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Objective: The objective of this study was to analyze the impact of
nanotechnology on the treatment and recovery of spinal cord injury (SCI), a
condition that has profound global effects on physical and psychological health.

Methods: We utilized the Web of Science Core Collection to obtain bibliometric
data. With the tools such as VOSviewer and CiteSpace, we conducted a
comprehensive review of 422 relevant publications to identify research trends
and influential works in the field of nanotechnology applied to SCI.

Results: The analysis revealed significant contributions from both China, Sweden
and the United States, and pinpointed inflammation, apoptosis, and nano-drug
delivery as the primary areas of focus in current research, with emerging trends
evident in recent literature.

Conclusion:Nanotechnology hold great potential to revolutionize the treatment
of SCI through targeted therapeutics and modulation of pathological processes.
This study provided valuable insights into the evolving landscape of SCI research,
underscoring the importance of continuous innovation and interdisciplinary
collaboration.
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1 Introduction

SCI denotes the structural and functional impairment of the spinal cord resulting from
an external force (McDonald and Sadowsky, 2002). The pathophysiological cascade of SCI
encompasses primary and secondary injuries (Eli et al., 2021). The primary injury
corresponds to the immediate trauma at the moment of impact, which may include
compression, laceration, or severance. Subsequently, secondary injury ensues as a
consequence of a complex interplay of biochemical, immunological, and cellular
reactions following the primary insult (Fan et al., 2018). These reactions involve
inflammation, free radical generation, cellular apoptosis, and glial scar formation, which
collectively exacerbate the initial damage. Worldwide, the annual incidence of SCI ranges
from 40 to 80 cases per million individuals, predominantly affecting young andmiddle-aged
adults, with a higher prevalence in males than in females. The leading causes of SCI include
traffic accidents, falls, sports-related injuries, and acts of violence. Incidence rates vary
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across different regions and are influenced by factors such as the
level of economic development, traffic accident frequency, and
lifestyle choices (Kumar et al., 2018; Ding et al., 2022; Liu Y.
et al., 2023). The current management of SCI is categorized into
acute and rehabilitation phases, tailored to the stage of injury and
recovery (Karsy and Hawryluk, 2019). Acute management strategies
involve pharmacological interventions, like the administration of
corticosteroids (e.g., methylprednisolone) to mitigate inflammation
and cellular damage, along with surgical interventions and
supportive care, including respiratory support, nutritional
therapy, and complication prevention. Rehabilitation protocols
encompass physical therapy modalities, such as exercise and
balance training, as well as functional electrical stimulation to
enhance or restore motor capabilities. Occupational therapy is
employed to foster maximum independence in activities of daily
living, while psychological therapy provides counseling and
support to aid patients in adapting to their altered
circumstances (Harvey, 2016). Beyond these established
clinical treatments, experimental approaches are being
investigated in laboratory settings, including stem cell
therapies and biomaterial-based interventions. The application
of stem cells in the treatment of spinal cord injury is also of great
significance (Venkatesh et al., 2019; Katari et al., 2024). Despite
progress in SCI understanding and management, the search for
innovative treatments is essential. Nanotechnology is a science
that focuses on manipulating and engineering matter at the
nanoscale. The definition of nanoparticles usually refers to
particles within the nanoscale range (typically between 1 and
1,000 nm). However, in actual applications, a wider range of
particles is sometimes included, especially when they exhibit
nano-effects. Under a broader definition, nanoparticles can
cover a range from 1 nm to several hundred nanometers or
even thousands of nanometers. Particles within this range are still
considered to possess special properties at the nanoscale.
Generally, the smaller the size of the nanoparticle, the more
pronounced its surface and quantum effects, particularly when
the size is below 100 nm, making its properties even more
prominent. Its innovative applications in this realm have
brought tremendous potential to the fields of medicine and
biotechnology. The classification of nanotechnology can vary
in many ways. The simplest method is based on the basic
properties of nanoparticles, which can be divided into organic
and inorganic nanoparticles. Both types of nanoparticles are
widely used in the field of spinal cord injury. Each type has its
own characteristics; for instance, inorganic nanoparticles, such as
cerium oxide nanoparticles, have significant effects in combating
oxidative stress (Behroozi et al., 2022). Organic nanoparticles,
such as liposomes and polymer nanoparticles, are more
commonly used in drug delivery systems, especially in
applications related to targeted drug delivery and cellular
regeneration (Wang X. et al., 2021). Based on different
applications of nanotechnology, it can also be categorized into
drug delivery applications, selective targeting, and imaging/
diagnostics. Nanotechnology has been used to develop more
effective drug delivery systems. For example, nanoparticles can
be used to deliver drugs directly to the site of a disease, reducing
damage to healthy tissues and improving therapeutic efficacy.
Nanotechnology has also enabled selective targeting applications

