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Diabetes is a complex condition with a rising global incidence, and its impact is
equally evident in pediatric practice. Regardless of whether we are dealing with
type 1 or type 2 diabetes, the development of complications following the onset
of the disease is inevitable. Consequently, contemporary medicine must
concentrate on understanding the pathophysiological mechanisms driving
systemic decline and on finding ways to address them. We are particularly
interested in the effects of oxidative stress on target cells and organs, such as
pancreatic islets, the retina, kidneys, and the neurological or cardiovascular
systems. Our goal is to explore, using the latest data from international
scientific databases, the relationship between oxidative stress and the
development or persistence of systemic damage associated with diabetes in
children. Additionally, we highlight the beneficial roles of antioxidants such as
vitamins, minerals, polyphenols, and other bioactive molecules; in mitigating the
pathogenic cascade, detailing how they intervene and their bioactive properties.
As a result, our study provides a comprehensive exploration of the key aspects of
the oxidative stress-antioxidants-pediatric diabetes triad, expanding
understanding of their significance in various systemic diseases.
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1 Introduction

Diabetes occupies a leading place in the list of chronic pathologies with an increasing
incidence rate. Comparatively analyzing the pre-pandemic and pandemic period, an
interconnection was observed between respiratory infection with coronavirus and
autoimmune pathologies (e.g., diabetes, systemic lupus erythematosus) (Fotea et al.,
2023; Lupu et al., 2023a). D’Souza D. et al. observed the escalation of the number of
newly diagnosed cases of diabetes (type 1 and 2) in the COVID-19 pandemic. In particular,
in the case of type 1 diabetes, a numerical increase of more than ½ of newly diagnosed cases
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was observed in 2020 (the first pandemic wave) compared to 2019
(32%000 versus 19%000). The incident rate was 1.14 times higher in
the first year and 1.27 times higher in the second year after the onset
of the pandemic. A similar trend has been reported in type
2 diabetes. The precipitating factors of the association are the
localization of the SARS-CoV-2 ACE2 entry receptor at the level
of insulin-producing β cells, the switch to a sedentary lifestyle and
psychological stress (D’Souza et al., 2023). Consequently, following
the model above, we can state that the two entities (diabetes and
acute respiratory infection with coronavirus) have a common
physiopathological point represented by oxidative stress (Fotea
et al., 2023). Previous data are now validated by studies on the
positive impact of a nutrient/antioxidant balance on immune system
activity, reducing inflammation and oxidative stress (Delmastro and
Piganelli, 2011; Chernyak et al., 2020; Iddir et al., 2020).

Therefore, taking note of the international research trend, we
consider that the early recognition of diabetic manifestations, the
screening of populations at risk and the maximum therapeutic
management (pharmacological and non-pharmacological) must
be desired in an adequate patient care. This narrative review
focuses on the implications of oxidative stress (framed by us as
the “Cinderella of diabetic pathogenesis”) on the systemic evolution
of patients with diabetes. Additionally, we discuss the way in which
various dietary antioxidant substances (whether or not they have
pharmacological similarities) intervene in the oxidative dynamics,
emphasizing at the same time their main dietary sources.

2 State of the art

Diabetes in children tends to have a more severe onset than in
adults, resulting in a much higher mortality rate. Consequently,
type I diabetes is one of the most common chronic diseases of
childhood. With an increasing incidence, especially under the age
of 5, type I diabetes occurs in 1/350 children under the age of 18.
Furthermore, type II diabetes currently describes an increase in
frequency parallel to that of childhood obesity. A peak of the
incidence is therefore noted in the post-puberty period
(15–19 years). One of the rarest and most aggressive forms of
diabetes is neonatal, whose diagnosis and management protocol
is important to know (Chisnoiu et al., 2023; Calabria, 2022;
Koren and Levitsky, 2021). To this is added the risk of acute/
chronic complications (metabolic/organic), doubled by the
possible damage to bone development and integrity
(Vanderniet et al., 2022; Ahmad E. et al., 2022; El Amrousy
et al., 2021). The most feared acute complication is ketoacidosis,
characterized by the smell of ketones, dehydration, abdominal
pain, Kussmaul breathing, vomiting, coma, altered mental status
(Los and Wilt, 2024).

