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Ion channels play an important role inmediating pain through signal transduction,
regulation, and control of responses, particularly in neuropathic pain. Transient
receptor potential channel superfamily plays an important role in cation
permeability and cellular signaling. Transient receptor potential channel
Melastatin 2 (TRPM2) subfamily regulates Ca2+ concentration in response to
various chemicals and signals from the surrounding environment. TRPM2 has
a role in several physiological functions such as cellular osmosis, temperature
sensing, cellular proliferation, as well as the manifestation of many disease
processes such as pain process, cancer, apoptosis, endothelial dysfunction,
angiogenesis, renal and lung fibrosis, and cerebral ischemic stroke. Toll-like
Receptor 4 (TLR4) is a critical initiator of the immune response to
inflammatory stimuli, particularly those triggered by Lipopolysaccharide (LPS).
It activates downstream pathways leading to the production of oxidative
molecules and inflammatory cytokines, which are modulated by basal and
store-operated calcium ion signaling. The cytokine production and release
cause an imbalance of antioxidant enzymes and redox potential in the
Endoplasmic Reticulum and mitochondria due to oxidative stress, which
results from TLR-4 activation and consequently induces the production of
inflammatory cytokines in neuronal cells, exacerbating the pain process. Very
few studies have reported the role of TRPM2 and its association with Toll-like
receptors in the context of neuropathic pain. However, the molecular
mechanism underlying the interaction between TRPM2 and TLR-4 and the
quantum of impact in acute and chronic neuropathic pain remains unclear.
Understanding the link between TLR-4 and TRPM2 will provide more insights
into pain regulation mechanisms for the development of new therapeutic
molecules to address neuropathic pain.
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1 Introduction

Pain is defined as a characteristic phenomenon caused by noxious stimuli from
pathogenic microorganisms such as bacteria, viruses, and fungi and from injury caused
by various forms of mechanical and thermal stimuli. The physiological response to these
conditions results in pain. Relief from pain is crucial for an organism’s survival and
protection because pain serves as a warning signal for potential harm or injury. It triggers
reflexes and behaviors that help avoid or minimize damage, promoting healing and

OPEN ACCESS

EDITED BY

Sara Marchesan Oliveira,
Federal University of Santa Maria, Brazil

REVIEWED BY

Cassia Regina Silva,
Federal University of Uberlandia, Brazil
Evelyne Silva Brum,
Federal University of Rio Grande do Sul, Brazil

*CORRESPONDENCE

Farah Deba,
fdeba@uttyler.edu

RECEIVED 30 July 2024
ACCEPTED 02 September 2024
PUBLISHED 12 September 2024

CITATION

Mandlem VKK, Rivera A, Khan Z, Quazi SH and
Deba F (2024) TLR4 induced TRPM2 mediated
neuropathic pain.
Front. Pharmacol. 15:1472771.
doi: 10.3389/fphar.2024.1472771

COPYRIGHT

© 2024 Mandlem, Rivera, Khan, Quazi and
Deba. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 12 September 2024
DOI 10.3389/fphar.2024.1472771

https://www.frontiersin.org/articles/10.3389/fphar.2024.1472771/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1472771/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2024.1472771&domain=pdf&date_stamp=2024-09-12
mailto:fdeba@uttyler.edu
mailto:fdeba@uttyler.edu
https://doi.org/10.3389/fphar.2024.1472771
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2024.1472771


preventing further injury. Without effective pain relief mechanisms,
an organism could suffer prolonged stress, which can lead to
immune suppression, impaired function, and reduced chances of
survival. Therefore, managing pain is not only important for
comfort but also vital for the overall wellbeing and preservation
of life. Normal pain symptoms involve allodynia, which is non-
painful stimuli, such as a light touch or mild temperature change,
whereas hyperalgesia refers to an increased sensitivity to painful
stimuli generated during minor injury. The symptoms of
hypersensitivity involve both allodynia and hyperalgesia, which
are intense responses to sensory stimuli, resulting in enhanced
sensitivity and discomfort. Persistent and extreme sensitivity are
also referred to as chronic pain (Loeser andMelzack, 1999; Świeboda
et al., 2013). Acute pain condition is a protective mechanism in
which tissue stimulates the healing process. Beyond any alteration in
the pain pathway and duration leads to hypersensitivity and
intolerable or chronic pain.

Depending on the duration of symptoms, pain is classified as
acute pain (<3 months) and chronic pain (>3 months). Pain is also
classified into many subtypes such as anatomical pain, physiological
pain, pathological pain, deep pain, vascular pain, bone and joint
pain, myalgia, organ pain, wired pain, neuralgia, causalgia,
convolutional pain, and phantom pain, depending upon the
stimuli, location, physiological and social factors (Świeboda et al.,
2013; Sela et al., 2002).

According to the International Association for the Study of Pain
defines, neuropathic pain is a pain caused by a lesion or disease
affecting the somatosensory nervous system. As per the
International classification of diseases, conditions for peripheral
neuropathic pain include trigeminal neuralgia, polyneuropathy,
peripheral nerve injury, and painful radiculopathy. Conditions
for central neuropathy include pain caused by brain or spinal
cord injury, post-stroke pain, and pain associated with multiple
sclerosis (Scholz et al., 2019). Neuropathic pain is associated with
damage to the nerves, including central, peripheral, and
somatosensory nervous systems. It involves both positive and
negative symptoms. Positive symptoms include paresthesia,
dysesthesia, superficial pain, allodynia, and hyperalgesia. Negative
symptoms include tactile hypoesthesia, thermal hypoesthesia, and
pinprick hypoalgesia (Baron, 2006). Neuropathic pain is considered
chronic pain that affects the quality of normal life of an individual.
Trigeminal neuralgia, diabetic neuropathic pain, cancer pain, and
sciatica are some examples of chronic pain. Many of the neuronal
complex structures are involved in the activation, transmission,
regulation, and healing processes (Backonja, 2003). Nerve
endings, dorsal root ganglia, microglia, Schwann cells, and
thalamus are the important structures that are involved in
chronic pain. Structural changes, numerous cellular interactions,
and signaling processes contribute to the nociceptive pathway,
including ion channels, receptors, immune cells, and microglia
(Finnerup et al., 2020; Kerstman et al., 2013). The transition
from acute neuropathic pain to chronic pain is a complex
process and involves multiple signaling pathways, central and
peripheral processes, and inherited and environmental risks.

Neuroinflammation is an immune-mediated inflammatory
response elicited by various stimuli. Cytokines released in
response to the inflammation regulate oxidative stress and
mediate the injury and/or repair process (Myers et al., 2006).

Sensitization of nerve endings and other inflammatory molecules
mediate the pain process in which ion channels play an important
role in mediating pain, inflammation, and repair depending on Ca2+

ion influx (Kuffler, 2020). Many of the ion channels are regulated
either by a change in the voltage (cation/anion exchange) or
receptor-mediated responses. These ion channels respond to
changes in the cellular external and internal environments,
thereby eliciting a physiological response (Bouali-Benazzouz
et al., 2021; Vicario et al., 2020). Ion channels exhibit regulatory
properties of immune cells, metabolism, and inflammation
pathways (Ruck et al., 2022; Bittner et al., 2014). Apart from the
homeostatic functions, ion channels may also be involved in the
pathological mechanisms of neuronal inflammation that leads to
pain. Membrane ion channels that govern sodium, potassium, and
calcium ions and their modulation by various inflammatory
mediators are involved in neuropathic pain.