by designing specific types of nanoparticles that can recognize
and bind to particular cell receptors or disease markers. This
enhances the precision of drug delivery, allowing treatment to
focus on diseased cells while minimizing the impact on healthy
cells (Sabourian et al., 2023; Khan et al., 2020). Additionally,
applications of nanotechnology in biotechnology include the use
of nanosensors for early detection and diagnosis of diseases, and
the enhancement of biomedical imaging techniques with
nanomaterials, allowing doctors to observe and understand the
inside of the human body more accurately. These applications not
only improve the precision and efficiency of treatments but also
open up new possibilities for personalized medicine and
precision therapy, with the potential to greatly improve
human healthcare in the future. Nanotechnology offers
promising avenues for SCI treatment, highlighted by the field
of nanotechnology (Zimmermann et al., 2021; Gao et al., 2021;
Bayda et al., 2019; Imran et al., 2023; Alzate-Correa et al., 2022;
Santamaría et al., 2023; Saeedi et al., 2019). This discipline
explores nanoscale materials, showing significant potential
across various sectors, particularly in SCI, where it promises
to transform diagnosis, treatment, and rehabilitation strategies.

This bibliometric analysis examines the current trends in
nanotechnology for SCI, analyzing research volume, geographic
distribution, key researchers, institutions, and citation patterns
(Shang et al., 2023). It aims to provide a detailed view of this
field’s growth, spotlighting influential studies and emerging
directions for future research. This work underscores
nanotechnology’s critical role in advancing SCI treatment, and
recovery, fostering further innovation and offering hope to those
affected by SCI.

2 Methods

2.1 Data source

In this article, we selected Web of Science Core Collection
(WoSCC) as the source of bibliometric data in the field of
nanotechnology for SCI research.

2.2 Data search strategy

The specific retrieval method has been mentioned in previously
published articles (Shang et al., 2023; Zhang et al., 2023; Wang et al.,
2024). To put it simply, the data was downloaded and retrieved by
two authors on the same day. The search was conducted in the
WoSCC database using the following search formula: TS = nano*
and [(TS = spinal cord injury) or (TS = spinal cord injuries)]. We
only included articles in English and limited the article types to
reviews and monographs. A total of 1,367 articles were initially
included. Inclusion criteria: Only articles or reviews that focus on
nanotechnology in spinal cord injury research will be considered.
Papers that only briefly mentioned nanotechnology and spinal cord
injury in their abstracts were excluded. Two individuals reviewed the
titles, abstracts, and full texts to exclude papers that were not
relevant to the topic, resulting in a final inclusion of 422 papers
for this study.
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2.3 Bibliometric analysis

In this article, we utilized five softwares of VOSviewer,
CiteSpace, Bibliometrix, SCImago, and GraphPad Prism to
conduct bibliometric visual analysis. Specifically, we utilize
VOSviewer, CiteSpace, and Bibliometrix to process and
analyze the data downloaded from WoSCC. Use VOSviewer to
analyze and extract information and build visualization maps of
countries, institutions, authors, keywords. Use CiteSpace to
construct a keyword busrt visualization graph. Use
Bibliometrix analysis to extract information on the number of
publications and citations. Use SCImago to build a visualization
map of collaborations between countries, institutions, and
authors. Use GraphPad Prism software to build visualization
graphs of the number of publications and citations. The specific
procedures were described in previous articles (Zhang et al.,
2023; Wang et al., 2024).

3 Results

3.1 Publication outputs and trends

Based on our search and literature inclusion process
(Figure 1), a total of 422 publications were included in our
study, of which 381 were articles and 41 were reviews. In the
timespan of this research field from 2002 to 2023, a total of
2,293 authors from 155 countries and regions belonging to

1,582 organizations participated in research in this field.
Related research was published in 206 journals, and the rate of
international cooperation was 28.67%, with each article being
cited an average of 26.78 times. As shown in Figure 2, since 2002,
this field has gradually attracted the attention of researchers.
After 2018, the number of published articles has increased
rapidly, with an average annual growth rate of 19.75%.
2022 will be the year with the largest number of published
articles, reaching 61 articles. The 422 articles in this field
received a total of 10,788 citations, and the average citations
per article were 26.93. Conducting an in-depth analysis of the top
100 cited documents, we found that these documents accounted
for 74.8% of the total citations.

3.2 Country analysis

China and the United States are the countries with the largest
number of publications in this field. Figures 3A,B illustrate the global
publication situation and cooperation between countries. China
published 195 articles, followed by the United States with
125 articles. In particular, in 2019, the volume of articles
published by China surged rapidly, closely followed by the
United States (Figure 3C). Figure 3D demonstrates the
proportion of the number of articles published by the top
10 countries. It is worth noting that although the United States
does not have the highest number of publications, articles from the
United States receive the highest number of citations. The Average

FIGURE 1
Publication screening flowchart.
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Citation Per Publication represents the level of attention a published
article receives in the field. In the Average Citation Per Publication
category, Israel ranks first, the United States ranks 12th, and China

ranks 28th (Table 1; Supplementary Table S1). This indicates that
even though China has the highest number of publications, it does
not receive as much attention as Israel and the United States.