The etiopathogenesis of diabetes differs between the two main
forms (I and II). Hence, in the first form, the main cause is
represented by the autoimmune destruction of pancreatic beta
cells, in people with a genetic predisposition, with the consequent
decrease in insulin production. However, in type II diabetes, the
pancreas produces insulin, but there are different degrees of insulin
resistance precipitated by the complex interaction of genetic factors
and environmental factors. In this situation insulin secretion is
inadequate to meet the increased demand caused by insulin

resistance (Calabria, 2022). The diagnosis of diabetes and
prediabetes is similar to that of adults. For this purpose, fasting
or random plasma glucose levels, at different times of the day, and/or
glycosylated hemoglobin A1c levels are analyzed. Additionally, the
presence or absence of characteristic symptoms (e.g., hyperglycemia,
glycosuria, polydipsia, unexplained weight loss, nonspecific malaise)
is taken into account (Calabria, 2022). Current guidelines note as
targets a blood glucose level between 4 and 10 mmol/L (70–180 mg/
dL). During the fasting period, the optimal range becomes narrower,
of 4–8 mmol/L (70–144 mg/dL) (de Bock et al., 2022). Islet cell
antibodies are not usually measured to diagnose type 1 diabetes.
Being found in only about 5% of children, they are not considered to
be specific markers (Los and Wilt, 2024). Except for the similarities
in diagnosis with the adult form, pediatric diabetes must follow a
separate management line. The possibility of overlapping other
autoimmune diseases (e.g., thyroid damage, Addison’s disease,
rheumatoid arthritis, systemic lupus erythematosus, psoriasis,
inflammatory bowel diseases, autoimmune hepatitis, vitiligo)
should be known in the case of children with type I diabetes
(Calabria, 2022; American Diabetes Association Professional
Practice Committee, 2022).

Baig S. et al. recently demonstrated that the hereditary character
of diabetes can predispose to an increased sensitivity to
inflammation and oxidative stress, thus accentuating the
subsequent burden of the disease (Baig et al., 2020). Next,
Wittenstein B. et al. support the existence of disturbances of the
oxidative mechanisms since childhood (Wittenstein et al., 2002).
This finding was also confirmed by Varvarovská J. et al., who
demonstrated the existence of a tendency to overproduction of
free radicals in the first degree relatives (siblings) of the patients
(Varvarovská et al., 2003). In particular, Martín-Gallán P. et al. take
as a model of debate the oxidative damage of lipids, proteins and
DNA characteristic of diabetic patients with microangiopathy. They
conclude that oxidative stress may represent an epicenter of the early
development of diabetes-related complications (Martín-Gallán et al.,
2007). In agreement with them, it has been shown that long-term
exposure to high blood glucose concentrations can lead to increased
inflammation and the oxidative component, with an impact on
neuronal integrity, a neurotransmitters and kidney function. The
findings are essential in order to optimize the treatment of pediatric
diabetes. Although the authors emphasize the need for further
investigations on the field of free radicals and oxidants-
antioxidants, under-debated in pediatric populations (Kaya et al.,
2015; Hernández-Marco et al., 2009; Arabshomali et al., 2023; Tuell
et al., 2023; Çam et al., 2023).

Thus, the optimal monitoring of the organic antioxidant
capacity is a key point in preventing the accelerated development
of diabetic complications (Grabia et al., 2023). Further, Varvarovská
J. et al. and Chiavaroli V. et al. underlines the importance of knowing
and integrating the means of counteracting oxidative stress in the
therapeutic scheme of children in order to minimize the degree of
oxidative damage (Varvarovská et al., 2004; Chiavaroli et al., 2011).
Natural antioxidant products (e.g., vitamin E, vitamin C, beta-
carotene, selenium, manganese, polyphenols) may act to slow or
prevent systemic decline. They act on several levels, among which we
mention the reduction of mitochondrial oxidative stress, prevention
of the harmful effects of lipid peroxidation and essential cofactors
for antioxidant enzymes (Arabshomali et al., 2023; Tuell et al., 2023).
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3 Place of oxidative stress in
pediatric diabetes

