et al., 2020).
Predictive models showed good calibration for prostate cancer
prediction using NOP58 expression (Kearns and Lin, 2017).
Differential expression analysis indicated significant upregulation
of NOP58 in tumor tissues in both non-paired and paired samples
(Sanchez-Palencia et al., 2011). The ROC curve demonstrated high
diagnostic accuracy for NOP58 in distinguishing tumor from
normal tissues. Further analysis revealed no significant expression
differences across molecular subtypes but highlighted differences in
immune subtype distributions and treatment outcomes correlated
with NOP58 expression. Correlation analysis with CD274 and
survival prognosis analyses indicated significant interactions and
stratified survival outcomes. Univariate and multivariate Cox
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regression analyses showed NOP58’s significant impact on survival
outcomes, with restricted cubic spline analysis exploring potential
non-linear risk relationships. GSEA/GSVA enrichment analyses
provided insights into metabolic pathways associated with
NOP58 expression.

The discovery of NOP58 as a key regulatory factor provides a
new perspective on the biology of prostate cancer and highlights its
potential as a prognostic biomarker and therapeutic target (Arriaga-
Canon et al., 2018; Felgueiras et al., 2014). The main purpose of this
study is to deepen the understanding of the molecular mechanisms
of prostate cancer by focusing on the SUMOylation pathway and its
prognostic significance (Sun et al., 2023; Vlachostergios and
Papandreou, 2012).

Materials & methods

Identification and analysis of prognostic
genes in prostate cancer related to SUMO
ubiquitination modifications

In the current study, we used bioinformatics methods to screen
prognostic genes associated with SUMO ubiquitin modifications in
prostate cancer (Sun et al., 2023; Zhang et al., 2023a). At the outset,
prostate cancer transcriptome data extracted from The Cancer
Genome Atlas (TCGA) database Successive systematic scale OS/
PFI/DSS survival prognosis analyses were carried out to discover
mRNAs closely related to prostate cancer survival outcomes (Reyes
et al., 2021; Mu et al., 2020). The VennDiagram. I Identify overlap
genes of OS-PFI-DSS; R package Next, these overlapping prognostic
genes were further identified by binary Boruta algorithm to identify
important PCa relevant genes (Liu et al., 2020; He et al., 2019).
Furthermore, a panel of ten machine learning algorithms (GLM,
Elastic Net, GBM, SVM, KNN, RF),m Naïve Bayes, stepLDA, Logit
and PLS) was used to further narrow down genes closely associated
with prostate cancer (Saeedi et al., 2022; Ying et al., 2021).
Differential expression analysis was conducted on these genes,
with those exhibiting p < 0.05 and a fold change in
expression ≥2 being identified as differentially expressed genes.
Subsequently, single-gene survival regression analyses (OS/PFI/
DSS/DFI) were performed on the core differentially expressed
genes identified. The forestplot package was used to create forest
plots displaying hazard ratios and their 95% confidence intervals.
Furthermore, a survival prognosis model was developed based on
the expression profiles of these core differentially expressed genes,
and survival prognosis curves were generated (Li et al., 2021; Wang
et al., 2021). This process aimed to develop a diagnostic model for
prognostic genes in prostate cancer related to SUMO ubiquitination
modifications (Sun et al., 2023; Zhang et al., 2023a).
Immunohistochemical data was sourced from the HPA database
(https://www.proteinatlas.org/).

GSEA and immune infiltration analysis

To perform differential analysis between tumor and normal
groups, the limma package was utilized to compute the log2 fold
change (log2FC) for each gene. Genes were ranked based on their

log2FC values, and gene set enrichment analysis (GSEA) was carried
out using the clusterProfiler package, focusing on the SUMO gene
set. The enrichment score (ES) for each gene set was calculated,
followed by significance and multiple hypothesis testing on these ES
values. Additionally, the pROC package was employed for receiver
operating characteristic (ROC) analysis to determine the 95%
confidence interval, total area under the curve, and to plot a
smooth ROC curve. This was done to assess the diagnostic
performance of ssGSEAscore expression in both tumor and
normal groups. The survival package facilitated Kaplan-Meier
survival analysis, determining optimal cutoff values for high and
low ssGSEAscore groups using the survminer package (ensuring a
minimum proportion of 0.3 for both groups). The significance of the
differences between high and low scoring groups was evaluated
using the log-rank test with the survfit function. Univariate Cox
survival analysis results were meta-analyzed via the inverse variance
method, using log hazard ratio (HR) values as the primary measure.
Statistical analyses and visualizations were conducted using R
(version 4.3.2) with the Meta package.

Prostate cancer expression
landscape analysis

The expression levels of the core gene NOP58 in prostate cancer
tissues and adjacent non-cancerous tissues were investigated using the
Human Protein Atlas (HPA). To filter protein-protein interaction data,
the ComPPI database was utilized, ensuring the exclusion of biologically
implausible interactions and introducing interaction scores to quantify
data accuracy. The diagnostic performance of gene expression in
distinguishing tumor from normal tissue was assessed using ROC
analysis via the pROC package, calculating the 95% confidence
interval and AUC, and plotting ROC curves. The data used
originated from TCGA-corrected RNA-seq data, processed through
Firehose and normalized. Z-score standardization identified outliers,
and the Wilcoxon Rank Sum Test assessed expression differences
between tumor and normal tissues. Combining GTEx and TCGA
data, Z-score standardization was again performed to exclude
outliers, followed by ROC analysis to evaluate gene expression’s
diagnostic performance. The Wilcoxon Rank Sum Test was also
applied to compare NOP58 expression between prostate cancer and
adjacent tissues. To evaluate the accuracy of model predictions,
calibration curves and goodness-of-fit tests were employed. Six
molecular immune subtypes related to tumor characteristics and
prognosis were categorized by median value, and their significance
in subtype proportions was assessed using the chi-square test. The
Kruskal-Wallis Rank Sum Test compared NOP58 expression
differences across various molecular subtypes. Clinical variables were
statistically grouped based onmedian expression, and their proportions
were evaluated using the chi-square test.

Prostate cancer WGCNA analysis

Genes that exhibit similar expression patterns may be co-
regulated, functionally related, or part of the same pathway. To
identify hub genes and investigate the relationship between gene
networks and specific phenotypes, we utilized Weighted Gene
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Co-expression Network Analysis (WGCNA). By employing the
“WGCNA” package in R, we constructed a weighted gene co-
expression network characterized by approximate scale-free
properties. The analysis determined highly co-expressed genes
through the correlation of their expression values. Topological
overlap measurement (TOM) was used to generate network
modules, and co-expression gene modules were identified via the
dynamic hybrid cutting method, which is a bottom-up approach.
Modules with dissimilarity thresholds lower than 0.25 were
subsequently merged. The correlation between genes and
modules was assessed by calculating gene significance (GS) and
module significance (MS).

Survival prognosis analysis

In prostate cancer tissue samples, the Pearson correlation between
the target gene and both mRNA and miRNA was computed and
represented using scatter plots. Only results where the absolute value
of the correlation coefficient exceeded 0.3 were considered significant.
Gene expression levels were categorized based on their correlation
strength with the target gene into four groups: positive correlation,
moderate correlation, weak correlation, and negative correlation,
which were then visualized using a contingency table
heatmap. Statistical significance was assessed using Fisher’s exact
test. To examine the relationship between gene expression levels
and patient survival, Kaplan-Meier survival analysis was employed.
Detailed survival data analysis was conducted with the survival
package in R, and the survminer package was used to determine
optimal cutoff values for high and low expression groups, ensuring
that each group contained at least 30% of the total sample size.