Inflammatory responses and oxidative stress are regulated by
molecular inhibitors and activators, Toll-like-receptor (TLR-4) is a
transmembrane pattern recognition receptor (Fehder et al., 2007),
Nicotinamide Adenine Dinucleotide phosphate (NADPH) oxidase
(NOX), and Transient receptor potential (TRP), an ion channel and
a well-known receptor for immune responses. TLR-4 is associated
with many pathological conditions with chronic neuropathic pain.
TRPM2 is a calcium-permeable cation channel in sensory neurons.
NOX is part of a family of enzymes that includes NOX1, NOX2,
NOX3, NOX4, NOX5, DUOX1, and DUOX2. NOX enzymes are
known for immune defenses in which Reactive Oxygen Species
(ROS) production by phagocytic cells to kill pathogens (Vermot
et al., 2021). TRPM2 channels are activated by ROS produced by
NOX, which leads to calcium influx. This calcium signaling boosts
NOX activity, which amplifies ROS production and oxidative stress.
This pathway is associated with several diseases, including
neurodegenerative diseases and chronic pain (Görlach et al., 2015).

The present review aims to address pathways in which oxidative
stress and inflammatory reactions by TLR-4, NOX, and
TRPM2 implicate pain (Figure 1). These findings highlight the
biological importance of TRPM2 and TLR-4 for elucidating pain
pathways due to producing ROS and inflammatory cytokines, which
are important in regulating oxidative stress and inflammation in
cells. TRPM2 inhibitors could decrease oxidative stress-induced
injuries and neuropathic pain in a wide variety of ways. TLR-4
antagonists may decrease inflammatory responses and alleviate
chronic inflammation. The discovery of the mechanisms by
which TRPM2 activation drives nerve damage and inflammation,
and its association with TLR-4 can show new pathways; such
understanding may become apparent as an innovative therapy
for disorders assumed to cause or intensify neuropathic pain.

2 Ion channels and their role in diseases

The process of recognizing pain involves the recognition of pain
signals by sensory neurons, initiation of nerve impulses, and
transforming the noxious stimuli to pain response. These
nociceptive neurons are specialized in the recognition of noxious
stimuli, of which ion channels on cell membrane play an important
role in intermembrane transporters of various ions, thereby
regulating various physiological functions ranging from excitation of
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tissue transportation, cell migration tumorigenesis, atherosclerosis,
and apoptosis (Kew and Davies, 2010; Schwab et al., 2012;
Jentsch, 2016). Voltage-gated ion channels are widely expressed
in all tissues, including neurons, such as sodium Nav1.8 and
Nav1.9 channels (Giniatullin, 2020). Other ion channels such as
purinergic receptor, TRPV1(vanilloid)/A1 (ankyrin), TRPC
(canonical), TRPM2, and voltage-gated (sodium, calcium, and
potassium) channels are also involved in nociception. Many of
the neuronal diseases, including neuropathic pain, are linked to
ion channel dysfunction and neuroinflammation (Eren-Koçak and
Dalkara, 2021).

3 TRP channel

Transient receptor potential (TRP) channels are widely
distributed throughout the tissues. In 1969, TRP was discovered
in drosophila and subsequently in humans (Montell and Rubin,
1989; Samanta et al., 2018). The TRP channels superfamily were
extended up to 48 members and their major role was found in cation
permeability and cellular sensory signaling. These channel proteins
span the transmembrane with a C-terminal intracellular domain
and N-terminal intracellular domain (Kassmann et al., 2013), which
are non-selective ion channels that regulate Ca2+, Mg2+ influx, and
other monovalent cations. These TRP channels can be activated in
cellular organelles, such as endoplasmic reticulum, lysosomes, Golgi
apparatus, and synaptic vesicles by Ca2+ influx. TRP channels are
also involved in the regulation of osmotic pressure, temperature,
pH oxidation-reduction vascular tone, proliferation,

mechanosensing, proliferation, apoptosis, and angiogenesis (Gees
et al., 2010). Therefore, TRP channels respond to various stimuli
such as stress, mediators, hormones, chemicals, and environmental
factors (Lolignier et al., 2016; Kaneko and Szallasi, 2014). Changes in
the channel function result in many disorders, such as retinal, skin,
cardiac, neuronal, and vascular, forming the basis of mutation in the
genes responsible for coding for TRP channel (Tsagareli and
Nozadze, 2020). TRP Channels have been implicated in various
neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and
Huntington’s diseases (Rather et al., 2023). TRP channels are proven
to play as central elements of nociception, thereby acting as potential
targets for alleviating neuropathic pain. Modulating the TRP
channel function offers a wide scope for altering cellular
functions, thereby increasing the research interest. Modulation of
TRP channels has emerged as a novel field of therapeutic strategy for
the treatment of pain, especially neuropathic pain. Many small
molecule compounds that modulate TRP channels have entered
clinical trials aiming to treat a variety of neuronal diseases (Table 1).

4 TRPM channel structure
and functions

TRPM channels are ubiquitous in nature and widely expressed
and distributed in tissues and contribute to health and disease. The
three domains of these ion channels are N, C, and channel domain,
where the N-terminal is associated with four similar melastatin
subunits and a pre-S1 domain to play a role in sensing and channel
assembly. The channel domain S4 is specific to the TRPM family and

FIGURE 1
Mechanism of TLR4 induced TRPM2 mediated neuropathic pain.

Frontiers in Pharmacology frontiersin.org03

Mandlem et al. 10.3389/fphar.2024.1472771

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1472771


participates in a voltage-sensing-like domain, whereas S5-S6 forms
the P-loop, which mainly acts as an ion-conducting pore. The
C-Domain is composed of a TRP box, which is highly conserved
and maintains channel stability, whereas the coiled-coil domain
contains motifs that modulate pore gating. The differences in the
homology sequence of the C-terminus divide the TRPM subfamily
into four groups: TRPM3/TRPM6/TRPM7, highly permeable to
Ca2+, TRPM2/TRPM8 nonselective for monovalent and divalent
cations, whereas TRPM4/TRPM5 is permeable to monovalent
cations. TRPM2/TRPM6/TRPM7 present enzymatic properties at

the C terminus, and TRPM2 has an additional domain for
nucleoside diphosphate pyrophosphatase, which shares a similar
homology with Nudix hydrolase NUDT (-H domain), which exhibit
a wide range of functions such as metabolism of nicotinamide
adenine dinucleotide (NAD), ADP-ribose, and their derivatives
and is characterized by different substrate specificity and
intracellular localization. (Samanta et al., 2018; McLennan, 2006).
TRPM8 is temperature sensitive and activated by innocuous cold to
noxious cold. It is also activated by menthol and icilin, synthetic
super-agonist. Both TRPM8 agonists and antagonists, e.g., AMTB,

TABLE 1 Present and ongoing TRP ion channels clinical drugs used for pain pathology.

Agent Antagonists/
Activators

Indications Status Notes Ref.

Gabapentin TRPV1 antagonist (Indirect) Neuropathic pain, epilepsy Approved Gabapentin combined with Capsaicin enters
the neurons through TRPV1 to access
Voltage-gated channels

Biggs et al. (2015)

Pregabalin TRPV1 antagonist (Indirect) Neuropathic pain, fibromyalgia,
epilepsy

Approved Pregabalin is used for its antagonistic activity
at Voltage-gated Ca2+ channels and binds to
alpha-2-delta

Onakpoya et al. (2019)

Capsaicin TRPV1 activator Neuropathic pain Approved Capsaicin desensitizes, calcium-permeable
TRPV1 channels and relieves pain

Pasierski and Szulczyk
(2022)

SB-705498 TRPV1 antagonist Rhinitis Pain relief Clinical
Phase II

SB-705498 relieved pain by suppressing
response to skin stimulation by
TRPV1 receptor

Lambert et al. (2009)

Resiniferatoxin TRPV1 activator osteoarthritic pain Clinical
Phase II

Resiniferatoxin through injection
desensitizes TRPV1

Szallasi (2023)

Tramadol TRPV1 antagonist (Indirect) neuropathic pain Approved Tramadol relieves Neuropathic Pain by
regulating mediators in pain signaling
(TRPV1)

Quan et al. (2022)