Oxidative stress represents the disruption of the systemic
balance between the production of oxidizing agents and the
antioxidant defense. It has been incriminated over time both as a
triggering factor and as a maintenance factor of diabetes and its
comorbidities (Rains and Jain, 2011). In this sense, markers specific
to oxidative stress were detected both in early and advanced disease.
The pro-oxidative state can be induced by a disorganized lifestyle
(inadequate diets, obesity, sleep restrictions, recurrent episodes of
ketosis) or by the underlying condition (Kacarevic et al., 2020).
Although reactive oxygen and nitrogen species are involved in
numerous physiological processes, their excess causes damage to
lipids, proteins, cell membranes or DNA (Tsukahara, 2007). The
consequences of a pro-oxidative environment unfold in a double
manner on the reference metabolic pathology. Thus, regarding the
acute systemic damage, we can state that oxidative stress is involved
in the production of pediatric diabetes, being correlated with the
development of insulin resistance, β-cell dysfunction, impairment of
glucose tolerance and mitochondrial dysfunction (Kacarevic et al.,
2020). In the medium and long term, oxidative stress is implicated in
the increase of associated comorbidities (e.g., nephropathy,
neuropathy, retinopathy, cardiac or vascular damage). To
illustrate, we take renal pathology as a reference point. One of
the key factors in determining oxidative stress and accompanying
renal dysfunction is NADPH oxidase 4 (NOX4). Added to this is
nicotinamide phosphoribosyltransferase (NAMPT), regulator of the

response to oxidative stress, apoptosis, lipid and carbohydrate
metabolism, inflammation and insulin resistance. At the opposite
pole, activation of the nuclear factor 2-erythroid-2 (NRF2) pathway
has a strong antioxidant role (WuH. et al., 2018; Garten et al., 2015).

Since the causal relationship regarding oxidative stress -
pediatric diabetes is a complex one, we develop in the following
the main findings currently available in the literature. We will thus
review data regarding the involvement of oxidative stress in affecting
pancreatic homeostasis, but also in the initiation andmaintenance of
retinopathy, nephropathy, neuropathy, cardiopathy and diabetic
angiopathy. Summarizing the existing data in the literature,
Figure 1 schematically exposes the pathogenic cascade identified
in diabetes, with an emphasis on oxidative stress and its implications
in the initiation and maintenance of chronic complications.

3.1 Destruction of pancreatic islets

Maintaining the structural and functional integrity of the β-
pancreatic cells is a priority. Oxidative stress and inflammation have
been shown to be disturbing factors of this balance (Saeedi Borujeni
et al., 2019; Gorasia et al., 2015). The consequences are the
disruption of immune tolerance following crosstalk between
immune cells and β-cells. The main causes seem to be the
alteration of signal transduction, enzyme activity, gene expression
or ion channels, in parallel with antigen presentation and induction
of apoptosis (Piganelli et al., 2021). Active or passive smoking
represents an additional risk to those stated previously,

FIGURE 1
The role of oxidative stress in the pathogenic cascade of diabetic complications (adapted from Giacco F. et al. and Forbes JM. et al.) (Giacco and
Brownlee, 2010; Forbes and Cooper, 2013).
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synergistically with obesity. Nicotinamide has been shown to be
beneficial in disease prophylaxis in high-risk individuals and
stimulation of residual insulin secretion in newly diagnosed
patients. Similarly, beneficial effects were also recorded in the
case of N-acetylcysteine administration or the correlation of
insulin dose with carbohydrate intake (Ludvigsson, 1993; Tong
et al., 2020; Kostopoulou et al., 2020). At the same time, Lee J
et al. posit that multiple cellular processes encountered in pancreatic
dynamics are rhythmic and subject to circadian regulation (Lee
et al., 2018).

Interleukin 6 (IL-6) has been intensively studied regarding its
role in the specific oxidative dynamics of diabetes. It is certified that
IL-6 represents the crossroads between autophagy and the
antioxidant response. Although it is a pro-inflammatory cytokine,
IL-6 seems to have a protective role in the pathogenesis of diabetes.
The decrease in its signaling in β cells increases their susceptibility to
oxidative damage. In parallel, IL-6 reduces reactive oxygen species
and mitochondrial activity, stimulating mitophagy (Marasco et al.,
2018). Recent studies confirm the correlation between the level of IL-
6 and the complications of diabetes, both in murine models and
among young patients (Karahmet et al., 2021; Robinson et al., 2020).
Reis JS. et al. argue that the functional changes involved in the
complications of diabetes may begin as early as the first years of
diagnosis. Consequently, IL-6 is a key pawn in adaptation to stress,
marking new research directions regarding targeted therapies
(Rajendran et al., 2020; Reis et al., 2012).