FIGURE 2
Annual output of nanotechnology in SCI.

FIGURE 3
The visualization of countries on research of nanotechnology in SCI. (A, B) Top 5 countries by number of publications over time (C) Proportion of
articles published by the top 10 countries (D).
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3.3 Organization analysis

A total of 1,582 organizations participated in this research area.
Figure 4A shows the 10 organizations that have made the most
contributions in this field, namely Jinzhou Medical University,
Zhejiang University, University of Tehran Medical Science,
Purdue University, University of Hong Kong, Uppsala University,
Soochow University, Jinan University, Sichuan University, and Sun
Yat Sen University. Among these ten organizations, seven are from
China, one is from the United States, one is from Iran, and one is
from Sweden. Figure 4B displays the collaboration between
organizations that publish a larger number of articles.
Supplementary Figure S1 illustrates the overlay situation of
articles published by organizations. In the research field, early
articles were primarily published by Purdue University,
Northwestern University, MIT, University of Hong Kong, and
other institutions, while recent articles were mainly published by
the University of Chinese Academy of Science and other
affiliated schools.

3.4 Journal analysis

A total of 206 research papers on nanotechnology in SCI were
published in 18 journals that each published more than 5 papers.
Figure 2 in the supplementary material shows the density
visualization of journal in this field. Table 2 presents the top
10 journals with the highest number of articles. It is evident that
among these top 10 journals, biomaterials have the highest number
of articles, reaching up to 12. The quality of journals in this field was
relatively high, with 6 journals belonging to Journal Citation Reports
(JCR) Q1 and 4 journals having an impact factor of over 10.

3.5 Author analysis

A total of 2,293 authors participated in the publication of papers
in this field. Table 3 presents the top 10 authors with the highest
number of published papers, namely Sharma HS, Sharma A,
Muresanu DF, Lafuente JV, Mei XF, Tian ZR, Patnaik R, Forloni

TABLE 1 Top 10 citations country.

Country Citations Publications ACPP Rank of ACPP

United States 5,338 125 42.704 12

China 3,280 195 17.4468 28

Italy 1,032 24 43 11

Canada 962 12 80.1667 5

Sweden 915 22 41.5909 13

India 638 25 25.52 20

South Korea 569 28 20.3214 24

Iran 472 33 14.303 32

England 468 17 31.2 15

Czech Republic 424 5 84.8 4

ACPP, represents Average Citation Per Publication.

FIGURE 4
The top 10 institutions with the most publications and their cooperative relationships (A, B).
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G, Papa S, and Rossi F. Supplementary Figure S3 shows the annual
publication status of these top ten authors. It was noteworthy that
the top four authors with the most published articles were all
affiliated with Uppsala University in Switzerland, followed by
Italy. There were two authors from the United States and China.
Figure 5A and B shows the cooperation among the authors,
revealing close cooperative relationships between teams from
Italy, Sweden, and the United States.

3.6 Analysis of the most active topics

3.6.1 Subject category burst
The Figure 6 displays the subject category bursts. The blue line

represents the time interval, while the red line segment indicates the
span of citation bursts, including the start and end years. The
Figure 6 showcases the top 15 terms with the highest burst
intensity during different periods. The subject category bursts
evolved from “Surgery” (2007) to “Neurosciences” (2015),
“Multidisciplinary Sciences” (2016), “Pharmacology and

Pharmacy” (2017), “Cell Biology” (2017); and from “Physics.
Condensed Matter” (2008), further developed into “Biochemistry
and Molecular Biology” (2019). This progression indicates that
research on nanotechnology in spinal cord injury has shifted
from fields like neurosurgery and fundamental physics to
disciplines such as pharmacology, cell biology, or biochemistry.
For instance, the use of nanomedicine as a therapeutic approach
for spinal cord injury, where Prussian blue nanocatalysts combined
with zinc ions can improve the microenvironment of spinal cord
injury (Gao et al., 2024); or the loading of traditional drugs
(Paclitaxel, Cerebrolysin) onto nanoparticles to enhance delivery
methods (Zhang et al., 2022; Sahib et al., 2020). Additionally,
research on nanomaterials as carriers for cell therapy, such as
adipose-derived stem cells loaded in nanogels to improve motor
function after spinal cord injury (Li J. et al., 2022).