The survfit function was utilized to conduct log-rank tests on
various survival metrics, including overall survival (OS), disease-
specific survival (DSS), progression-free survival (PFS), progression-
free interval (PFI), disease-free survival (DFS), and disease-free
interval (DFI), to evaluate the significance of differences in
survival between different gene expression level groups.
Additionally, a meta-analysis using the univariate Cox
proportional hazards model was performed, integrating results
from multiple studies through the inverse variance method, with
hazard ratio (HR) as the main measure of effect size to distinguish
potential tumor-suppressive and tumor-promoting effects.
Although this method categorizes genes effectively, it does not
explore their biological mechanisms. Statistical analyses and
visualizations were executed in the R (version 4.3.2) environment
using the Meta package, which offers comprehensive functions for
conducting meta-analyses and creating forest plots and funnel plots
to visually present combined effect sizes and assess publication bias.

Enrichment analysis

In this study, we employed a stratified approach to categorize
samples into high and low gene expression groups, with the top 30% of
samples designated as the high-expression group and the bottom 30%
as the low-expression group. This method allowed us to identify the
most significant changes in gene expression associated with disease
progression. Additionally, GSEA was conducted using the fgsea

function in the fgsea package, based on the KEGG database.
Enrichment scores were calculated for gene sets, and those with an
unadjusted p-value <0.05 and an adjusted p-value <0.25 were
considered biologically significant. The results were visualized to
highlight key biological processes. We redefined the 14 innate
functions of tumor cells by projecting data onto multi-datasets and
integrated datasets from CancerSEA, facilitating the identification of
tumor cell states within a comprehensive functional framework.
Functional state gene sets were calculated using the z-score
algorithm proposed by Lee et al., implemented via the GSVA
package in R, which transformed gene set values into z-scores.
Pearson correlation analysis was then used to investigate the
relationship between gene expression and functional states,
specifically focusing on the correlation between gene expression and
z-scores of gene sets. Finally, the gsva function in the GSVA package
was employed to score 73metabolic gene sets from the KEGG database.
These GSVA scores were then compared between the high and low
expression groups using the limma package to elucidate the roles of
these pathways in disease progression.

Immunotherapy sensitivity

To explore the relationship between gene expression and drug
sensitivity, we conducted a non-parametric Spearman correlation
analysis between gene expression levels and the area under the dose-
response curve (AUC) values from the CTRP and PRISMdatabases.We
also analyzed the relationship between gene expression and half-
maximal inhibitory concentration (IC50) values from the
GDSC1 and GDSC2 databases. A negative correlation indicated that
high gene expression was associated with increased sensitivity to a drug,
while a positive correlation suggested a gene’s high expression was
linked to increased resistance to the drug. For potential novel
therapeutic strategies, we assessed overlaps in cancer dependencies
that could be mitigated by drug inhibition using cMAP analysis. The
cMAP_gene_signatures RData file was utilized to establish the analysis
framework. The XSummethod was employed to compare gene features
in signatures of the 150most upregulated and downregulated genes with
those in the cMAP database, calculating compound similarity scores.
When gene expression had a repressive effect, the compounds were
termed as TIPs. ROC analysis, performed using the pROC package, was
used to evaluate how effectively these compounds could differentiate
between immunotherapy responders and non-responders. The analysis
included 95% confidence intervals, AUC values, and ROC curves to
measure gene expression efficacy. Finally, Spearman correlation analysis
was used to assess the relationship between gene expression and the TIP
score, and autocorrelation of TIP scores was visualized using the linkET
package. CYT levels were determined in the TCGA-HNSCdataset using
the simpler package, and theWilcoxonRank Sum and SignedRank tests
were applied to examine differences in CYT scores between high and
low PDCD1 expression groups.

Core single gene immune
infiltration analysis

Immune infiltration analysis was performed using data from the
TIMER 2.0 database, which analyzes immune cell infiltration across
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TCGA samples. For the first time, we examined the infiltration of
10 representative types of immune cells in human pan-cancer
tissues. The database employs various algorithms to estimate the
quantities of individual immune cell types within the tumor
microenvironment and their correlation with different gene
expression levels. These algorithms, along with subsequent
validation, enhance data quality and consistency, enabling a
detailed investigation of the relationship between gene expression
and immune cell infiltration. Correlation coefficients between gene
expression and immune cell content were visualized using bar
scatter plots to facilitate data interpretation, illustrating the
relationship between gene expression and immune cell types.
Based on the median level of gene expression, samples were
divided into high-expression and low-expression groups. The
Wilcoxon Rank Sum Test, a non-parametric method suitable for
multiple data distributions, was applied to detect significant
differences in immune cell content between the two groups.
Significant immune cell types were further visualized with a
heatmap, which arranged samples in ascending order of gene
expression levels. The intensity of the heatmap colors provided
an intuitive representation of immune cell content levels, revealing
patterns and differences in immune infiltration among the samples.

Core single gene genomics analysis

In this study, whole-genome CRISPR screening data from the
DepMap portal were examined using the CERES algorithm to
evaluate dependency scores for around 17,000 candidate genes.
The pan-cancer mutation landscape of the core gene was
visualized using the plotmafSummary function from the maftools
package. To assess the independence between gene expression levels
and specific gene mutation types, the independence_test function
from the coin package in R was utilized, based on permutation tests.
Genes with a mutation rate exceeding 10% and a p-value less than
0.01 were identified and visualized to highlight significant
associations between gene expression and mutation types. For
the tumor copy number spectrum analysis in the TCGA-HNSC
project, genome copy number variations (CNVs) were identified
using the gistic score method. The CNV profiles of 451 samples
were visualized using bar plots, offering a clear representation of
copy number changes across chromosomes. The quantitative
metrics of genome alterations, such as FGA, FGG, and FGL,
were defined and calculated based on the genomic distances of
clonal regions. Analysis of variance (ANOVA) was conducted to
investigate differences among specific gene expression subgroups,
and if ANOVA was significant, multiple comparisons were
performed using the TukeyHSD method to pinpoint specific
group differences. The correlation between CNV scores and gene
expression levels was analyzed using scatter plots combined with the
Spearman rank correlation coefficient to measure the monotonic
relationship between the two variables. Experimental data for copy
number spectra were sourced from the TCGA Genome
Characterization Center and obtained through whole-genome
microarray measurements. Gene-level copy number estimates
were derived using the TCGA FIREHOSE pipeline and the
GISTIC2 method. The Kruskal-Wallis test, a non-parametric
method for multiple sample comparisons, was used to compare

gene expression differences among various copy number
types (−2 to 2).

Single gene pan-cancer single-cell
sequencing analysis

In this study, single-cell gene expression data for prostate cancer
were sourced from the GEO database, specifically dataset
GSE172301. Heatmaps created with the pheatmap package
effectively illustrated single-cell gene expression patterns across
various cancer types. Hierarchical clustering analysis, using
Euclidean distance and Ward’s minimum variance method, was
employed to uncover intrinsic patterns of gene expression and their
conservation among different cancers. Additionally, UMAP
technology was utilized to explore expression patterns in high-
dimensional data, maintaining the original data topology while
reducing dimensions. UMAP analysis of CENPF gene expression
data provided an intuitive display of gene expression patterns and
facilitated the identification of key biological differences. To evaluate
specific gene expression differences among various cell types, the
Kruskal-Wallis Rank Sum Test was employed. This non-parametric
statistical method is suitable for non-normally distributed samples
and is effective in detecting significant differences among multiple
independent sample groups. Moreover, AUCell scoring, which
indicates pathway activity heterogeneity in cells, was
dimensionally reduced and visualized using UMAP technology.
This application of UMAP enabled an intuitive understanding of
the distribution of these pathway activities and the identification of
potential biological differences.