XEN-D0501 TRPV1 receptor antagonist Chronic pain Clinical
Phase II

XEN-D0501 is used as a temperature
regulator by blocking the activation of
TRPV1 receptor

Round et al. (2011)

Topiramate TRPV1 antagonist (Indirect) Migraine Approved Topiramate is used as anti-migraine,
activates Na+ channels and Ca2+ channels

Fan et al. (2018)

Zonisamide TRPV1 antagonist (Indirect) Migraine Clinical
Phase II

Zonisamide is used a anti-migraine, activates
Na+ channels and Ca2+ channel

Asiri and Hassan (2023)

GRC 6211 TRPV1 antagonists Osteoarthritis pain, chronic pain Clinical
Phase II

GRC 6211 suppresses neurogenic detrusor
overactivity

Santos-Silva et al. (2012)

PF-05105679 TRPM8 antagonists Cold Pain Sensitivity Clinical
Phase II

PF-05105679 is used to regulate body
temperature

Gosset et al. (2017)

AMG-333 TRPM8 antagonists Migraine Clinical
Phase II

TRPM8 is activated. By cold and AMG-333
is a highly selective antagonist

Horne et al. (2018)

KRP-2529 TRPM8 antagonists hypersensitive bladder disorders Preclinical TRPM8 antagonist reduces hypersensitivity
by blocking TRPM8 activity

Aizawa et al. (2018)

RQ-00434739 TRPM8 antagonists hypersensitive bladder disorders Preclinical TRPM8 antagonist reduces hypersensitivity
by blocking TRPM8 activity

Aizawa and Fujita
(2022)

HC-030031 TRPA1 antagonists Chronic Pain Preclinical HC-030031 reduces pain and inflammation
by blocking TRPA1 channels

de Almeida et al. (2021)

GRC-17536 TRPA1 antagonists Hypersensitivity Clinical
Phase II

TRPA1 antagonists inhibit the activation of
the channel that detects pain

Klionsky et al. (2007)

AMG-9090 TRPA1 antagonists Chronic Pain Preclinical TRPA1 antagonist reduces hypersensitivity
by blocking TRPA1 activity

Klionsky et al. (2007)

LY3526318 TRPA1 antagonists Neuropathic Pain Clinical
Phase II

LY3526318 alleviates pain by inhibiting
TRPA1 channel activity

Bamps et al. (2023)
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proved to be beneficial in pain pathways (Fernández-Peña and
Viana, 2013). TRPM3 is a polymodal nociceptor thought to be
involved in the detection of noxious heat (Vriens et al., 2011).
TRPM3, together with TRPV1 and TRPA1, mediate acute noxious
heat detection in mice (Vandewauw et al., 2018). Given the
importance of TRPM channels, there is an increase in research
interest in TRPM channels and their role in triggering various
diseases, including pain process, cellular osmosis, temperature
sensing, cellular proliferation, cancer, apoptosis, endothelial
dysfunction, angioparagraphgenesis, renal, and lung fibrosis
(Duitama et al., 2020).

5 TRPM2 distribution and its role in
various pathologies

TRPM2 is particularly gaining importance as it is permeable to
both monovalent and divalent cations, as well as its activation/
inhibition in response to various stimuli from both exogenous and
endogenous sources, leading to changes in cellular responses that
vary from picoseconds to several seconds. This is the only ion
channel of the TRPM family associated with enzyme activity at
NUDT9-H domain of the C-terminus sensitive to adenosine
diphosphate ribose (ADPR) (Sumoza-Toledo and Penner, 2011;
Perraud et al., 2001) thereby involving multiple functional roles
like Ca2+ homeostasis (Hasan and Zhang, 2018), redox potential
(Song et al., 2016), osmotic regulation, temperature sensitive gating
(Vilar et al., 2020; Tan and McNaughton, 2018), production of
inflammatory mediators (Yamamoto and Shimizu, 2016; Akyuva
and Nazıroğlu, 2020), pain modulation (Di et al., 2012; Yüksel et al.,
2017), cellular migration, cytoskeleton remodeling (Schwab et al.,
2012), and immunity (Knowles et al., 2013; Syed Mortadza et al.,
2015). Functional role of TRPM2 have been reported in many
diseases such as Alzheimer’s and Parkinson’s disease, ischemic
stroke, neuronal cell death, neurovascular functional injury,
myocardial ischemia/reperfusion injury, vascular dysfunction,
pancreatic β-cell death associated with pancreatitis, acute and
chronic diseases, and liver toxicity (Malko and Jiang, 2020).
TRPM2 channel is widely expressed in immune cells, microglia,
neutrophils, T-lymphocytes. It also acts as a sensor for ROS and
plays a key role in the inflammatory response in both normal and
pathological states. Since TRPM2 has multifunctional role in
oxidative stress and inflammation it would be worth exploring its
mechanisms in attenuating pain-related diseases.

5.1 TRPM2 in cerebral ischemic stroke

TRPM2 is widely expressed in neurons and its role in
ischemic stroke was evaluated in several in vitro and in vivo
studies. TRPM2 have shown to increase the cell survival and
inhibit apoptosis by various mechanisms (Ali et al., 2023; Shi
et al., 2021). The following few studies represented the role of
TRPM2 in ischemic stroke models.TRPM2 in primary cortical
cultures of rat subjected to H2O2 induces apoptosis, and this is
significantly reversed by using TRPM2 siRNA by inhibiting Ca2+

influx and cell death (Kaneko et al., 2006). The role of TRPM2 in
oxidative stress induced by hypoxia has been studied in different

animal models. TRPM2 KO mice, when subjected to transient
ischemia by carotid artery occlusion, showed a 40% reduction in
infarct volume. Some of the molecular pathways that contribute
to cell survival are activation of protein kinase B (Akt) pathway
and inhibition of glycogen synthase kinase-3β (GSK3β) pathway
in TRPM2 KO mice (Alim et al., 2013). Genetic deletion of
TRPM2 shows neuroprotective effects and improved sensory
and motor outcomes in neonatal mice when compared to the
wild type. TRPM2 KO mice showed an increased pro-survival
signaling pathway and produced neuroprotective effects through
Akt/GSK3β pathway (Huang et al., 2017). The use of
TRPM2 inhibitors such as flufenamic acid (Nazıroğlu et al.,
2007), clotrimazole (Hill et al., 2004), aminoethoxy diphenyl
borate (APB) (Togashi et al., 2008), N-(p-amylcinnamoyl)
anthranilic acid (ACA) (Kraft et al., 2006), and
TRPM2 shRNA significantly reduced neuronal cell death
following oxygen-glucose deprivation in males (Jia et al.,
2011). Pharmacological inhibition of TRPM2 inhibits the
adhesion of neutrophils in ischemic conditions (Gelderblom
et al., 2014). There is a strong correlation between
TRPM2 oxidative stress, inflammation, and ischemia followed
by reperfusion injury (Huang et al., 2024).