3.6.2 Keyword burst
At a more refined level, we have revealed the research trends in

the field of nanotechnology for spinal cord injury throughout the
entire timespan (2002–2023) by examining keyword bursts. As

TABLE 2 Top most productive journals.

Journal Rank Publication JCR Impact factor

Biomaterials 1 12 Q1 14.0

International Journal of Nanomedicine 2 12 Q1 8.0

Journal of Controlled Release 3 10 Q1 10.8

Acs Nano 4 8 Q1 17.1

Journal of Biomedical Nanotechnology 5 8 Q3 2.9

Nanomedicine-Nanotechnology Biology and Medicine 6 8 Q2 5.4

Acs Applied Materials and Interfaces 7 7 Q1 9.5

Acs Biomaterials Science and Engineering 8 7 Q2 5.8

Chemical Engineering Journal 9 7 Q1 15.1

Journal of Biomedical Materials Research Part A 10 7 Q2 4.9

TABLE 3 Top 10 most productive authors.

Author Publication H-index Country Affiliation

Sharma Hs 20 15 Sweden Uppsala University

Sharma A 19 15 Sweden Uppsala University

Muresanu Df 13 10 Sweden Uppsala University

Lafuente Jv 11 9 Sweden Uppsala University

Mei Xf 11 6 China Liaoning Medical University

Tian Zr 10 8 United States University of Arkansas

Patnaik R 9 9 Sweden Uppsala University

Forloni G 8 8 Italy IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”

Papa S 8 8 Italy IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”

Rossi F 8 8 Italy Materials and Chemical Engineering “Giulio Natta”
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shown in the Figure 7, the top 25 keywords with the highest degree
of burst are displayed. “Edema Formation” is the earliest keyword
burst, persisting from 2007 to 2015, reaching a burst value of 4.2.
This indicates that during this phase, researchers primarily focused
on the role of nanotechnology in eliminating spinal tissue edema
following spinal cord injury. “Blood-Spinal Cord Barrier” reached a
burst value of 4.37 from 2009 to 2013, signifying that at this stage,
using nanotechnology to breach the blood-spinal cord barrier and
enable therapeutic agents to reach the injury site was a hot research

topic. In addition to the blood-spinal cord barrier, several other
hotspots were observed in the keyword bursts, which I categorize
into: tissue engineering material types, target cell types, tissue
engineering material properties, and biological behaviors.
“Peptide Nanofiber Scaffold,” “Electrospinning,” and “Iron Oxide
Nanoparticle” reached bursts in 2009–2010, 2011–2018, and
2015–2018, respectively. These three types of nanomaterials for
tissue engineering were among the more extensively studied
material categories at the time. “Neuron” and “Schwann Cell”

FIGURE 5
The visualization of author on research of nanotechnology in SCI (A, B).

FIGURE 6
Top 15 subject categories with the strongest citation burst.
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were keywords that burst in 2013 and 2014, respectively,
indicating that these two types of cells received significant
attention from researchers around 2013–2018. Keywords
related to the properties of tissue engineering materials, such
as “Local Delivery,” “Gene Delivery,” “Transplantation,” and
“Controlled Release,” experienced bursts during the
2015–2018 period. Additionally, cellular biological behaviors
like “Axon Regeneration,” “Apoptosis,” and “Neurogenesis”
have burst in recent years. This perspective suggests that in the
initial stages, researchers focused on the application of
nanotechnology in spinal cord injury treatment as a means to
eliminate spinal edema and to penetrate the blood-spinal cord
barrier. With the advancement of research techniques and shifts
in thinking, the focus of researchers has gradually transitioned to
studying different types of nanomaterials, targeting various cells,
and utilizing the advantageous properties of multiple materials to
achieve the goal of improving cellular biological behaviors.

3.6.3 Keyword clustering analysis
Keywords exhibit strong intrinsic correlations, and certain

keywords can form different clusters based on their affinity.
Identifying these clusters can more intuitively delineate the
various subfields of nanotechnology research in spinal
cord injury. As shown in Figure 8A, keyword clustering can be
categorized into four groups: different nanomaterials (#0 Nanofiber,
#9 Cerium Oxide), cell-related therapies (#3 Cells, #5 Cell
Therapy, #7 Extracellular Matrix, #8 Extracellular Vesicles),
therapeutic targets (#2 Oxidative Stress, #4 Blood-Spinal Cord
Barrier), and therapeutic goals (#1 Nerve Regeneration) as well as
#6 Central Nervous System Injury. #0 Nanofiber and #6 Central
Nervous System Injury are the main themes in this field, while
#1 Nerve Regeneration is the goal of all research, and thus these
three keyword clusters are present throughout almost the entire
research process. #2 Oxidative Stress is a key pathophysiological
process in secondary injury following spinal cord injury. Treatments

FIGURE 7
Top 25 keywords with the strongest citation bursts.