Core gene single-cell spatial
transcriptomics analysis

In this study, single-cell gene expression data for prostate cancer
were sourced from the TISCH database. The pheatmap package was
utilized to generate heatmaps, effectively revealing gene expression
patterns at the single-cell level across various cancer types.
Hierarchical clustering analysis, employing Euclidean distance
and Ward’s minimum variance method, uncovered intrinsic gene
expression patterns and their conservation across different cancers.
Additionally, UMAP technology was applied to explore high-
dimensional expression patterns, preserving the original data
topology while reducing dimensions. This UMAP analysis of
CENPF gene expression data provided an intuitive display of
gene expression patterns and facilitated the identification of key
biological differences.

To evaluate specific gene expression differences among various
cell types, the Kruskal-Wallis Rank Sum Test was employed. This
non-parametric statistical method is suitable for non-normally
distributed samples and effectively detects significant differences
among multiple independent sample groups. Furthermore, AUCell
scoring, which indicates pathway activity heterogeneity in cells, was
dimensionally reduced and visualized using UMAP technology. This
approach allowed for an intuitive understanding of the distribution
of pathway activities and the identification of potential biological
differences.
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Cell culture

We obtained human cell lines PC-3 and LNCaP from the
Shanghai Cell Bank (Shanghai, China). Each cell line was
cultured under specific conditions to ensure optimal growth and
viability. The PC-3 and LNCaP cell lines were maintained in RPMI
1640 medium, supplemented with 10% fetal bovine serum (FBS) to
provide essential nutrients and hormones that promote cell
proliferation. Additionally, 1% L-glutamine was added to the
medium to support protein synthesis and maintain cellular
metabolism. To prevent bacterial contamination, 1%
penicillin–streptomycin solution was included. The cells were
incubated at 37°C in a 5% CO2 atmosphere. All cell lines were
regularly monitored for confluency and morphology under a
microscope, and the media was changed every 2–3 days to
maintain a fresh supply of nutrients and remove waste products.
Cell passages were performed at 70%–80% confluency to avoid
overgrowth and to maintain the cells’ physiological state. Trypsin-
EDTA solution was used for cell detachment during passaging, and
cells were counted using a hemocytometer to ensure accurate
seeding densities for subsequent experiments.

Cell proliferation assay

To evaluate cell proliferation rates, we employed the CCK-8
assay using the CCK-8 kit (Dojindo, Kumamoto, Japan). Cells were
seeded into 96-well plates and cultured for 0, 24, 48, 72, and 96 h.
Every day, a CCK-8 solution was added to each well and allowed to
incubate with the cells for 2 hours. Cell viability was then assessed by
measuring the absorbance at 450 nm using a microplate reader.

Clone formation assay for cell proliferation

Cells in the logarithmic growth phase from each group were
collected and diluted to a concentration of 500 cells/mL. To
prepare the wells of a 6-well plate, 1 mL of medium was added
to wet the wells, followed by the addition of 1 mL of the cell
suspension to each well. Each group was plated in triplicate. The
cells were incubated overnight at 37°C in a 5% CO2 incubator to
allow for adhesion. After overnight incubation, cells were collected
from each group, and 5 × 104 cells per well were added to the
corresponding wells, with the medium being changed every 2 days.
Following a 12-day incubation period, the medium was discarded
from the 6-well plate, and the wells were washed twice with PBS.
To fix the cells, 1 mL of methanol was added to each well and left at
room temperature for 20 min. After removing the methanol, 1 mL
of 0.1% crystal violet was added to each well for staining, also at
room temperature for 20 min. The wells were then washed with
PBS until the background was clear. Colonies were photographed
and counted.

qRT-PCR

Total RNA was extracted from cells by adding 1 mL of Trizol
reagent to each well and transferring the contents to 1.5 mL EP

tubes, followed by a 10-min lysis. Next, 200 μL of chloroform was
added to each tube, and the samples were centrifuged at 12,000 rpm
for 15 min at 4°C. The upper aqueous phase was carefully
transferred, and 400 μL of isopropanol was added. Following
multiple rounds of centrifugation, the supernatant was discarded,
and the RNA pellet was dissolved in 20 μL of DEPC-treated water.
Reverse transcription into cDNA was performed under the
following conditions: 25°C for 5 min, 50°C for 15 min, 85°C for
5 min, and 4°C for 10 min. The resulting cDNA was diluted 10-fold
and then amplified using real-time fluorescent quantitative PCR,
with GAPDH serving as the reference gene.

Statistical analysis

The findings are based on a minimum of three independent
experiments and are expressed as the mean ± standard deviation.
Differences between groups were evaluated using either one-way
analysis of variance (ANOVA) or Student’s t-test. A p-value of less
than 0.05 was considered statistically significant, while a p-value of
less than 0.01 indicated high statistical significance.

Results

Identification of SUMO ubiquitination-
related prognostic genes in prostate cancer

In this study, we identified key prognostic genes associated with
SUMO ubiquitination modifications in prostate cancer. First, we
examined genes linked to OS, PFI, and DSS (Figures 1A–C). To
refine the analysis, a Venn diagram (Figure 1D) was used to identify
the intersection of genes associated with OS, PFI, and DSS, allowing
us to pinpoint common genes that are prognostic across multiple
survival metrics. Further refinement using the Boruta algorithm
(Figures 1E, F) identified key genes, with boxplots and feature
importance scores highlighting those deemed critical for the
prognostic model. Next, we employed ten machine learning
models to screen for genes significantly associated with prostate
cancer prognosis (Figures 1G–J). The bar charts illustrate the top
genes selected by different models, showcasing their frequency of
selection and importance in predicting prognosis. Univariate Cox
regression analysis was subsequently conducted (Figures 1K–N),
with forest plots displaying the HRs and CIs of these genes, reflecting
their independent impacts on prognosis. Calibration plots and
receiver operating characteristic (ROC) curves for the model’s
predictions of patient outcomes are shown in Figures 1O, P.
Kaplan-Meier survival curves for OS, PFI, DSS, and DFI were
generated based on the multigene model groups, with log-rank
p-values indicating statistically significant differences between
patient groups. Lastly, a detailed Cox regression analysis for the
multigene model was performed (Figure 1U). The forest plot
effectively summarizes the HRs and corresponding CIs for the
multigene model, demonstrating its comprehensive prognostic
significance across various survival measures. Validation methods
were combined with boxplots (Figure 1V) to compare, in a
straightforward manner, the expression levels of the core genes in
normal versus tumor tissues.
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FIGURE 1
Identification of SUMOUbiquitination-Related Prognostic Genes in Prostate Cancer (A–C) Survival prognostic genes related toOverall Survival (OS),
Progression-Free Interval (PFI), and Disease-Specific Survival (DSS). The plots display hazard ratios (HRs) and confidence intervals (CIs) for each gene
analyzed in relation to its predictive value. (D) Venn diagram showing the overlap of significant genes for OS, PFI, and DSS, where common prognostic
genes represent overlapping survival metrics. (E, F) Boruta analysis identifying key genes. The boxplot compares feature importance scores,
illustrating the significance of each gene identified by Boruta in constructing the prognostic model. (G–J) Screening of significant genes using
10 machine learning models. These bar charts highlight the top genes selected by each model. (K–N) Univariate Cox regression analysis for gene-based
prognosis. Forest plots and prognostic genes for overall survival are presented. (O–P) Evaluation of themultigene survival model through calibration plots
and receiver operating characteristic (ROC) curves, assessing themodel’s ability to discriminate patient outcomes. (Q–T) Kaplan-Meier survival curves for
OS, PFI, DSS, and Disease-Free Interval (DFI), illustrating survival probabilities for patients grouped by the multigene model, with log-rank p-values
indicating significance levels. (V) Expression analysis of four core genes in prostate cancer. Boxplots show the differential expression in tumor versus
normal tissues, suggesting their potential as novel diagnostic/therapeutic targets. P-values indicate statistical significance.
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FIGURE 2
Core Gene GSEA Immune Infiltration Analysis. (A) GSEA enrichment analysis of the core gene SMUO gene set. The x-axis represents the rank in the
ordered dataset, and the y-axis shows the enrichment score. (B) Calibration curve and goodness-of-fit test for the prediction of tumor versus normal
groups using ssGSEAscore expression. The x-axis indicates the predicted probability, and the y-axis shows the actual rate, with the ideal curve as a
reference. (C, D) Expression differences of ssGSEAscore between tumor and normal groups. (C) Non-matched samples are shown using a violin
plot, with statistical significance (P = 0.085). (D)Matched samples are shown with a paired analysis plot, indicating a significant difference (P = 0.037). (E)
ROC curve evaluating the diagnostic performance of ssGSEAscore for distinguishing between tumor and normal groups. The area under the curve (AUC)
is provided, demonstrating the model’s discriminatory ability. (F–I) Kaplan-Meier survival analyses for four survival periods: Overall Survival (OS) (F),
Progression-Free Interval (PFI) (G), Disease-Specific Survival (DSS) (H), and Disease-Free Interval (DFI) (I). The survival curves compare high (red) and low
(blue) ssGSEAscore groups, with the number of patients (n) indicated for each group and the corresponding p-values. (J)Meta-analysis of survival hazard
ratios, presenting logHR and 95% confidence intervals for different survival outcomes, including DFI, DSS, OS, and PFI.
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NOP58 GSEA immune infiltration analysis
and prognostic evaluation