5.2 TRPM2 and microglia

Apart from neuronal cells, TRPM2 is widely expressed in non-
neuronal cells such as microglia and astrocytes (Turlova et al., 2018).
Hypoxia-induced generation of H2O2 activated microglia increased
TRPM2 mediated Ca2+ conductance in middle cerebral artery
occlusion model injury (Patel et al., 2013). H2O2-induced
oxidative stress revealed upregulation of TRPM2-like
conductance and was reversed by flufenamic acid (Fonfria et al.,
2006) in rat microglia. An increase in TRPM2 activity is associated
with the generation of ROS, leading to the activation of Poly
adenosine-diphosphate ribose polymerase 1 and TRPM2 activity
were suppressed by inhibiting PKC and Nicotinamide Adenine
Dinucleotide Phosphate (NADPH) oxidase (NOX) and
downstream Mitogen-Activated Protein Kinase (MAPK)/
extracellular signal-regulated kinase (MEK/ERK) pathway
(Alawieyah Syed Mortadza et al., 2018). Release of cytokine
interleukin-1 beta (IL-1β) from microglia is also mediated
through TRPM2-dependent activation of Nucleotide-binding
Oligomerization Domain-like receptor pyrin domain
3 inflammasome (Aminzadeh et al., 2018). Selenium, an
important essential element through the GSH (Glutathione)
peroxidase pathway, prevents interferon-gamma (IFNγ) induced
activation of TRPM2 channel-mediated apoptosis in microglia
(Akyuva et al., 2021). TRPM2 (knock out) KO in microglia
suppressed the kainic acid-induced glial activation, cytokine
production, and hippocampus paroxysmal discharges, affirming
the role of TRPM2 via AMPK and mTOR pathway in
epileptogenesis (Yıldızhan and Nazıroğlu, 2020). When
stimulated with interferon-γ, microglia in the brain of C57bl/
6 mice displayed excessive currents of TRPM2 (Akyuva et al.,
2021). Macrophage exposure to LPS triggers the activation of
TRPM2, thereby promoting NO production by regulating MAPK
and JNK signaling pathways (Miyake et al., 2014).
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5.3 TRPM2 in renal injury and fibrosis

Reactive oxygen species formed by renal ischemia-induced
hypoxia and reperfusion activate TRPM2 ion channels. TRPM2-
KO mice have shown resistance to renal injury (Khanahmad et al.,
2022). Administration of TRPM2 antagonist, 8-bromo cADPR in
Wistar rats shown to inhibit renal ischemia-reperfusion injury via
caspase 3 inhibition (Eraslan et al., 2019). Cisplatin induced
nephrotoxicity is also reduced by the activation of
TRPM2 mediated autophagy (Yu et al., 2023). TRPM2-KO mice
markedly improved renal dysfunction and its ablation remarkedly
suppressed TGFβ mediated JNK activation renal fibrosis (Wang Y.
et al., 2019). Thus, TRPM2 highlights its role in renal ischemic injury
and fibrosis which is elevated during renal ischemic/reperfusion
injury (Gao et al., 2014). Ischemia reperfusion-activated NOX and
RAC1 were activated in WTmice but not in TRPM2-KO mice (Gao
et al., 2014). Curcumin also reduces the albumin-evoked Ca2+-
induced oxidative stress through the TRPM2 channel in renal
tubules (Nazıroğlu et al., 2019).

5.4 TRPM2-mediated apoptosis

ROS-dependent neuronal inflammation and death involve
multiple mechanisms, including pyro-apoptosis, autophagy, and
apoptosis. ROS-mediated TRPM2 inhibits autophagy through
downregulation of AMPK-induced Mammalian rapamycin target
protein (mTOR), leading to ischemic/reperfusion-induced neuronal
cell death (Hu et al., 2021). TRPM2 channels regulate cation
permeability across the cell membrane that includes Zn2+ and the
accumulation of the Zn2+ intracellularly induces ROS production,
triggering lysosomal dysfunction and an increase in neuronal cell
death (Ye et al., 2014). In addition, TRPM2 activates Calmodulin-
dependent kinase II -mediated phosphorylation of Beclin1 that
inhibits autophagy and induces neuronal death (Wang et al.,
2016). TRPM2 mediated Ca2+ induced neuronal death was
modulated by duloxetine preventing from apoptosis in
hippocampus and dorsal root ganglion (DRG) of rats (Demirdaş
et al., 2017).

5.5 TRPM2 in autoimmune disorders

The role of TRPM2 in inflammation has been extensively
evaluated for Ca2+ mediated oxidative stress (ROS) that, in turn,
activates innate immunity, thus delineating its role in autoimmune
disorders such as rheumatoid arthritis, type 1 diabetes, multiple
sclerosis, inflammatory bowel disease through multiple
mechanisms. In an animal model of multiple sclerosis, TRPM2-
KO or pharmacological inhibition of TRPM2 inhibits the
progression of the disease. Moreover, decreased neutrophil
infiltration in the central nervous system was observed in KO
mice than in WT (Tsutsui et al., 2018). A decrease in neuronal
antioxidant glutathione triggers the increased current of the
TRPM2 channel (Belrose et al., 2012). Additional mechanisms
such as ROS-ADPR- Poly adenosine diphosphate ribose
polymerase mediated TRPM2 current in microglia thereby
increase intracellular Ca2+ and thereby induce apoptosis of

hippocampal pyramidal neurons in Alzheimer’s disease (Övey
and Naziroğlu, 2015). TRPM2 also plays a key role in Amyloid
beta (Aβ)/ROS-induced microglial-mediated neuroinflammation
and neuronal death (Jiang et al., 2018). Glutathione depletion
linked to oxidative stress induces apoptosis mediated through
TRPM2 channels in microglial cells with Alzheimer’s disease model.

5.6 TRPM2 in hepatotoxicity

The liver is known as an important metabolic organ that
regulates various functions. Acetaminophen is the commonly
prescribed drug for pyrexia and is known to cause unwanted
effects such as hepatotoxicity. ROS is the key mediator of
acetaminophen-induced toxicity. Acetaminophen induced
hepatocyte death by increasing Ca2+ influx in cultured rat and
mouse hepatocytes which were blocked by ACA, clotrimazole or
TRPM2-siRNA, and TRPM2-KO (Wang et al., 2016;
Kheradpezhouh et al., 2014). TRPM2-mediated Ca2+ signalling
activates Ca2+/CaMKII to inhibit autophagy (Ni et al., 2012).
Also, acetaminophen-induced liver injury in WT mice was
mitigated by treatment with CaMKII inhibitor KN-93 (Wang
et al., 2016). In the hepatic ischemia-reperfusion injury model,
TRPM2-mediated Ca2+ influx causes mitochondrial lipid
peroxidation due to increasing arachidonate 12-lipoxygenase
(Zhong et al., 2023). In addition, pretreatment with antioxidants
such as N-acetyl cysteine and thymoquinone inhibits the Ca2+ entry
by reducing the TRPM2 gene expression in the hepatocyte model of
ischemia-reperfusion injury (Atilgan et al., 2022; Caglar et al., 2024).

6 TRPM2 expression and function in
neuronal and non-neuronal pain

TRPM2 ion channels play an important role in generating,
transmitting, and transforming nerve signals. Calcium ions play
an important role in interneuronal communication, triggering an
action potential and the release of certain neurotransmitters and
mediators (Malko et al., 2019; Wang H. et al., 2019). Primary
afferent neurons such as DRG and trigeminal ganglia also
express TRPM2 channels (Vilar et al., 2020). The C-fibers of
afferent neurons are mainly responsible for pain perception
leading to depolarization. Substance P and calcitonin gene-related
peptide (CGRP) of the peptidergic neurons, upon sustained
stimulation, exacerbate tissue inflammation by infiltrating
immune cells. TRPM2 is known to express abundantly in both
peptidergic and non-peptidergic C-fibres (Matsumoto et al., 2016).
TRPM2 is known to play a crucial role in afferent ganglia, where it
responds to oxidative stress, particularly that caused by
inflammatory injuries. This channel contributes to the sensory
signaling processes by detecting and reacting to oxidative
damage, which can occur during inflammation. The H2O2-
induced inward currents in a whole cell patch clamp experiment
with DRG neurons H2O2-induced inward currents were reversibly
abolished by TRPM2 inhibitors 2-APB and ACA (Nazıroğlu et al.,
2011; Naziroğlu et al., 2013). In addition, H2O2-mediated
TRPM2 currents were inhibited by NADPH oxidase inhibitors
such as apocynin and N-acetyl cysteine, which regulate the
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H2O2-ADPR-TRPM2 axis (Nazıroğlu, 2017). In cultured trigeminal
ganglia upon H2O2 exposure, there is a significant increase in
cytokine and chemokine levels which were prevented by
treatment with TRPM2 inhibitors 2-APB (Chung et al., 2015).
Therefore, TRPM2 plays an important role in the mechanisms of
neuronal excitability and in the proinflammatory conditions under
oxidative stress.