Frontiers in Pharmacology frontiersin.org08

Gu et al. 10.3389/fphar.2024.1473599

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1473599


targeting oxidative stress have been a hot research topic in recent
years. #4 Blood-Spinal Cord Barrier is a major limitation for
traditional pharmacological treatments of spinal cord injury.
Large molecular drugs are unable to penetrate the blood-spinal
cord barrier, but nanomedicines, after years of development, have
demonstrated improved capabilities to cross this barrier (Khan et al.,
2020; Xie et al., 2023). In recent years, traditional nanofibers for
spinal cord injury treatment have shown certain limitations.
However, #7 Extracellular Matrix, #8 Extracellular Vesicles, and
the novel #9 Cerium Oxide nanoparticles have shown greater
therapeutic significance for spinal cord injury (Figure 8B).

The Y-axis represents the frequency of occurrence.

3.7 Analysis ofmost cited and co-cite articles

Citation analysis is a method utilized to analyze the influence of
a paper. The greater the number of citations a paper receives, the
higher its influence within the academic world. Supplementary
Table S2 presents the top 10 most cited articles. All ten articles
have garnered over 100 citations, with the first and second-ranked
articles amassing more than 500 citations. In this field, there were a

FIGURE 8
Keyword cluster snapshots. (A) Clustering form. (B) Timeline form.
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total of 18,357 documents, out of which 17 have been cited more
than 20 times (Supplementary Table S3).

4 Discussion

4.1 General information and
knowledge base

Research on nanotechnology in SCI has primarily progressed
through three stages. The first stage spanned from 2002 to 2009,
marking the nascent phase of the field, characterized by a scattering
of published articles. The second stage was from 2010 to 2018. The
number of papers published in this stage increased slowly. The third
stage, from 2019 to the present, has witnessed a rapid surge in
publications (Figure 2). In this domain, China and the United States,
two of the most technologically advanced countries in the world,
have the highest number of publications globally. Notably, the
volume of papers from China has grown swiftly after 2019,
surpassing that of the United States. However, the most prolific
and influential team in this field was from another country Sweden
and affiliated with Uppsala University, including prominent
members such as Sharma Hs, Sharma A, Muresanu Df, Lafuente
Jv, and Patnaik R, et al. In this field, the most cited paper was “Auto-
catalytic ceria nanoparticles offer neuroprotection to adult rat spinal
cord neurons,” published by Das et al. (2007). This paper discussed
the potent antioxidant and neuroprotective properties of auto-
catalytic ceria nanoparticles, which could prevent ischemic SCI
and offer neuroprotective effects, showing promising application
potential in SCI treatment. The second most cited paper was “Self-
assembling nanofibers inhibit glial scar formation and promote axon
elongation after spinal cord injury “ by Tysseling-Mattiace et al.
(2008). This research focused on self-assembling peptide amphiphile
nanofibers, which could inhibit the differentiation of neural stem
cells into glial cells and promote the regeneration of neural axons. In
vivo, these nanofibers could reduce astrocytes and increase the
proportion of oligodendrocytes. The third most cited article,
“Magnetic resonance tracking of transplanted stem cells in rat
brain and spinal cord (Syková and Jendelová, 2006),” described
the use of iron oxide nanoparticles as markers for stem cell therapy
in SCI and brain injury. The fourth-ranked paper “Nano hemostat
solution: immediate hemostasis at the nanoscale (Ellis-Behnke et al.,
2006),” which introduced a novel nanopeptide capable of stopping
bleeding in internal organs, including the spinal cord. The fifth-
ranked article, “Reknitting the injured spinal cord by self-assembling
peptide nanofiber scaffold (Guo et al., 2007),” presented a self-
assembled nanofiber scaffold that served as a growth platform for
neural progenitor cells and Schwann cells, providing a three-
dimensional environment for axon growth, with transplantation
into SCI sites promoting functional recovery. The article ranked 6th
was “Squalenoyl adenosine nanoparticles provide neuroprotection
after stroke and spinal cord injury (Gaudin et al., 2014),” which
showed that squalenoyl adenosine nanoparticles could have
neuroprotective effects on rats with SCI and stroke, indicating
promising application prospects. The seventh-ranked article,
“Axonal alignment and enhanced neuronal differentiation of
neural stem cells on graphene-nanoparticle hybrid structures
(Solanki et al., 2013),” discussed the combined effect of graphene