Our study aimed to investigate the core gene NOP58 and its role
in immune infiltration within the tumor microenvironment. The
Gene Set Enrichment Analysis (GSEA) revealed significant
enrichment of the core gene NOP58 in the SUMO gene set
(Figure 2A). The predictive performance of the ssGSEAscore was
evaluated using a calibration curve and goodness-of-fit test, showing
an acceptable fit between the predicted and observed probabilities
for distinguishing between tumor and normal groups (Figure 2B).
Further analysis comparing the expression levels of ssGSEAscore
between tumor and normal samples revealed significantly higher
expression in tumor samples, both in non-matched (P = 0.085,

Figure 2C) and paired sample analyses (P = 0.037, Figure 2D). The
diagnostic efficacy of ssGSEAscore, assessed using ROC curve
analysis, exhibited a high area under the curve (AUC) value,
indicating excellent discriminatory power in differentiating
tumor from normal samples (Figure 2E). Kaplan-Meier survival
analysis demonstrated the prognostic significance of ssGSEAscore
in OS, PFI, DSS, and DFI, with lower survival rates observed in the
high ssGSEAscore group and the most significant difference noted
in PFI (P = 0.025, Figures 2F–I). A meta-analysis of survival hazard
ratios further consolidated these findings, indicating a significantly
higher hazard ratio for adverse outcomes in the high ssGSEAscore
group compared to the low group (Figure 2J). The analysis
included hazard ratios for DFI, DSS, OS, and PFI, with
heterogeneity statistics showing moderate variability among the

FIGURE 3
Comprehensive Analysis of NOP58 Expression in Prostate Cancer (A–B) Immunohistochemical staining for NOP58 in prostate cancer and adjacent
non-cancerous tissues. (A) Adjacent non-cancerous tissue shows lower NOP58 staining, while (B) prostate cancer tissue displays significantly higher
NOP58 staining (data from the HPA database). (C) Interaction network of NOP58, highlighting experimentally validated and predicted protein
interactions, emphasizing NOP58’s central role. (D) Calibration plot assessing the predictive accuracy of the NOP58 expression model in prostate
cancer. (E–F) Differential expression analysis of NOP58 in prostate cancer. (E) Violin plot reveals significant upregulation of NOP58 in unpaired tumor
samples compared to normal tissues (p < 0.001). (F) Paired sample analysis shows consistent upregulation in tumor tissues (p = 1.157e-05). (G) ROC curve
evaluating NOP58’s diagnostic performance in distinguishing tumor from normal tissues, with the area under the curve (AUC) indicating high diagnostic
accuracy. (H) Violin plot showing no significant difference in NOP58 expression across molecular subtypes of prostate cancer (p = 0.143). (I) Stacked bar
chart showing immune subtype distribution in high and low NOP58 expression groups across cancers. (J) Violin plot illustrating the correlation between
NOP58 expression and treatment outcomes after the first course of therapy (Kruskal-Wallis Rank Sum Test, p = 0.064).
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FIGURE 4
Analysis of NOP58 Gene Interactions and Survival Prognosis. (A) Correlation analysis of the NOP58 gene with CD274 in prostate adenocarcinoma
(PRAD) using Fisher’s exact test. The heatmap displays the correlation between the expression levels of NOP58 and CD274, with statistical significance
indicated by p-values. (B) Scatter plot illustrating the correlation between NOP58 and CD274 expression levels. The blue line represents the linear
regression fit, with R and p-values indicating the strength and significance of the correlation, respectively. (C–E) Kaplan-Meier survival analysis for
three survival metrics: Overall Survival (OS), Disease-Specific Survival (DSS), and Progression-Free Interval (PFI). The survival curves are stratified by
NOP58 expression levels, with the number of patients at risk displayed below the curves. (F–G) Graphical representation of NOP58 gene expression in
relation to patient survival status. Panel F shows the distribution of NOP58 expression levels with corresponding survival status (alive vs. dead). Panel G
presents the Chi-Square test results for survival status across different quartiles of NOP58 expression, with the p-value indicated. (H–I) Univariate and

(Continued )
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studies. Collectively, these results highlight the critical role of
NOP58 and ssGSEAscore in tumor progression and prognosis,
underscoring their potential as biomarkers for cancer diagnosis
and therapeutic targets.

The critical role of NOP58 in prostate cancer
and its association with SUMOylation
modifications

The expression landscape of NOP58 in prostate cancer was
thoroughly investigated, revealing significant findings across various
analyses. In the HPA dataset, immunohistochemical staining
demonstrated a marked overexpression of NOP58 protein in
prostate cancer tissues compared to adjacent non-cancerous
tissues (Figures 3A, B). The core gene interaction network
highlighted NOP58’s central role (Figure 3C). Predictive models
showed good calibration for prostate cancer prediction using
NOP58 expression (Figure 3D). Differential expression analysis
indicated significant upregulation of NOP58 in tumor tissues in
both non-paired (P < 0.001) and paired samples (P = 1.157e-05)

(Figures 3E, F). The ROC curve demonstrated high diagnostic
accuracy for NOP58 in distinguishing tumor from normal tissues
(Figure 3G). Further analysis revealed no significant expression
differences across molecular subtypes (P = 0.143), but it did
highlight differences in immune subtype distributions and
treatment outcomes correlated with NOP58 expression (Figures
3H–J). Correlation analysis with CD274 and survival prognosis
analyses indicated significant interactions and stratified survival
outcomes (Figures 4A–G). Univariate and multivariate Cox
regression analyses demonstrated NOP58’s significant impact on
survival outcomes, with restricted cubic spline analysis exploring
potential non-linear risk relationships (Figures 4H–L). GSEA/GSVA
enrichment analyses provided insights into metabolic pathways
associated with NOP58 expression (Figures 5A–E). Additionally,
double gene molecular subtype analysis with SUMO1, SUMO2, and
XPO1 genes revealed survival outcome differences across molecular
subtypes, further emphasizing NOP58’s critical role in prostate
cancer biology and patient prognosis (Figures A1–C5).
Additionally, double gene molecular subtype analysis with
SUMO1, SUMO2, and XPO1 genes revealed survival outcome
differences across molecular subtypes, further emphasizing

FIGURE 4 (Continued)

multivariate Cox regression analyses of NOP58 gene expression. Hazard ratios (HR) with 95% confidence intervals (CI) are displayed, assessing the
impact of NOP58 expression on survival outcomes. Panel H shows results from univariate analysis, while panel I shows multivariate analysis results
adjusted for potential confounders. (J–L) Restricted cubic spline analysis to explore the potential non-linear relationship betweenNOP58 expression and
the risk for OS, DSS, and PFI. The plots illustrate the risk estimates across a range of NOP58 expression levels, with confidence intervals indicated by
dashed lines.