TRPM2 is widely expressed in immune cells. LPS stimulation of
immune cells increased the expression of TRPM2, contributing to
the production of cytokines (Wehrhahn et al., 2010). Also,
neutrophil infiltration is linked with TRPM2 deficiency in
carrageenan-induced inflammation (Haraguchi et al., 2012). IL-
1β secretion is also increased in macrophages by ROS-mediated
TRPM2 activation (Zhong et al., 2013). The factors that regulate the
calcium gating through TRPM2 include adenosine dinucleotide,
cytokines, ROS, and intracellular calcium ions (Wang H. et al.,
2019). Increased expression of TRPM2 in macrophages is associated
with acceleration of inflammatory signals that regulate the
pathophysiology of pain (Jang et al., 2018). Neuronal cell
response to LPS is dependent on Ca2+, but the mechanisms
involved are poorly elucidated. LPS is known to activate TLR-4,
which initiates to activate of the downstream pathways of

inflammation, such as phosphorylation of MAPKs, NF-kB
translocation to the nucleus, and upregulation of inflammatory
genes for cytokines such as TNFα, IL-1β, and IL-6 as shown in
Figure 1. There is also evidence that LPS-mediated TLR-4 activates
PLC, thereby mobilizing intracellular Ca2+. Thus, the role of Ca2+

and the production of cytokines are interlinked. Then, it comes to
the question that controlling Ca2+ entry into the cell decreases
inflammation. To understand this, the cytokine production
generates ROS from mitochondria via modulating NADPH redox
system is to be studied. The cytokine production generates ROS by
activating NADPH oxidase, disrupting mitochondrial function, and
activating MAPK pathways, including inducible nitric acid synthase
and activating inflammasomes, contributing to the inflammatory
response and cellular signaling (Bordt and Polster, 2014). The
generation of free radicals takes place by intracellular production
of H2O2 (Checa and Aran, 2020). Cellular activity sensors such as
ion channels, particularly TRPM2, regulate the cation influx,
including Ca2+, which further increases the inflammation process.
Since regulation of inflammation is Ca2+ dependent which is also
regulated by TRPM2 ion channel. Given the importance of
TRPM2 ion channel in current scenario, modulating the function
of TRPM2 is warranted. TRPM2 modulation with antioxidant

TABLE 2 Evidence of TRPM2 mediated neuropathic pain in response to inflammation and oxidative stress.

Cell Type Inducer/Animal
Model

Associated
Pathology

Key observations Ref.

Dorsal Root Ganglia
(DRG) of rats

Spinal cord injury and
Sciatic nerve injury

Neuronal death and
apoptosis

Hypericum perforatum attenuates oxidative stress and apoptosis
induced by SCI and SNI and, thereby, reducing, Ca2+ uptake
through TRPM2

Özdemir et al.
(2016)

TRPM2-KO mice LPS bladder inflammation Lacking TRPM2 attenuates LPS-induced inflammation and
hypersensitivity

Kamei et al. (2021)

Hippocampal neuron/
TRPM2-KO mice

Morphine Inflammation and apoptosis Morphine Induces Apoptosis, Inflammation, and
Mitochondrial Oxidative Stress via Activation of
TRPM2 Channel and Nitric Oxide Signaling Pathways

Osmanlıoğlu et al.
(2020)

C57/BL6 mice LPS Inflammation-induced
cognitive impairment

IL-1β or TRPM2 level knockdown helped counter the cognitive
impairment caused by significant inflammation

Yang et al. (2024)

Sciatic nerve of rats streptozotocin Diabetic neuropathic pain Hesperidin treatment attenuated diabetes-induced neuropathic
pain by reducing TRPM2 channel activation

Bayir et al. (2023)

Microglia from WT and
TRPM2KO

LPS/IFNγ Inflammation TRPM2-mediated Ca2+ signaling is necessary to activate
p38 MAPK and JNK signaling and results in increased NO
production in microglia

Miyake et al.
(2014)

TRPM2-KO Capsaicin/H2O2/acetic
acid

Inflammation Acetic acid-induced writhing was significantly attenuated in
TRPM2-KO

So et al. (2015)

Cultured DRG Rotenone Neuropathy ADPR and rotenone-induced inward electrical currents were
reversibly abolished by the TRPM2 inhibitors, APB, and ACA

Nazıroğlu et al.
(2011)

Hippocampal and DRG
of Wistar rats

Middle cerebral artery
occlusion/reperfusion

Apoptosis Dexamethasone shows remarkable neuroprotective impairment
effects in the hippocampus and DRG of ischemia-induced rats
by reducing Ca2+ via TRPM2

Akpınar et al.
(2016)

Cultured rat Trigeminal
Ganglia (TG)

H2O2 Inflammation TRPM2 role in H2O2-induced expression of inflammatory
cytokines was studied

Chung et al. (2015)

Rat DRG ADP-ribose and H2O2 Neuropathic pain NADPH oxidase-dependent activation of TRPM2 Nazıroğlu and
Braidy (2017)

Human Monocytes LPS Cytokine production TRPM2 is required for LPS-induced cytokine production Wehrhahn et al.
(2010)

Mice macrophages Carrageenan Inflammatory and
neuropathic pain

TRPM2-KO mice develop less severe allodynia Haraguchi et al.
(2012)
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compounds will alleviate the inflammation, thereby reducing
nociception. Table 2 provides a summary of some research
studies that use oxidative stress and inflammation as a model to
modulate neuronal pain via TRPM2.

The role of TRPM2 in acute inflammatory mechanisms is
acknowledged not only in neuronal cells but also in nonneuronal
cells. TRPM2 channels are widely expressed in various cell types,
including microglia (Mortadza et al., 2017; Kraft et al., 2004),
macrophages (Zou et al., 2013), neurons (Kaneko et al., 2006;
Alim et al., 2013), endothelial cells (Hecquet and Malik, 2009;
Mittal et al., 2017; Yang et al., 2006), cardiomyocytes (Yang
et al., 2006), dendritic cells (Sumoza-Toledo et al., 2011), and
pancreatic beta cells (Ishii et al., 2006; Togashi et al., 2006). This
indicates that TRPM2 plays multiple functional roles in many
physiological and pathological processes. TRPM2 has been shown
to regulate intracellular calcium levels through lysosomal,
endoplasmic reticulum, and mitochondrial compartments
through various pathways that mediate through both exogenous
and endogenous mediators (Zhang et al., 2018).

TRPM2 is known to be regulated by other receptor mechanisms
in inflammation and pain, such as the N-methyl-D-aspartate
(NMDA) receptor (NMDAR), which activates to promote
TRPM2-mediated Ca2+ influx via ERK1/2-dependent PARP-1
recruitment of microglia-dependent neuroinflammation
(Raghunatha et al., 2020). TRPM2 channels can also be activated
through intracellular signaling cascades initiated by pruritogen
receptors and, thereby, neuronal activation. TRPM2 via Protein
Kinase C gamma (PKC-γ), a neuro-specific PKC phosphorylates
serine/threonine residues, activates and increases the expression of
NMDAR, thereby increasing the excitotoxicity of NMDARS, and the
interaction between them is thought to be mediated by oxidative
stress (Sun and Alkon, 2014). Antioxidants such as Selenium
reduced the fibromyalgia induced increase in TRPM2 and
TRPV1 currents, pain intensity, ROS, and intracellular free Ca2+

in sciatic and DRG neurons (Yüksel et al., 2017).