nanoparticles on the differentiation of neural stem cells. The
structural characteristics of graphene can affect axonal
arrangement, while nanoparticles can promote the differentiation
of neural stem cells. The article ranked 8th was “Nanoparticle-
mediated local delivery of Methylprednisolone after spinal cord
injury (Kim et al., 2009).” Methylprednisolone pulse therapy has
been the main method for the treatment of SCI, but high-dose
injections may cause side effects in other organs. This paper
introduced a new type of methylprednisolone nanoparticle that
could be locally injected at SCI site, slowly releasing the drug for
improved efficacy over systemic high-dose shock therapy and
minimizing systemic side effects. The article ranked 9th was
“Flexible and stretchable nanowire-coated fibers for
optoelectronic probing of spinal cord circuits (Lu et al., 2017),”
which covered a nanofiber capable of detecting spinal cord electrical
signals during rehabilitation exercises for SCI. The article ranked
10th was Transplantation of Nanostructured Composite Scaffolds
Results in the Regeneration of Chronically Injured Spinal Cords
(Gelain et al., 2011). After SCI, large cavities and cysts might appear
in the injured area, and nerve axons could not pass through the large
cystic area. This article described a system comprising electrospun
fibers and peptides. Transplanting this nano-drug-delivery system
into the SCI area could result in re-covering of the spinal cord cyst
area with a nerve cell nuclear matrix, significantly enhancing overall
motor function scores.

Co-cited articles indicated that two articles were cited together
by other articles. Commonly cited articles represented the
foundational articles and knowledge background in this field.
Supplementary Table S3 shows the top ten papers with the
highest number of common citations. Articles ranked 2 (Kim
et al., 2009) and 4 (Tysseling-Mattiace et al., 2008) functioned as
highly cited articles, which were introduced in the previous section.
Among these ten articles, four articles simply introduced
information related to SCI. One article introduced the Basso-
Beattie-Bresnahan (BBB) score, which is the most commonly
used scoring method for rat SCI models. This article also has the
highest number of citations (Basso et al., 1995). Three articles
respectively discussed the epidemiology, pathological changes,
prognosis (Ahuja et al., 2017), treatment methods (Thuret et al.,
2006), and targets (Silver and Miller, 2004) of SCI. Additionally,
there were two articles that introduce the application and
therapeutic effect of combining methylprednisolone, a commonly
used drug for SCI, with nanoparticles in SCI. These studies found
that sustained release of methylprednisolone could lead to better
therapeutic effects (Chvatal et al., 2008; Cerqueira et al., 2013). The
remaining two articles describe the potential application of two
different nanomaterials in SCI (Silva et al., 2004; Shi et al., 2010).

4.2 Frontiers and hotspot

The inflammatory response following SCI was characterized by
several key events.

Recruitment of immune cells: Following an injury, immune cells
such as macrophages and neutrophils are promptly attracted to the
site of damage. These immune cells play a crucial role in clearing
debris and pathogens, but their activation can also contribute to
inflammation (Brockie et al., 2024; Lv et al., 2024; Li C. et al., 2022).
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Release of pro-inflammatory cytokines tumor necrosis factor
(TNF)-α (Cao et al., 2022), interleukin (IL)-1β (Müller et al.,
2023), and IL-6 (Shipman et al., 2023), were released as part of
the immune response. These cytokines can activate intracellular
signaling pathways, including those involved in apoptosis (Ding
et al., 2023). Activation of signaling pathways: The inflammatory
environment can activate specific signaling pathways within cells.
For example, TNF-α has been known to engage the extrinsic
apoptotic pathway, leading to cell death (Zhou et al., 2021). This
activation of apoptotic pathways can result in the loss of neurons
and other essential cells within the spinal cord, thereby exacerbating
the severity of the injury (Weng et al., 2023).

Conversely, apoptosis itself could trigger or intensify the
inflammatory response through various mechanisms. Release of
damage-associated molecular patterns (DAMPs): When cells
undergo apoptosis, they release intracellular components and
molecules known as DAMPs. DAMPs act as danger signals,
alerting the immune system to the presence of cell damage or
death (Lyu et al., 2023). Immune cell activation: DAMPs released
during apoptosis can activate nearby immune cells, such as dendritic
cells and macrophages. This activation stimulates the immune cells
to release pro-inflammatory cytokines and chemokines, further
promoting an inflammatory environment (Li and Lan, 2023).
Amplification of inflammation: The continued presence of
DAMPs and the release of pro-inflammatory factors can
exacerbate the inflammatory milieu at the injury site (Das et al.,
2024). This leads to the sustained recruitment of more immune cells
to the site and the perpetuation of the inflammatory response,
potentially causing further tissue damage.

The interplay between apoptosis and inflammation in SCI was a
complex and dynamic process. Inflammatory triggers can induce
apoptosis in damaged cells, contributing to tissue loss. Conversely,
apoptosis can stimulate an inflammatory response by releasing
danger signals, leading to the recruitment of more immune cells
and the persistence of inflammation. Understanding these
mechanisms is crucial for developing targeted therapeutic
interventions, including nanotechnology approaches, to modulate
this crosstalk and promote improved outcomes in patients with SCI.