3.2 Retinopathy

Retinopathy is classically defined as a complication of diabetes
that structurally and functionally affects the posterior eye pole, with
a frequency of approximately 15% since the time of diagnosis
(Rodríguez et al., 2019). The physiopathological center of the
disease is represented by ischemic tissue damage, later doubled
by compensatory vascular neoformation (non-proliferative stage
and proliferative stage) (Rivera et al., 2017). The mechanisms
implicated in ocular tissue damage are atmospheric oxygen,
hyperglycemia (through advanced glycosylation products,
peroxisome proliferator-activated receptor γ disruption,
epigenetic changes), inflammation, environmental chemicals, and
free radical-catalyzed peroxidation of long-chain polyunsaturated
acids. This results in toxic metabolites. Furthermore, oxidative stress
is also involved in affecting the reendothelialization capacity
(Guzman et al., 2017; Calderon et al., 2017; Gui et al., 2020).
Wert KJ. et al. notes the involvement of superoxide dismutase-3
in vitro-retinal pathogenesis. This enzyme proved to be well
represented in the vitreous body (Wert et al., 2018). Laser
phototherapy, the administration of anti-vascular endothelial
growth factor (VEGF) agents or vitrectomy are established
therapeutic methods. Among the beneficial antioxidant
substrates, we note the α lipoic acid, taurodeoxycholic acid,
apocynin, polyphenols and vitamins (vitamin E, C, B1)
(Rodríguez et al., 2019).

Oxidative stress can therefore precipitate the abnormalities
induced by hyperglycemia and inflammation, mainly through the
interaction with the polyol, hexosamine, angiotensin II pathways,
the hyperactivation of protein kinase C isoforms (PKC) and the

accumulation of advanced glycation end products (AGEs) (WuMY.
et al., 2018; Kang and Yang, 2020). In addition to these, epigenetic
changes, DNA methylation and the abnormal activity of nuclear
factors (e.g., strongly activated nuclear factor κB -NF-κB-), doubled
by the attenuation of NRF2 activity, have been shown to be involved
in the accumulation of free radicals (Duraisamy et al., 2018). All
these changes form a vicious circle, leading over time to
mitochondrial, microvascular dysfunction and apoptosis. Further,
ischemia and local inflammation occur, which stimulate
neovascularization, macular edema and neurodysfunction
(Kowluru, 2023). In conclusion, oxidative stress represents an
important pillar in the pathogenesis of diabetic retinopathy. In
this sense, an individualized antioxidant therapy of patients can
be obtained, centered on optical coherence tomography as a
screening method. The technique seems to be able to evaluate
the oxidative stress of the subretinal space. To this must be
added the obtaining of an adequate glycemic control.

From a pharmacological point of view, the substances used in
the management of diabetic retinopathy are diphenyleneiodonium,
apocynin, triamcinolone acetonide, dexamethasone sodium
phosphate, fluocinolone acetonide, statins, fenofibrate, or
glucagon-like peptide 1 receptor agonists (GLP 1) (Rodríguez
et al., 2019; Berkowitz, 2020). To these are added the previously
mentioned antioxidant substances, doubled by microelements (zinc,
copper, selenium, manganese), sirtuin pathway modulators
(antagomiR, resveratrol, glycyrrhizin, melatonin), N-acetyl
cysteine, benfotiamine, nicanartine, capsaicin, β-carotene, taurine,
lutein, caffeic acid phenethyl ester, cannabidiol, 8-hydroxy-N,
N-dipropyl-2-aminotetralin and green tea (Kang and Yang, 2020;
Berkowitz, 2020; Li et al., 2017; Nebbioso et al., 2022; Liu et al., 2022;
Tu et al., 2021).