7 Toll-like receptors

Toll-like receptors (TLRs) are pattern recognition receptors
embedded in the phospholipid membrane as well as endosomes
and lysosomes (Sahoo, 2020). In humans, there are ten TLRs (TLR1-
TLR10), but overall, there are 12 TLRs. Different TLRs recognize
and activate different pathogen-associated molecular patterns
(PAMPs) (Kawai and Akira, 2007). TLR-1 and TLR-2 link
together and recognize bacteria lipoproteins which activate
immune responses. TLR-2 not only forms a heterodimer with
TLR-1 but also with TLR-6 to recognize microbial patterns. TLR-
3 is found embedded in endosomes, senses viral infections, and
activates the production of type-I interferons. TLR-4 is activated by
bacterial LPS, which is the main cell wall component of Gram-
negative bacteria (Kuzmich et al., 2017). This activation can
contribute to inflammation and pain pathways, leading to the
release of pro-inflammatory cytokines and other mediators that
contribute to the development or exacerbation of neuropathic pain.
Some Gram-negative bacteria associated with this process include
Escherichia coli (E. coli), Pseudomonas aeruginosa, Klebsiella
pneumoniae, Salmonella spp., Neisseria meningitidis,

Haemophilus influenzae, Helicobacter pylori (Deng and Chiu,
2021; Staurengo-Ferrari et al., 2022). TLR4 can also be activated
by a variety of non-LPS ligands. These ligands include endogenous
danger-associated molecular patterns (DAMPs) and exogenous
pathogen-associated molecular patterns (PAMPs) other than LPS
(Facchini, 2018; Alexzander Asea et al., 2002; Erridge, 2010). TLR-7,
TLR-8, and TLR-9 are located in endosomes and lysosomes, while
TLR-5, found on the cell surface, recognizes bacterial flagellins
involved in motility, leading to the activation of inflammatory
cytokines (Tegtmeyer et al., 2020). They are mainly expressed in
various immune cells and initiate inflammatory responses. TLR-10,
although found on both the cell surface and endosomes, the actual
functions are not well-defined (Noreen and Arshad, 2015).

However, Toll-like receptors are a group of receptors that
recognize and initiate innate and adaptive immune responses.
Like other receptors, they span cellular transmembrane with an
external domain of leucine repeats and cytosolic Toll interleukin-1
receptor (TIR) domains to activate downstream pathways. The
external domain tends to recognize endotoxins, heat shock
proteins, cellular damage products, and High mobility group box
1 (HMGB-1) proteins (Bettoni et al., 2008). The receptors are widely
distributed not only on antigen-presenting cells but also on
myocytes, adipocytes, thyroid cells, mesangial cells, and
fibroblasts. The receptors are also expressed in sensory neurons,
microglial cells, and astrocytes (Vaure and Liu, 2014). TLR-4
receptor undergoes dimerization with myeloid differentiation
protein-2 upon ligand binding to microdomain lipid rafts and
initiates TIR adoption molecules, thereby initiating a
signaling cascade.

TLR-4, through the TIR domain-containing adapter-inducing
Inhibitor of the kappa B (IkB) pathway, induces NF-kB and
expression of proinflammatory cytokines such as IL-1, IL-6, and
TNF-α. Activation and inhibition of these pathways create a balance
between the production of these cytokines and Interferon Type-1
(IFN-1) (Roy et al., 2016; Kawasaki and Kawai, 2014).

8 Role of TLR-4 in the regulation of
neuronal pain and inflammation

TLR4 plays an important role in adaptive immune response,
induction, and maintenance of acute and chronic pain states.
Recognition of pathogens and products from damaged neurons
by microglia leads to activation of TLR-4 and increased expression
of proinflammatory mediators. Sustained activation or
dysregulation of TLR-4 contributes to inflammatory and
autoimmune diseases such as Crohn’s Disease, atherosclerosis,
rheumatoid arthritis, type 1 diabetes, and other
neurodegenerative diseases (Takeda et al., 2003; Booth et al.,
2011; Hosseini et al., 2015).

Microglial activation of TLR-4 after spinal cord injury is pivotal
for the induction of pain by modulating proinflammatory cascade
and expression of TNFα, IFN-γ, IL-6, IL-1β, and NF-kB (Kuang
et al., 2012; Stokes et al., 2013). In rat animal model of chronic
constriction injury TLR-4 antagonists and siRNA-mediated
suppression of spinal cord TLR-4 signaling prevent the activation
of the NF-kB pathway and production of proinflammatory
cytokines, thereby attenuating allodynia and thermal
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hyperalgesia, emphasizing its preventive role in neuropathic pain
(Eidson and Murphy, 2013; Wu et al., 2010). TLR-4 also mediates
the conversion of acute to chronic pain. Intrathecal administration
of TLR-4 antagonists reversed the chronic constriction injury-
induced thermal hyperalgesia and mechanical allodynia in wild-
type mice, whereas in knockout and point mutant mice, attenuation
of thermal hypersensitivity along with spinal microglial activation
and lower proinflammatory cytokines suggesting its role in the
maintenance of chronic pain (Hutchinson et al., 2008;
Christianson et al., 2011; Nicotra et al., 2012; Woller et al., 2017).
Administration of TLR-4 antisense oligonucleotide prevents
thermal hypersensitivity with reduced expression of mRNA for
microglial markers and spinal proinflammatory cytokines (Tanga
et al., 2005).

Hydrogen peroxide, a ROS, oxidatively modifies TLR-4 proteins,
and it mimics LPS binding (Powers et al., 2006). It activates the
release of damaged-associated molecular proteins (DAMPs) from
dying cells, which trigger TLR-4 proteins (Shim et al., 2017). H2O2

also modulates the activity of kinases and transcription factors such
as NF-κB and MAPKs, which are critical for TLR-4 signaling, which
can amplify inflammatory responses (Burgueno et al., 2021). When
H2O2 production is increased, it acts as a secondary signal to aid
TLR-4-mediated defenses guaranteeing an immune response (Zhou
et al., 2013). The interaction between ROS and TLR-4 can intensify
inflammation indicating tissue damage and disease development
(Gunawardena et al., 2019).

9 Relationship between TRPM2 and
TLR-4 in neuropathic pain

The generation of neuropathic pain involves complex pathways
within the nervous system, both peripheral and central. The process
is initiated by damage or dysfunction in the somatosensory nervous
system, which leads to abnormal pain signaling. Neuropathic pain
often involves nerve injury or chronic inflammation, leading to
increased oxidative stress and inflammatory mediators such as
proinflammatory cytokines, chemokine, and ROS, which can
activate TRPM2 channels. Understanding the mechanisms by
which TRPM2 contributes to neuropathic pain can provide
insights into potential therapeutic targets for managing chronic
pain conditions.

On the other hand, TLR-4 is a key player in the immune system,
primarily recognized for its role in detecting pathogens and
initiating inflammatory responses. However, TLR-4 plays a
critical role in the pathogenesis of neuropathic pain by driving
neuroinflammation, central sensitization, and the maintenance of a
chronic pain state. Targeting TLR-4 or its downstream signaling
pathways is a potential therapeutic strategy for managing
neuropathic pain.

TLR-4 is expressed on the cell membrane and senses pathogen-
associated molecular patterns such as LPS, peptidoglycans, chitin,
and glucans (Brown et al., 2011). Upon recognition and activation,
TLR-4 recruits adaptor molecules such as MyD88 and intracellular
Toll-interleukin (IL)-1 receptor domains and promotes downstream
pathways leading to the secretion of proinflammatory mediators,
including cytokines (Blasius and Beutler, 2010; Santoni et al., 2015).
These proinflammatory responses by the immunocompetent cells in

the brain, such as microglia, contribute to neuroinflammation
leading to pain. In chronic states such as neuropathic pain,
microglial activation results in deleterious consequences (Block
et al., 2007). Microglia express a wide variety of ion channels,
including TRP channels, that are necessary for cytokine
production, proliferation, and migration of microglia (Echeverry
et al., 2016). Studies indicate that H2O2-induced TRPM2 activation
mediates Ca2+ influx, which modulates physiological and
pathological cellular functions (Shirakawa and Kaneko, 2018).
TRPM2 is expressed in both neurons and glia, and oxidative
stress-induced TRPM2 activation is implicated in neuronal
diseases (So et al., 2015). Miyake et al. (2014) demonstrated that
LPS and IFN-γ can stimulate TRPM2 mediated Ca2+ in microglia.
They also showed that activation of TRPM2 results in increased NO
production. Interaction between nociceptive neurons and glial cells
plays an important role in neuropathic pain (Ren and
Dubner, 2010).