FIGURE 5
NOP58 Gene and SUMO-Related Gene Analysis. (A) NOP58-SUMO1 molecular subtype analysis and Kaplan-Meier survival curves. The scatter plot
shows four molecular subtypes based on NOP58 and SUMO1 expression, with corresponding KM curves for survival probability. (B) NOP58-SUMO2
molecular subtype analysis. A similar scatter plot and KM analysis are presented for NOP58 and SUMO2. (C)NOP58-XPO1molecular subtype analysis. KM
survival curves demonstrate outcomes for patients stratified by NOP58 and XPO1 expression.
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NOP58’s critical role in prostate cancer biology and patient
prognosis (Figures A1–C5). These findings suggest that SUMO
modifications may play a pivotal role in prostate cancer

progression and prognosis. This comprehensive analysis
underscores the importance of NOP58 as a prognostic biomarker
and potential therapeutic target in prostate cancer.

FIGURE 6
NOP58 Gene Immune Function Analysis (A) Hallmark Gene Set Enrichment Analysis (GSEA) for high and low NOP58 expression groups, based on
hallmark gene sets, listing normalized enrichment scores (NES), p-values, and FDR q-values. (B) KEGG pathway enrichment analysis comparing enriched
pathways between high and low NOP58 expression groups. (C) ClusterProfiler-based GSEA showing enrichment scores for gene sets in NOP58 high vs.
low expression groups. (D) GSVA score comparison of metabolic pathways between NOP58 expression groups, with significant pathways
highlighted. (E) Pearson correlation analysis of NOP58 expression and tumor states using GSVA scores, showing correlations across 14 tumor states.
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Immune function and pathway enrichment
analysis of NOP58 in prostate cancer

In conclusion, these findings highlight NOP58 as a master
regulator in metabolic adaptation, immune regulation, and tumor
suppression pathways in prostate cancer, underscoring its potential
as a biomarker. The hallmark GSEA presented in Figure 6A for the
high expression group of NOP58 revealed several key pathways,
including MYC_TARGETS_V2 (NES = 3.09, P = 1.7e-03, FDR =
4.9e-03) and UNFOLDED_PROTEIN_RESPONSE. Key pathways
related to DNA repair (NES = 2.40) and the G2/M checkpoint
(NES = 2.77) also showed strong enrichment in the high expression
group of NOP58, suggesting significant associations between
NOP58 transcription levels and processes such as cell division
and DNA damage response. Figure 6B presents the KEGG
pathway enrichment analysis comparing pathways that differ
between high and low NOP58 expression groups. Figure 6C
illustrates the enrichment scores for various gene sets using
ClusterProfiler-based GSEA. High expression of NOP58 was
significantly enriched in genes related to oxidative
phosphorylation and immune response, suggesting a potential
regulatory role of NOP58 in metabolism and immunity in PCa.
The MSI GSVA score analysis (Figure 6D) also confirmed the above
results, highlighting significant metabolic pathways. Signaling
pathways and key metabolic processes, such as oxidative
phosphorylation and purine metabolism, were enriched in the
high expression group, further supporting NOP58 as a key factor
driving metabolic adaptation and DNA repair. Pearson correlation
analysis revealed that NOP58 expression was significantly negatively
correlated with angiogenesis (R = −0.38), apoptosis (R = −0.21, p =
1.4e-06), and metastasis (R = −0.35, p = 2.2e-15) (Figure 6E).
Additionally, NOP58 expression was significantly correlated with
DNA repair (R = 0.5, p = 2.2e-16) and inversely correlated with
quiescence (R = −0.29, p = 8.8e-11), traits typically associated with
aggressive tumors.

Immune microenvironment and
immunotherapy sensitivity analysis of
NOP58 in prostate cancer

In this study, we evaluated the association between
NOP58 expression and the tumor immune microenvironment
(TME) status, as well as its impact on immunotherapy sensitivity
in prostate cancer. Subsequent analyses revealed a detailed series of
results. A Spearman correlation analysis was performed to examine
the relationship between NOP58 expression and various TME
scores, as shown in Figure 7A. The results showed a strong
association between NOP58 expression and immune pathways,

FIGURE 7
Analysis of Core Gene Immunotherapy Sensitivity (A) Tumor
immune microenvironment (TME) scores correlated with
NOP58 expression. The matrix shows Spearman correlations and
auto-correlation of TME scores, with significant results
highlighted. (B)Differentially expressed genes (DEGs) analysis showing
immune stimulatory/inhibitory genes, chemokines, and HLAs
between high and low NOP58 expression groups. Heatmaps display
significant changes in expression levels. (C) Immunomodulator

(Continued )

FIGURE 7 (Continued)

regulation analysis across stimulatory, inhibitory, and other genes
based on NOP58 expression. (D) Heatmap illustrating the association
between immune response markers and genomic status in different
sample groups, showing relationships between genetic factors
and immunity. (E) Genomic status and immune response correlation
heatmap, showing the relationship between genomic events and
immunogenic response outcomes.
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particularly those involving antigen presentation, CD4+/CD8+
T cell recruitment, and immune cell infiltration. Specifically,
NOP58 was involved in immune priming and T cell recognition,
suggesting its potential role in modulating immune responses
within the tumor microenvironment. In Figure 7B, we
performed a differential expression analysis of immune-related
genes, categorized as immune-stimulatory/inhibitory genes,
chemokines, and HLA genes, comparing high and low
NOP58 expression groups. Heatmaps demonstrated
upregulation of chemokines and immune-stimulatory genes in
the high NOP58 expression group, indicating a stronger immune
response. Conversely, immune-inhibitory genes exhibited variable
regulation by NOP58. We further extended our study to examine
the regulation of immunomodulators based on NOP58 expression
(Figure 7C). The results highlighted the influence of NOP58 on
immune checkpoint regulation, which could in turn affect the
response to immunotherapies. Figure 7D presents a heatmap
analysis of immune response markers across different genomic

statuses in the sample groups. Strong correlations were observed
between different genomic alterations and immune-related factors,
revealing the genetic origins of immune modulation in the tumor
microenvironment. Figure 7E demonstrates the correlation
between genomic events and immunogenic response outcomes.
NOP58 expression levels and immune evasion mechanisms were
preferentially enriched in mutated or CNA-related pathways, as
highlighted in the heatmap. These correlations suggest previously
unrecognized roles for NOP58 as a predictive marker for assessing
the impact of immunotherapy in prostate cancer patients. Our
analysis uncovered a critical role for NOP58 in shaping the tumor
immune microenvironment and modulating immunotherapy
responsiveness in prostate cancer. Through its role in
modulating immune regulatory pathways and checkpoints,
NOP58 emerges as a promising candidate for predicting patient
response to immunotherapy. The results offer new insights into the
potential for personalized anti-NOP58 immunotherapy in
prostate cancer.