Nanotechnology has shown promise in modulating apoptosis
and inflammation in the SCI process (Luo W. et al., 2023).
Nanotechnology, which harnesses the power of nanoparticles for
therapeutic purposes, holds great potential in modulating the
intricate interplay between apoptosis and inflammation following
SCI. Jaffer et al. (2023) found that injecting antioxidant
nanoparticles into the spinal cord injury site activated microglia
to differentiate in an anti-inflammatory direction. This process
inhibited nerve cell apoptosis in the injured area.

Nanoparticles can be meticulously designed and customized to
transport a wide array of therapeutic agents, ranging from drugs
(Yin et al., 2023) and growth factors (Xia et al., 2021; Zhu et al., 2016)
to anti-inflammatory compounds. The CC-chemokine ligand 2
(CCL2) - CC-chemokine receptor 2 (CCR2) axis is an
inflammatory therapeutic target in SCI (Geng et al., 2022).
Encapsulating drugs in the cell membrane of macrophages
overexpressing CCR2 can promote targeted delivery of drugs to
the injured area and reduce the infiltration of inflammatory cells and
neuronal apoptosis (Gu et al., 2023). One of the difficulties in
treating SCI is the efficiency with which drugs cross the blood-

spinal cord barrier. Improving drug penetration into the blood-
spinal cord barrier is one of the current design concepts of
nanotechnology. R2KC peptide (Wu et al., 2023), and choline
(Bao et al., 2023) are applied to the surface of nanotechnology to
enhance their ability to penetrate the blood-spinal cord barrier. Click
chemistry is applied in the preparation of nanotechnology. By
incorporating peptides such as isoleucyl-lysyl-valyl-alanyl-valine
(IKVAV) (Zeng et al., 2023) and DA7R (Ruan et al., 2023) onto
the surface of exosomes derived from M2 macrophages using click
chemistry methods, this novel nano-preparation can be targeted and
transported to the damaged area to reduce the inflammatory
response in the affected region. This tailored approach enables
the precise delivery of these agents to the injured site within the
spinal cord, thereby minimizing off-target effects and significantly
enhancing therapeutic efficacy.

In the context of SCI, specific nanoparticles have been
engineered to serve as powerful allies. They can act as scavengers
of inflammation, effectively neutralizing pro-inflammatory
molecules and modulating the behavior of immune cells. In the
current study, drugs such as curcumin (Xiong W. et al., 2023),
metformin (Su et al., 2023; Liu X. et al., 2023), and rapamycin (Shen
et al., 2023) were encapsulated in nanomaterials. This drug delivery
system further promotes the polarization of macrophages towards
the M2 phenotype and reduces the infiltration of inflammatory
factors related to the injured area. In addition to metallic
nanomaterials, exosomes have also been used to deliver anti-
inflammatory drugs. Incorporating non-coding RNAs such as
miR-672-5p (Zhou et al., 2022) or specific proteins (Li et al.,
2020) into exosomes, or overexpressing certain proteins like
LRRC75A-AS1 (Xing et al., 2024), miR-216a-5p (Xue et al.,
2023) miR-9-5p (He et al., 2022), miR-137 (Shao et al., 2023),
and other methods, can improve inflammatory symptoms in SCI
areas. Meanwhile, Zinc Oxide and tubastatin are dedicated to
promoting cell survival and stimulating tissue regeneration (Lin
et al., 2021; Liao et al., 2022). These nanoparticles deliver
neuroprotective factors and facilitate the repair of damaged
tissues, helping to counteract both apoptosis and inflammation.

One of the remarkable attributes of nanotechnology is its
adaptability. Nanoparticles can be finely tuned to respond to
specific cues within the injury microenvironment. For instance,
they can be designed to release therapeutic agents in response to
indicators of inflammation or changes in pH levels. The nano-drug
delivery system of chitosan and poly acrylic acid designed by
Sabourian et al. (2023) can decompose in the acidic environment
of the injured area, allowing the drug to enter the cell nucleus and
exert a regulatory effect. Qian et al. (2023) synthesized curcumin on
pH-responsive nanomicelles, which can be released in the damaged
area to exert anti-inflammatory effects. This dynamic
responsiveness helps maintain a more conducive and supportive
environment for the healing process, addressing the challenges
posed by both apoptosis and inflammation. In the
microenvironment of SCI, high concentrations of reactive oxygen
species (ROS) severely limit the therapeutic effect of drugs.
Removing ROS from the microenvironment is an important
therapeutic approach. Liu et al. (Liu D. et al., 2023) applied
cerium oxide nanoparticles to the treatment of SCI and found
that this treatment can reduce ROS in the environment and
improve the survival and differentiation of transplanted neural
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stem cells. Ma et al. (2023) used the ROS scavenging effect of
Polydopamine to improve the efficacy of neurotrophic factors in
the injured area. Nanozymes have attracted significant attention due
to their unique structure and catalytic effect in improving the
microenvironment of SCI areas. Shen et al. (2023) used Prussian
blue nanozyme to target the SCI area, effectively clearing ROS while
improving inflammation and apoptosis-induced neural damage.
Xiong T. et al. (2023) discovered that the nanozyme Mn3O4 has
a higher substrate affinity than ordinary antioxidant enzymes and
shows superior ROS scavenging effects in SCI Figure 9.