TRPM2, a calcium-permeable cation channel present in sensory
neurons, is capable of recognizing mechanical, chemical, and
thermal stimuli (Santoni et al., 2015). TRPM2 activation leads to
increased calcium levels, which also results in a pain-signaling
response in the sensory neurons. TLR-4 has been linked to
neuroinflammation (Table 3) and the sensitization of nociceptors
(Malko et al., 2019). When TLR-4 interacts with ROS, TLR-4
proteins can intensify inflammation and hypersensitivity to pain
through the opening of TRPM2 channels. Thus, the pathways of
both TRPM2 and TLR4 converge on neuroinflammation
(Yamamoto and Shimizu, 2016). Neuropathic Pain is a chronic
pain caused by a disease of the somatosensory nervous system
(Finnerup et al., 2021). TRPM2 contributes to the release of pro-
inflammatory cytokines (Haraguchi et al., 2012), and the production
of cytokines, in turn, activates TLR-4, which plays an important role
in neuropathic pain and induces inflammatory and immune
responses (Kuzmich et al., 2017).

TRPM2 channel is a newly cited player for neuroinflammation
mediated in response to LPS, a classical target for TLR-4 activation
where the interaction between TLR-4 and TRPM2 in neuronal cells
was least explored. TLR-4-mediated responses required Ca2+ influx
through TRPM2 (Schappe et al., 2018; Tauseef et al., 2012), and the
binding of LPS to TLR-4 activation increases the production of
diacylglycerol (DAG) and the subsequent increase in Ca2+

concentration, resulting in MyD88-NF-kB activation
(Mohammadi, 2019). TRPM2-mediated Ca2+ entry is implicated
in inflammatory responses in neuronal and non-neuronal cells
(Tauseef et al., 2012; Mehta et al., 2003). LPS-TLR-4 activation
triggers NF-kB-mediated cytokine production resulting in TRP-
mediated Ca2+ influx. Cytokine increases intracellular Ca2+

concentration, thereby inducing early ROS production preceded
by TRPM2-mediated Ca2+ influx (Simon et al., 2017; López-Requena
et al., 2017). Consequently, TRPM2 regulates total ROS production
and Ca2+ influx. The existing studies suggest TRPM2 is not only
involved in physiological nociceptive pain, but also in inflammatory
and neuropathic pain (So et al., 2015).

The role of TLR-4-induced inflammation via calcium channels
has been reported. Activation of TLR-4 through LPS-induced
cytokine production results in an imbalance of basal calcium and
store-operated calcium channels, particularly TRPM2, in microglia
through Orai-1, a downstream protein of TLR4-MAPK (Birla et al.,
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TABLE 3 Pain signaling pathways through TLR4 and TRP channels.

Pathological
condition/
disorders

Experimental
paradigm

Treatment Mechanism/
pathways

Principal Effects/
Remarks

Ref.

Neuropathic pain Thermal and Mechanical
Hypersensitivities in a Rat
Model of Paclitaxel-Induced
Peripheral Neuropathic Pain

Electro-acupuncture (EA) NF-kappaB inhibitor alpha
(NF-κB) and Mitogen-
activated protein (MAP)
kinase pathways

EA suppresses TLR4 and its
downstream signaling
molecule
MyD88 overexpression in
DRGs of paclitaxel-treated
rats

Li et al. (2019)

Chronic Neuropathic
Pain

The therapeutic effect of β-
sitosterol on chronic
neuropathic pain by
performing behavioral tests
on Sciatica models (chronic
constriction injury on SD
rats)

β-Sitosterol β-sitosterol can affect
microglial polarization by
inhibiting the TLR4/NF-κB
signaling pathway

β-Sitosterol Reduces Pain
Sensitivity in the Right Hind
Limb of Sprague‒Dawley Rats

Zheng et al.
(2023)

Neuropathic pain Therapeutic effect of ferulic
acid on the chronic
constriction injury induced
pain rat model via the von
Frey test and acetone
experiment

Ferulic acid The levels of IBA-1, IL-1β,
iNOS, TLR4, Myd88, p-NF-
κB, and p-p38MAPK
increased signaling pathway

Ferulic acid can promote
injured sciatic nerve repair by
reducing neuronal cell
apoptosis and inflammatory
infiltration though the TLR4/
NF-κB pathway

Zhang et al.
(2023)

Migraine and Functional
Gastrointestinal

Disorders

Using a murine model of
light aversion produced by
compound 48/80. TLR4 in
migraine-like behavior and
neuronal activation

Compound 48/80 TLR4 utilizes both
MyD88 and TRIF adapter
protein pathways for
downstream signaling

TLR4 signaling in migraine is
the report that naloxone was
reported to be effective in
treating acute migraine
attacks

Ramachandran
et al. (2019)

Cancer-induced
Neuropathic Pain

Cancer-induced neuropathy
model and determined the
thresholds of cold allodynia
and thermal and mechanical
hyperalgesia

Ruthenium Red TRPV1 over
TRPV4 antagonism is
attributed to its multiple
mechanisms of action and
different pathways and target
receptors other than the TRP
channels

The increased expression of
TLR4 and ERK1/2 reveals
immune response and tumor
progression, respectively, and
their ultimate decrease is an
indicator of nerve damage

Maqboul and
Elsadek (2018)

Acute Inflammatory
Visceral Pain (AIVP)

AIVP was used to examine
the antinociceptive efficiency
of DEX and assess its effects
on the activation of the ERK
and TLR4 signaling pathway
and release of CGRP during
visceral hypersensitivity

Dexmedetomidine (DEX) TLR4 receptor and its
downstream NF-κB and
IRF3 were upregulated, and
the phosphorylation of
P65 and IRF3 also increased
upon acetic acid treatment

Antinociceptive effects of
DEX might be partially
mediated via suppression of
the inflammatory responses
associated with AIVP

Liu et al. (2018)

Chronic Sciatica The therapeutic effect of α-
asarone on CCI of the sciatic
nerve via behavioral tests,
pathology, and
immunohistochemistry

α-Asarone α-Asarone decreased the
mRNA levels of IL1β, TNF-α,
TRPV1-4, TRPA1, and
TRPM8

α-Asarone relieves chronic
sciatica by decreasing the
levels of inflammatory factors,
inhibiting peripheral
sensitization, and favoring the
repair of damaged nerves

Zhang et al.
(2023)

Multiple Sclerosis Spinal cord alterations
induced by this novel SD rat
model of MOG-induced
EAE, optimized to avoid
motor impairments/
disabilities

myelin-oligo dendrocyte-
glycoprotein (MOG)

Ligation of TLR4 induces NF-
kB activation that primes the
NLRP3 inflammasome and
can ultimately lead to the
production of the
proinflammatory cytokine IL-
1β t

Doses of 8 and 16 μg MOG
could produce long-lasting
mechanical allodynia in the
absence of motor
impairments/disabilities in
male SD rats

Kwilasz et al.
(2022)

Rheumatoid Arthritis) Molecular mechanisms of
Baihu-Guizhi decoction
(BHGZD), against active RA
were validated by a series of
experiments based on the
adjuvant-induced arthritis-
modified rat model

(BHGZD) BHGZD suppress TLR4/
PI3K/AKT/NFκB signaling-
related protein activation, and
subsequently inhibit
NLRP3 inflammasome-
induced pyroptosis

BHGZD effectively improved
disease severity of active RA
rats, elevating pain thresholds,
relieving joint inflammation
and bone erosion via
inhibiting TLR4/PI3K/AKT/
NFκB signaling to suppress
the activation of the
NLRP3 inflammasome

Li et al. (2022)

(Continued on following page)
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2022). Various proinflammatory cytokines are produced during the
immune response to an infection. The absence of TRPM2 channels
improved neuroethology and pathological changes and decreased
inflammatory cytokines and apoptosis proteins in TRPM2 knock-
out mice in the LPS-induced sepsis model associated with
encephalopathy infection (Zhu et al., 2019). In a study, where the
LPS-induced production of IL-6, IL-8, and TNF-α in
THP1 monocytic cells was significantly attenuated by using
shRNA to reduce TRPM2 expression (Wehrhahn et al., 2010).
Also, increased cell-free heme activates TLR4-mediated ER stress
and ROS leading to spinal microglial activation and
neuroinflammation, contributing to acute and chronic pain (Lei
et al., 2021). Ketamine, an anesthetic agent, attenuated hypoxia-
induced TRPM2-mediated Ca2+ influx, ROS, NMDAR, and ROS in
neuronal cell (SH-SY5Y) death (Osmanlioğlu, 2022).