3.3 Nephropathy

Diabetic nephropathy is another microvascular complication
encountered in the evolution of diabetes with a frequency of up to
40% of cases (Darenskaya et al., 2023). The defining histological
features are glomerular hypertrophy, basement membrane
thickening, mesangial expansion, tubular atrophy, interstitial
fibrosis, and arterial thickening (Darenskaya et al., 2023;
Kashihara et al., 2010; Sagoo and Gnudi, 2018). Mamilly L. et al.
underlines the positive correlation between the development of
nephropathy and glycemic variability (Mamilly et al., 2021).
However, the pathogenesis of renal damage in diabetic
nephropathy is multiple and far from being completely
elucidated. Among the newly introduced therapeutic targets in
the field of research, we delimit oxidative stress which, together
with hyperglycemia, forms a vicious cycle with a strong impact on
metabolic homeostasis and organic functionality (Arora and Singh,
2014; Artenie et al., 2004). Several molecules compete in the
modulation of oxidative stress, among which we note NADPH
oxidase (subtypes 1, 2 and 4), xanthine oxidase, lipoxygenase,
cytochrome P450, AGEs, disturbances of the polyol pathway,
uncoupled nitric oxide synthase or the respiratory chain
mitochondria. The goal is to reduce the risk of progression of
diabetic nephropathy to chronic renal failure (Goycheva et al.,
2023; Østergaard et al., 2020; Yamagishi and Matsui, 2010). It is
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known that chronic renal failure is a pathology accompanied by
systemic dysbiosis, thus potentiating the occurrence of other
diseases through the intestine-target organ axes. Among the
pathologies whose list of precipitating factors includes dysbiosis,
we mention inflammatory conditions, autoimmunity or atopy. At
the same time, it is known about patients in the final stage of renal
damage that they have a much-reduced capacity to compensate for
the negative effects of oxidative stress (Pantazi et al., 2023; Mocanu
et al., 2023; Lupu et al., 2023b; Lupu et al., 2024a; Lupu et al., 2024b;
Lupu et al., 2023c; Lupu et al., 2023d; Ioniuc et al., 2024; Lupu et al.,
2024c). The mechanism involved in renal decline is the increase in
the expression of extracellular matrix genes following the
stimulation of protein kinase C, mitogen-activated protein
kinases and various cytokines and transcription factors by
reactive oxygen species represented in excess. Added to this is
the overexpression of the renin-angiotensin system (Kashihara
et al., 2010; Sagoo and Gnudi, 2018).

The main organelles damaged by oxidative stress were found to
be peroxisomes. Known for their multiple metabolic roles, they
undergo functional changes depending on systemic conditions
predisposing to the increase of free radicals. In this sense, studies
on murine models have shown the benefit of supplementing with
antioxidants in restoring peroxisomal balance and mitigating
diabetic nephropathy (Dhaunsi and Bitar, 2004). Phytochemical
substances (e.g., dietary antioxidants, Chinese medicinal plants,
vitamins, trace elements - selenium, zinc -, catechins, coenzyme
Q10, omega-3 fatty acids, resveratrol, curcumin, quercetin, soy,
dioscin, α-lipoic or phenolic acid) are known for its beneficial
effect on renal function and alleviation of oxidative stress
(Hernandez et al., 2022; Gerardo Yanowsky-Escatell et al., 2020;
Hu et al., 2022; ChenM. et al., 2023; Zhong et al., 2022). To these are
added kelch-like ECH-associated protein 1, NRF2, lipoxin and
glutathione peroxidase-1 representing antioxidant mechanisms
whose integrity depends on the evolution of diabetic
nephropathy (Darenskaya et al., 2023; Østergaard et al., 2020).
Besides these, the functionality of metabolic pathways mediated
by AMP-activated protein kinase (AMPK)/Sirtuin-1 (Sirt1), the
transcription factor SIRT1-forkhead O (FOXO), Sirt1 and NF-κB
can be influenced by oxidative stress (Jin et al., 2023). In addition,
Peters V. et al. highlight the possible inclusion of carnosine (β-
alanyl-L-histidine) among modern therapeutic approaches. The
interest in this is partly due to its anti-inflammatory and
antioxidant properties. The disadvantages of human
administration reside in the reduced halving period (Peters
et al., 2020).