Nanotechnology emerges as a promising avenue for tackling the
complex interplay between apoptosis and inflammation in SCI. By
offering precise targeting, inflammation mitigation, and promotion
of the microenvironment, nanotechnology stands at the forefront of
innovative approaches to enhance recovery and reduce the impact of
these interconnected processes.

In addition to studying the effects of different nanotechnology
on SCI, the mechanism of drug action is also a research focus in this
field. Inflammatory signaling pathways are crucial targets for the
treatment of SCI. Macrophage polarization can be regulated by
inhibiting these pathways. Sesamol-loaded nanomicelles have been
shown to inhibit apoptosis and pro-inflammatory factors through
the NF-κB signaling pathway (Wang N. et al., 2021). Human
umbilical cord mesenchymal stem cells target TLR4/NF-κB p65 to
inhibit IL-1β, IL-6, TNFα and other cytokines (Wang et al., 2023). Stem
cell exosomes can promote microglial M2 polarization by activating
the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-
1 (HO-1) (Luo Y. et al., 2023) and suppressor of cytokine signaling 3
(SOCS3)/Janus Kinase 2 (JAK2)/signal transducer and activator of

transcription 3 (STAT3) (Yuan et al., 2023) inflammatory signaling
pathways, thereby promoting neurological recovery. Angiogenesis is
another important target for treating SCI. New blood vessels can
provide necessary nutrients for repairing the injured area. Exosomes in
cerebrospinal fluid can promote angiogenesis in the injured area
through activation of the phosphoinositide 3-kinase (PI3K)/protein
kinase B (AKT) signaling pathway (Li et al., 2023),while exosomes
derived from M2 macrophages can promote vascular regeneration
through the hypoxia-inducible factor (HIF)-1α/vascular endothelial-
derived growth factor (VEGF) signaling pathway (Huang et al., 2022).
TGF-betaR2 (Zhu et al., 2021) and nerve growth factor (NGF)/
tropomyosin receptor kinase A (TrkA) (Zhao et al., 2021) are
important targets for nanotechnology in promoting nerve
regeneration.

5 Strength and limitation

This study had the following advantages: (1) It was the first
bibliometric study on nanotechnology in SCI research, providing a
systematic and comprehensive overview of the current research
status in this field. It highlighted the most important articles, the
most active research teams, and current research hotspots.; (2) It
provided a visually appealing and easily understandable summary in
the form of a picture. However, this study also had certain
limitations: (1) Only English-language documents were included,
potentially excluding relevant studies published in other languages.
Some documents may have been unintentionally missed during the
study selection process. (2) Although there is a lot of basic research

FIGURE 9
Hot spots and frontiers in the field of nanotechnology in SCI research in recent years.
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in this field, clinical trials are still rare. Some clinical trials have
found that the combination of stem cells and scaffolds has good
effects in patients with spinal cord injuries (Xiao et al., 2018). More
clinical research is needed in the future to enrich this field.

6 Conclusion

This bibliometric analysis provided a comprehensive overview
of the significant progress achieved in nanotechnology research,
specifically within the field of SCI. The findings demonstrated a
considerable increase in global research output, particularly in the
past decade. Furthermore, the analysis revealed a collaborative and
geographically diverse research landscape, with noteworthy
contributions from institutions in China, the United States, and
Europe. The presence of certain organizations and authors indicated
a solid knowledge base, while the examination of citations
highlighted the influential works that have shaped current trends.
Within the realm of SCI treatment, the intersection with
nanotechnology was characterized by a specific focus on
addressing inflammation and apoptosis. Research efforts were
primarily directed towards the development of nanotechnology
capable of precise targeting, inflammation mitigation, and
promotion of a conducive microenvironment for healing. Despite
certain limitations, such as the restriction to English-language
documents, the trends and insights of this study offered a
valuable framework for future research directions, emphasizing
the need for continued innovation and interdisciplinary
collaboration to overcome the challenges presented by SCI.
Future research should pay more attention to the following: How
to combine nanomaterials with new treatment methods such as gene
therapy and stem cell therapy, how to further improve the targeting
and therapeutic efficiency of nanomedicines, the long-term
biocompatibility of nanomaterials, the control mechanism of
drug release, and the obstacles to large-scale clinical applications.
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