FIGURE 8
Single-Cell Sequencing Analysis of NOP58 in Prostate Cancer. (A, B) UMAP visualization of cell lineages at single-cell resolution. (A) UMAP plot
showing cellular clusters; (B) contour lines show NOP58 expression levels. (C) Violin plots illustrating NOP58 expression across cell clusters, with
statistical significance. (D) Bar graph showing proportions of NOP58-positive and NOP58-negative cells across different cell types. (E)Heatmap showing
differential pathway enrichment between NOP58-positive and NOP58-negative cell types. (F–H) UMAP representations of NOP58 co-expression
with SUMO1, SUMO2, and XPO1 genes, showing proportions across cell types. (I)Network plot illustrating communication between cell subgroups, with
edges representing interactions and node sizes corresponding to interaction strength. (J) Violin plots showing the expression levels of NOP58, XPO1,
SUMO1, and SUMO2 across different cell clusters.
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Single-cell and spatial transcriptomics
analysis of NOP58 in prostate cancer

Single-cell sequencing analysis revealed distinct cellular clusters
within prostate cancer tissue, as visualized through UMAP,
highlighting diverse cell lineages (Figure 8A). NOP58 gene
expression was mapped, with contour lines indicating varying
levels across different cells (Figure 8B). Differential expression
analysis indicated significant overexpression of NOP58 in specific
cell clusters, with violin plots showing distribution levels and statistical
significance (p < 0.001) (Figure 8C). Proportional analysis of cell types
between NOP58-positive and NOP58-negative groups showed
distinct differences, with bar plots depicting percentages and error
bars representing standard deviations (Figure 8D). Pathway analysis
revealed differential pathway enrichment, displayed in a heatmapwith
color intensity indicating enrichment levels (Figure 8E). Co-
expression studies demonstrated the correlation between
NOP58 and SUMO1, SUMO2, and XPO1 genes, with scatter plots
and heatmaps illustrating these relationships (Figures 8F–H).
Network analysis of cell subgroups indicated extensive
communication pathways, shown in a network plot with node
sizes corresponding to interaction degrees (Figure 8I). Additionally,
violin plots highlighted the heterogeneous expression of NOP58,
XPO1, SUMO1, and SUMO2 across various cell types (Figure 8J).

Spatial transcriptomics and drug sensitivity
analysis of NOP58 in prostate cancer

In this study, we identified the expression locus of NOP58 in
prostate cancer tissues using spatial transcriptomics analysis, and
subsequently examined its effect on drug resistance. The results
indicate that NOP58 expression is associated with tumor
microenvironment dynamics and therapeutic efficacy. Deconvolution
of spatial transcriptomics data revealed the spatial distribution of
distinct cell types in prostate cancer tissues. Notably, the localization
of immune cells, macrophages, endothelial cells, and fibroblasts in the
tumormicroenvironment revealed distinct spatial arrangements among
these cell types in different regions of the tumor (Supplementary Figure
S1A). Figure 5 illustrates the spatial differences in gene expression
within prostate cancer tissue, comparing malignant, normal, andmixed
malignant/normal regions. Heterogeneity in gene expression within the
tumor microenvironment was further demonstrated by relatively lower
expression of certain or all of these targets in normal regions
(Supplementary Figures S1B, C). Figure 9A shows the spatially
segregated expression map of NOP58 in prostate cancer tissue
sections. The heatmap illustrates differential expression levels, with
elevated NOP58 expression enriched in specific areas of the tumor
tissue. High expression levels are represented as hot spots in
predominantly cold malignant areas using color gradients. We then
performed Spearman correlation analysis to examine the association
between NOP58 expression and various components of the TME at the
single-cell level (Figure 9B). NOP58 expression was associated with
immune cell populations, particularly CD4+ T cells, CD8+ T cells,
macrophages, and fibroblasts. In contrast, weaker correlations were
found betweenNOP58 and endothelial cells or tumor cells, likely due to
NOP58-mediated immune cell regulation in the PCa
microenvironment. As shown in Figure 9C, NOP58 was

overexpressed in malignant tissues compared to normal and mixed
malignant tissues (p < 0.001). The bar chart illustrates significant
differences in mean expression levels between malignant and normal
tissues, with the highest NOP58 expression observed in malignancies.
This supports NOP58’s role in tumor development and its potential
diagnostic utility for cancer status. Figure 9D depicts the spatial
distribution of NOP58 activity across multiple tissue sections.
Similarly, expression data revealed a consistent trend: high AUC
scores were typically observed in regions with high
NOP58 expression. This spatial distribution may provide insight
into the biological and functional roles of NOP58 in specific tumor
regions, suggesting potential differences in disease progression or
therapeutic response. The strongest correlation with
NOP58 expression was observed in gene sets related to immune
responses, particularly T cell activation and fibroblast recruitment
(Figure 9E). This suggests that NOP58 plays a role in critical
immune functions within the prostate cancer microenvironment.
AUC scores of NOP58-related gene sets were significantly elevated
in the malignant microenvironment compared to mixed malignant and
normal tissues (p < 0.001) (Figure 9F). The variation in NOP58 activity
across different tissue types highlights its potential role as a mediator of
tumor behavior. ROC curve analysis indicated that NOP58 expression
could accurately differentiate responders from non-responders in
various cancer types, including melanoma, NSCLC, and GBM, with
AUC values exceeding 0.8 in some datasets. Thus, NOP58may serve as
a potential biomarker for predicting immunotherapy response
(Supplementary Figure S1D). To analyze the correlation between
NOP58 expression and drug sensitivity, Spearman correlation
analysis was performed using the GDSC1 and GDSC2 databases
(Supplementary Figures S1E, F). This suggests that
NOP58 expression could influence drug response and may serve as
a potential biomarker for predicting chemotherapy sensitivity
(Supplementary Figures S1E, F). In our study, we investigated the
relationship between NOP58 expression levels and drug sensitivity
across several therapeutic agents targeting key pathways in cancer
treatment. Our analysis revealed that high NOP58 expression was
significantly correlated with increased sensitivity to several anticancer
agents. For instance, high NOP58 expression was associated with lower
IC50 values forMethotrexate targeting dihydrofolate reductase (DHFR),
suggesting that NOP58 may influence the effectiveness of this drug
(Figures 9G, H). Similarly, NOP58 overexpression led to enhanced
sensitivity to Rapamycin, a knownmTOR inhibitor, indicating potential
therapeutic benefits in tumorswith elevatedNOP58 levels (Figures 9I, J).
Other drugs, such as Sorafenib targeting PDGFR/RAF/VEGFR/RTKs
(Figures 9K, L) and Venetoclax targeting microtubules (Figures 9M, N),
also showed consistent trends, where higher NOP58 expression
correlated with greater drug sensitivity. These findings suggest
a broad impact of NOP58 on modulating responses to targeted
therapies. Additionally, Figure 9I demonstrates that high
NOP58 levels are linked to increased sensitivity to
Isoquercitrin, further reinforcing the gene’s role in influencing
drug efficacy. These results highlight the potential of NOP58 as a
biomarker for predicting therapeutic response to various
anticancer agents. This comprehensive drug sensitivity
analysis suggests that NOP58 could serve as a critical
determinant in optimizing cancer treatments, offering valuable
insights into personalized therapeutic strategies based on gene
expression profiling.
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FIGURE 9
Spatial Transcriptomics Analysis of NOP58 in Prostate Cancer and NOP58 Gene Drug Sensitivity Analysis (A) Spatial localization of NOP58 single-
gene expression within prostate cancer tissue. The heatmap shows the expression levels, with color gradients indicating the intensity of
NOP58 expression across the tissue. (B) Spearman correlation analysis between NOP58 gene expression and various microenvironment components at
single-cell resolution. The plot illustrates the relationship between NOP58 expression and cell types, including CD4+ T cells, CD8+ T cells,
macrophages, fibroblasts, endothelial cells, and tumor cells. Correlation coefficients, represented by color intensity, reflect the strength of the
associations. (C) Comparison of NOP58 expression levels across different microenvironments: malignant, mixed malignant, and normal. The bar graph
shows the mean NOP58 expression for each group, with error bars denoting standard deviations. Statistical significance (p < 0.001) highlights distinct
differences in expression between groups. (D) Spatial localization of NOP58 AUC scores within tissue sections. The heatmap displays AUC scores, with
color gradients representing the intensity of NOP58 activity across the tissue, providing insights into its spatial distribution. (E) Spearman correlation
between gene set AUC scores and microenvironment components at spatial resolution. The plot shows the correlations of various gene sets with