There is a reciprocal relationship between neuroinflammation and
oxidative stress. These two processes are not independent but rather
complex reciprocal interactions (Teixeira-Santos et al., 2020). NOX
activity upregulates the expression of proinflammatory cytokines and
proinflammatory cytokines increase ROS through NOX (Kallenborn-
Gerhardt et al., 2013). Initiation of TLR4 downstream pathway requires
NOX activity (Haslund-Vinding et al., 2017) and TLR-4 receptors may
be required for NOX expression (Lim et al., 2013), thus both are
dependent on each other. These interdependent complex mechanisms
that regulate neuropathic pain require Ca2+ ion, which is well controlled
by the TRPM2 ion channel sensitive to cellular redox potential (Ogawa
et al., 2016), and hence modulated TRPM2 can alleviate
neuropathic pain.

NOX 2 and NOX 4 have been implicated in chronic pain
mechanisms such as neuropathic pain (Grace et al., 2016).
Inhibition of NOX and its isoforms 2 and 4 have shown to be
beneficial in neuropathic pain models (Kallenborn-Gerhardt et al.,
2013). Macrophages produce ROS during immune response, and it
is well regulated by NOX. This enzyme activity can be regulated by
Ca2+, which is controlled by protein kinase C α and membrane
potential (Bedard and Krause, 2007). However, TRPM2KO mice
showed greater mortality than WT in LPS-induced inflammation
(Di et al., 2012). In addition, TRPM2 deficiency reduces oxidized
low-density lipoprotein uptake by macrophages, thereby

minimizing macrophage infiltration and inflammatory response
by modulation of NOX (Zong et al., 2022).

However, the molecular mechanism underlying the interaction
between TRPM2 and TLR4s and the quantum of impact in acute
and chronic neuropathic pain remains unclear. It would be worth
focusing on TRPM2 interaction with TLR4 in the context of
neuropathic pain. Mechanistic studies that focus on TLR4-
TRPM2 interaction will open new pathway interactions for
treating inflammation-associated diseases such as neuropathic pain.

10 Conclusion

This review summarizes the functional role and mechanisms of
TRPM2 that mediate Ca2+ influx under oxidative stress and
inflammation linked with TLR-4. The reported literature in this
review demonstrates the role of the TRPM2 ion channel in various
pathological states and, more importantly, neuropathic pain. Many
research findings support the evidence that oxidative stress and LPS-
induced TLR4-mediated inflammation exert their effects mediated
by the TRPM2 channel in neuronal and non-neuronal tissues. The
existing and growing scientific evidence of TRPM2 in various pain
pathologies has made researchers and the pharmaceutical industry
focus on the development of novel targets for diagnostic and
therapeutic approaches for pain treatment. This review also
demonstrates the role of various inhibitors/drugs that modulate
neuropathic pain in various disease states. However, the role of
TRPM2 ion channels and their association with Toll-like receptors
in pain management needs to be studied in more detail for the
development of effective strategies to treat neuropathic pain.
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TABLE 3 (Continued) Pain signaling pathways through TLR4 and TRP channels.

Pathological
condition/
disorders

Experimental
paradigm

Treatment Mechanism/
pathways

Principal Effects/
Remarks

Ref.

Interstitial cystitis/
bladder pain syndrome

(IC/BPS)

IC rat model by
intraperitoneal injection of
cyclophosphamide. MSC-
EVs were isolated from the
culture supernatants of
human umbilical cord-
derived MSCs

Mesenchymal stem cell-
derived extracellular
vesicles (MSC-EVs)

the expression levels of
NLRP3, Caspase-1, IL-1β and
IL-18 in the SDH were
reduced

Injection of MSC-EVs can
alleviate neuroinflammation
and mechanical allodynia in
IC rats by inhibiting
NLRP3 inflammasome
activation

Zhang et al.
(2022)

Post-epidural fibrosis murine laminectomy model
to observe the effect of
metformin on epidural scars

Metformin Metformin inhibited the
hyper-proliferation of
epidural scars after
laminectomy via the
reduction in fibronectin and
collagen deposition by
inhibiting the HMGB1/
TLR4 and TGF-β1/
Smad3 signaling pathway

metformin may be a potential
therapeutic option to mitigate
epidural fibrosis after
laminectomy

Song et al. (2021)
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Glossary

ACA N-(p-amylcinnamomyl) Anthranilic acid

ADPR Adenosine diphosphate ribose

AIVP Acute inflammatory visceral pain

AKT Protein kinase B

AMPK Adenosine 5′-monophosphate (AMP)-activated protein kinase

APB Aminoethoxy diphenyl borate

Aβ Amyloid beta

BHGZD Baihu-Guizhi decoction

BPS Bladder pain syndrome

cADPR cyclic ADP-ribose

CGRP Calcitonin gene related peptide

DAG Diacyl glycerol

DAMPS Damage-associated molecular patterns

DEX Dexmeditomidine

DRG Dorsal root ganglia

ER Endoplasmic reticulum

ERK Extracellular signal-regulated kinase

GSH Glutathione

GSK3β Glycogen synthase kinase-3β

H2O2 Hydrogen peroxide

HMGB-1 High mobility group box 1

IFN-1 Interferon Type 1

IkB Inhibitor of kappa B

IL-1β Interleukin-1 beta

IL-6 Interleukin-6

IP3 Inositol triphosphate

JNK c-Jun N-terminal kinase

KO Knock Out

LPS Lipopolysaccharide

MAPKs Mitogen-Activated Protein Kinase

MOG Myeloid oligodendrocyte glycoprotein

MSC Mesenchymal stem cell

mTOR Mammalian rapamycin target protein

Myd88 Myeloid differentiation Primary Response

NADPH Nicotinamide Adenine Dinucleotide phosphate

NF-kB Nuclear factor kappa B

NMDA N-methyl D-aspartate

NOX NADPH oxidase

NUDT9-H Nudix hydroxylase

PAMPS Pathogen-associated molecular patterns

PARP1 Poly adenosine diphosphate ribose polymerase

PI Phosphatidyl inositol

PKC Protein Kinase C

PLC Phospholipase C

ROS Reactive Oxygen Species

SCI Spinal Cord Injury

SD Sprague Dawley

TGFβ Tumor growth factor

TIR Toll interleukin −1 receptor

TLR Toll-like-receptor

TNFα Tumor necrosis factor α

TRAF6 Tumor necrosis factor receptor (TNFR)-associated factor 6

TRIF TIR (Toll/interleukin-1 receptor) domain-containing adaptor protein

TRP Transient receptor potential

TRPA Transient receptor potential Ankyrin

TRPC Transient receptor potential Canonical

TRPM Transient receptor potential Melastatin

TRPV Transient receptor potential Vanilloid

WT Wild Type
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