(Continued )
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Analysis of NOP58 expression and its impact
on prostate cancer cell ;lines LNCaP and PC3

First, the expression of NOP58 mRNA in various prostate cancer
cell lines, including RWPE-1, LNCaP, and PC3, was examined through
RT-PCR. Quantitative PCR results indicated that NOP58 was
significantly overexpressed in the cancerous LNCaP and PC3 cell
lines compared to the noncancerous RWPE-1 line (Figure 10A). To
explore the functional role of NOP58, knockdown and overexpression
strategies were employed in LNCaP and PC3 cells to modulate
NOP58 expression. Quantitative PCR confirmed that
NOP58 expression was markedly reduced following knockdown (sh-
NOP58#1) and elevated upon overexpression (NOP58-OE). Silencing
NOP58 (sh-NOP58#1) resulted in a significant decrease in
NOP58 levels (Figure 10B), while overexpression led to a notable
increase in its levels (p < 0.01). Subsequently, the effect of
NOP58 knockdown on reactive oxygen species (ROS) production in
LNCaP and PC3 cells was assessed. Flow cytometry analysis revealed a
significant increase in ROS fluorescence following NOP58 knockdown
(sh-NOP58#1), while NOP58 overexpression (NOP58-OE) led to a
clear reduction in ROS levels (Figure 10C). These findings suggest that
NOP58 plays a role in regulating oxidative stress in prostate cancer cells
in vitro. Further investigations focused on the influence of NOP58 on
apoptosis and cell proliferation. BCL2 and Ki67 expression levels were
measured, with quantitative PCR confirming that BCL2 levels increased
and Ki67 levels decreased after NOP58 knockdown (sh-NOP58#1)
(Figure 10D). Conversely, Ki67 levels were significantly upregulated and
BCL2 levels downregulated inNOP58-OE cells compared to controls. A
colony formation assay was conducted to assess the functional
outcomes of NOP58 modulation in LNCaP and PC3 cells. The
results showed a substantial reduction in colony numbers following
NOP58 knockdown (sh-NOP58#1), while overexpression of NOP58
(NOP58-OE) led to a dramatic increase in colony formation
(Figure 10E). In conclusion, these findings underscore the critical
role of NOP58 in the proliferation and survival of prostate cancer
cells. NOP58 appears to regulate key processes, including oxidative
stress response and apoptosis, as demonstrated by its effects on cell-
based assays targeting major prostate cancer growth-related pathways.
This study highlights NOP58’s involvement in the regulation of
oxidative stress, apoptosis, and proliferation in the LNCaP and
PC3 prostate cancer cell lines. Dysregulation of NOP58 expression
impairs prostate cell function, suggesting that modulating NOP58 levels
could be a promising strategy for improving prostate cancer treatment.

Discussion

The current study aimed to investigate the role of SUMOylation in
prostate cancer prognosis and to identify key genes associated with

this modification (Sun et al., 2023; Li et al., 2021). Among these genes,
NOP58 emerged as particularly significant in prostate cancer
progression (Malik and Feng, 2016; Vellky et al., 2021). This
conclusion was supported by multiple approaches, including
differential expression analysis, survival analysis, GSEA, and single-
cell transcriptomics (Špendl et al., 2023; Ma et al., 2020). Survival
analysis revealed that overexpression of NOP58 was significantly
correlated with poor clinical outcomes, including overall survival
(OS), progression-free interval (PFI), and disease-specific survival
(DSS) across various cancers. Notably, in these studies, higher
expression of NOP58 was associated with worse prognosis (Chen
et al., 2024a; Zhang et al., 2024a). Survival analysis revealed that
overexpression of NOP58 was significantly correlated with poor
clinical outcomes, including overall survival (OS), progression-free
interval (PFI), and disease-specific survival (DSS) across various
cancers. Notably, in these studies, higher expression of NOP58 was
associated with worse prognosis (Xiong et al., 2024; Zhao et al., 2023).
Gene ontology and pathway analyses identified crucial biological
functions and molecular pathways influenced by NOP58, many of
which are closely related to cancer development processes, such as cell
cycle progression, DNA repair, and apoptosis (Zhang et al., 2024b;
Gao et al., 2024). Results from single-cell RNA sequencing indicated
that NOP58 exhibits a high level of heterogeneity across different
cellular contexts and interacts with the tumor microenvironment,
paving the way for new precision therapy approaches (Li et al., 2022;
Wu et al., 2021). These findings align with previous studies suggesting
that SUMOylation promotes cancer development (Du et al., 2021;
Han et al., 2018). Overall, our study not only provides preliminary
evidence of NOP58’s specific role in prostate cancer prognosis but also
suggests that NOP58 could be utilized as a diagnostic or therapeutic
biomarker for prostate cancer patients (Dimakakos et al., 2014;
Adamaki and Zoumpourlis, 2021).

SUMOylation, a key post-translational modification, is
indispensable for regulating the activity and degradation of target
proteins by attaching small ubiquitin-like modifier (SUMO) proteins
(Eifler and Vertegaal, 2015; Raju, 2019). This process affects
numerous critical physiological functions, including transcriptional
regulation, DNA repair, and signal transductio (Soutourina and
Werner, 2014; Puc et al., 2017). This process affects numerous
critical physiological functions, including transcriptional regulation,
DNA repair, and signal transductio (Chen et al., 2024b). Collectively,
the evidence strongly suggests that dysregulated SUMOylation in
cancer cells may be a key mechanism driving carcinogenesis and
tumor progression (Han et al., 2018; Xie et al., 2020). Through this
study, we further elucidated the relationship between SUMOylation
and prostate cancer by correlating NOP58 gene expression with
clinical outcomes (Sun et al., 2023; Wang and Yu, 2021).

Through this study, we further elucidated the relationship
between SUMOylation and prostate cancer by correlating

FIGURE 9 (Continued)

different cell types in themicroenvironment, with color intensity reflecting the strength of interaction. (F)Comparison of gene set AUC scores across
malignant, mixedmalignant, and normal microenvironments. The bar graph illustrates the mean AUC scores for each group, with error bars representing
standard deviations. Significant differences (p < 0.001) highlight the variability in gene set activity across these environments. (G–N) Drug sensitivity
analysis based on NOP58 expression levels. Each scatter plot represents individual samples, with the x-axis corresponding to NOP58 expression
levels and the y-axis representing drug IC50 values. Samples are categorized into high-expression (red) and low-expression (blue) groups based on
median NOP58 expression. High NOP58 expression is associated with increased sensitivity to specific drugs, indicating its potential influence on
therapeutic response.
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NOP58 gene expression with clinical outcomes (Golomb et al., 2014;
Castle et al., 2010). Through this study, we further elucidated the
relationship between SUMOylation and prostate cancer by correlating
NOP58 gene expression with clinical outcomes (Arriaga-Canon et al.,
2018; Ghafouri-Fard et al., 2020). Through this study, we further
elucidated the relationship between SUMOylation and prostate cancer
by correlating NOP58 gene expression with clinical outcomes (Yu
et al., 2021; Nguyen et al., 2023). Given NOP58’s critical role in the
SUMOylation pathway, targeting this protein could offer therapeutic
efficacy (Kukkula et al., 2021; Kroonen and Vertegaal, 2021).

Modulating NOP58 expression or function may interfere with the
SUMOylation pathway, thereby inhibiting prostate cancer cell growth
andmigration (Vlachostergios and Papandreou, 2012; He et al., 2015).
This study highlights the novel role of NOP58 as a target of
SUMOylation and its regulatory mechanisms in prostate cancer,
revealing potential new molecular pathways. In summary, these
findings underscore the essential role of NOP58 in prostate cancer
and its association with the SUMOylation pathway (Wang and Yu,
2021; Sutinen et al., 2014). As a prognostic marker and therapeutic
target, NOP58 provides new directions for prostate cancer research

FIGURE 10
Analysis of NOP58 expression and its impact on prostate cancercCell lines LNCaP and PC3 (A) RelativemRNA expression levels of NOP58 in prostate
cancer cell lines (RWPE-1, LNCaP, PC3, DU145). Quantitative PCR results are presented as mean ± SD, with statistical significance (p < 0.01). (B)
NOP58 knockdown and overexpression in LNCaP and PC3 cells. Quantitative PCR results showing significant changes in NOP58 expression following
shRNA knockdown (sh-NOP58#1) and overexpression (NOP58-OE) (p < 0.01). (C) Flow cytometry analysis of reactive oxygen species (ROS) levels
following NOP58 knockdown and overexpression in LNCaP and PC3 cells (**p < 0.01). (D) Western blot and quantitative PCR analysis of BCL2 and
Ki67 expression in NOP58 knockdown and overexpression cells, showing significant changes (p < 0.01). (E) Colony formation assay in LNCaP and
PC3 cells showing reduced colony formation following NOP58 knockdown and increased colony formation with NOP58 overexpression.
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and clinical intervention (Arriaga-Canon et al., 2018; Adamaki and
Zoumpourlis, 2021). Future studies will further explore its specific
molecular mechanisms and clinical application feasibility, bringing
new hope and treatment strategies to prostate cancer patients (Cui
et al., 2024).

In this study, we continuously explore and develop new therapeutic
strategies by integrating multiple research techniques, including
machine learning, multi-omics analysis, three-dimensional
reconstruction, and deep learning, providing new possibilities for
precision medicine and personalized therapy (Kuo et al., 2024;
Sheng et al., 2024). Notably, we combined machine learning
algorithms and statistical models to confirm the potential of
NOP58 as a prognostic marker for prostate cancer (Kim et al.,
2021). High expression of NOP58 is associated with poorer patient
prognosis, providing a theoretical foundation for personalizedmedicine
(Wan et al., 2024; Chen et al., 2024c). Studies have shown that the
expression of NOP58 in prostate cancer cells and animal models is
significantly related to disease aggressiveness and patient survival,
validating its value as an independent prognostic predictor (Zhao
et al., 2016; Glinsky et al., 2004). The importance of cell death and
metabolic regulation in disease progression is increasingly recognized,
offering new targets and strategies for NOP58-targeted therapeutic
approaches such as small molecule inhibitors or RNA interference
technology (Chen et al., 2024d; Zhang et al., 2024c; Zhang et al., 2024d).
Although our study has made significant progress, there are some
limitations. For instance, while the use of TCGA data is comprehensive,
it may not fully represent the genetic diversity of all prostate cancer
patients (Li et al., 2014; Cai et al., 2021). Additionally, potential biases in
data selection and analysis methods may affect the accuracy of the
results (Shringarpure and Xing, 2014; Freed, 2019). Dependence on
computational tools andmodelsmay introduce potential errors, and the
predictive accuracy of NOP58 as a prognostic marker needs to be
experimentally validated in larger independent cohorts to confirm our
findings (Colită et al., 2024). Therefore, the discovery of NOP58 has
significant clinical implications, allowing patient stratification based on
risk and guiding personalized treatment strategies (Benson, 2016;
Pawlyn and Davies, 2019). Its role in the SUMOylation pathway
provides a potential therapeutic target, paving the way for new
interventions aimed at regulating this pathway to improve patient
prognosis (Huang et al., 2023; Martio et al., 2023; Du et al., 2024).

With the continuous advancement of biomedical research
technologies, especially the widespread application of big data and
bioinformatics, the accuracy of disease diagnosis and prognosis
assessment has been significantly improved (Department of
Mechanical and Manufacturing Engineering et al., 2022; Cremin
et al., 2022). By integrating clinical and genomic data, researchers
have developed various predictive models and tools to forecast disease
progression and treatment response (Jiang et al., 2023; Du and Liu,
2024; Li et al., 2024; Yao et al., 2024). These technologies play a core
role not only in the identification and application of biomarkers but
also in providing critical insights into understanding complex
biological processes (McDermott et al., 2013; Dar et al., 2023). For
instance, researchers can employ machine learning and deep learning
techniques to develop novel predictive models for both short-term
postoperative complications and long-term patient prognosis (Cui
et al., 2024). The combined use of these advanced techniques not only
enhances the depth and breadth of research but also provides a crucial
foundation for subsequent clinical applications (Zhang et al., 2023b).

Our study contributes to cancer research by integrating multi-omics
data with advanced bioinformatics tools (Lu and Zhan, 2018; Lin et al.,
2022; Sun et al., 2022a; Sun et al., 2022b). The integrative strategy
developed here is not only applicable to prostate cancer but can also be
extended to other cancers, offering a comprehensive view of the
biological pathways involved in tumorigenesis. This approach has the
potential to identify new biomarker candidates and therapeutic targets
(Nevedomskaya and Haendler, 2022; Felgueiras et al., 2014). Further
studies are required to confirm the value of NOP58 as a prognostic
indicator in larger, more diverse patient populations. We also
explored the molecular mechanisms of NOP58 and its role in
SUMOylation pathways. NOP58 may interact with other molecular
pathways, providing further insights into its impact on the tumor
microenvironment and prostate cancer biology (McAllister et al.,
2019; Corn, 2012). Moreover, NOP58 and its associated signaling
cascades could represent promising targets for novel treatment
strategies (Qin et al., 2023). Additionally, it has been shown that
social support systems positively influence the mental health of cancer
patients (Tian et al., 2021a; Tian et al., 2021b). Through
comprehensive studies on patient engagement and social support,
researchers have demonstrated that these factors significantly
contribute to disease management and mental health outcomes
(Lamore, 2024; Zhu, 2024). This could be another important
consideration in future studies of NOP58 and its broader implications.

Conclusion

In conclusion, our study highlights the critical role of NOP58 in
the progression of prostate cancer and suggests that it may serve as
both a prognostic biomarker and a therapeutic target for the
treatment of this disease. By integrating multi-omics data with
deconvolution and transcription factor-pathway interaction
analyses, as well as validating our findings through qPCR, we
have provided a comprehensive characterization of the key driver
genes underlying prostate cancer using advanced bioinformatics
platforms. Our findings contribute to the ongoing efforts to develop
personalized medical approaches and treatments for patients,
ultimately aiming to improve patient outcomes.
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SUPPLEMENTARY FIGURE S1
Cell Type Localization, Gene Expression Differentials, and Immune Therapy
Prediction Using NOP58 Expression (A) Deconvolution of spatial
transcriptomics data, showing the spatial localization of all cell types. Each
subplot represents a different cell type, with color gradients indicating the
density and distribution of cell types within the tissue. (B, C) Differential
expression of specific genes in different regions: malignant, mixed
malignant, and normal. These plots highlight spatial expression differences of
particular genes, with color scales representing expression levels. (D)
Receiver Operating Characteristic-Area Under the Curve (ROC-AUC)
analysis for predicting immune therapy responses based on
NOP58 expression. The ROC curve evaluates the ability of
NOP58 expression to distinguish between responders and non-responders
to immune therapy. (E, F) Spearman correlation between NOP58 gene
expression and drug sensitivity (IC50 or AUC values) from GDSC1 and
GDSC2 databases, showing the potential relationship between
NOP58 expression and drug response.
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