Among the effective pharmacological therapies, we mainly
discuss antidiabetics such as GLP1, dipeptidyl peptidase-4 (DPP-
4) inhibitors, sodium-glucose transport protein 2 (SGLT2) and
insulin. Adjuvants include Rapamycin, Ruboxistaurin,
Pentoxifylline, the Ursolic Acid - Empagliflozin combination,
aspirin and cyclooxygenase-2 (COX-2) inhibitors, 3-hydroxy-3-
methylglutaryl CoA (HMG-CoA) reductase inhibitors,
adiponectin and the monocyte chemoattractant protein inhibitor.
1 and 2 (MCP-1 and MCP-2) (Østergaard et al., 2020; Mima, 2013;
Wu et al., 2021). To these is added the achievement of good glycemic
control, the adequate maintenance of blood pressure and lipid
profile, together with the approach of a healthy lifestyle (Singh
et al., 2011).

3.4 Neuropathy

It manifests itself through intense pain and a decrease in the
quality of life, reported in up to 1/3 of patients with diabetes,
regardless of the associated neurological deficits (Pang et al.,
2020). The physiopathological mechanisms directly involved are
axonal degeneration occurring in cells with a reduced capacity to
modulate their carbohydrate intake following chronic
hyperglycemia and the excess production of reactive species (Ye
et al., 2022). The indirect means that disrupt the neuronal balance
are increased inflammation and mitochondrial dysfunction
(Fernyhough and McGavock, 2014). In a secondary plan, we
discuss the effect of genetic polymorphism in the pathogenesis of
complications associated with diabetes (Babizhayev et al., 2015). It is
also noted that pain processing in the central nervous system is
compromised in diabetic neuropathy. Depending on the degree of
damage and duration of symptoms, neuropathy can be divided into
diffuse and focal (less frequent and often self-limited). The most
common form is distal symmetrical polyneuropathy of the lower
and upper extremities (Dewanjee et al., 2018; Sztanek et al., 2016).

There is an increased risk that patients with polyneuropathy will
develop cognitive impairment (e.g., dementia). At the same time,
maternal diabetes may predispose to fetal neurodevelopmental
defects. Therefore, close follow-up of patients is essential. To
facilitate this, Etienne I. et al. discuss the utility of correlating low
malondialdehyde levels with the coexistence of diabetes mellitus and
diabetic polyneuropathy (Etienne et al., 2019; Jin et al., 2016).

In combating oxidative stress and its effects on the quality of life
of patients with diabetic neuropathy are essential substances such as
α-lipoic acid, vitamins (A, C and E), acetyl L-carnitine, taurine,
melatonin, quercetin and N–acetylcysteine (Pang et al., 2020; Zhang
et al., 2021). Methylcobalamin is added to these, a substance that
competes with α-lipoic acid in terms of therapeutic efficiency in
reducing the sensation of numbness and paresthesia. In contrast, α-
lipoic acid is recommended when the predominant complaints are
burning and pain (Han et al., 2018). If in diabetic nephropathy
Ruboxistaurin (specific inhibitor of protein kinase C) has proven
therapeutic efficiency, in neuropathy aldose reductase inhibitors
(Epalrestat, Ranirestat) and anti-AGE agents (Benfotiamine) have
rather demonstrated a therapeutic effect. An effective solution
appears to be the double association of phosphodiesterase
inhibitors (Rolipram and/or Pentoxifylline), aiming both at
reducing oxidative stress and the level of inflammatory factors
(Dastgheib et al., 2022). For adjuvant purposes, it is possible to
use antiepileptic drugs (Pregabalin, Gabapentin), antidepressants
(Duloxetine), opioid analgesics (Tramadol) or non-steroidal anti-
inflammatory drugs (Dewanjee et al., 2018). Dexmedetomidine
(anxiolytic, analgesic and sedative derived from imidazole) and
Hesperidin are also an approach considered promising in the
future (Lin et al., 2023; Syed et al., 2023).

Future strategies focus on the use of hydrogen therapy in
alleviating diabetic symptoms and reducing the morbidity caused
by it. The benefits of its administration include reduction of blood
glucose, improvement of motor nerve conduction velocity,
mitigation of oxidative stress (reduction of malondialdehyde,
reactive oxygen species and 8-hydroxy-2-deoxyguanosine), partial
restoration of superoxide dismutase activities and regulation of
NRF2 expression (Han et al., 2023).
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3.5 Cardiovascular damage

The two entities that are the subject of this subchapter (diabetes
and cardiocirculatory manifestations) have a common pathogenic
background represented by low-grade chronic inflammation
(Hariharan et al., 2022). Added to this is the impact of oxidative
stress on cardiovascular and metabolic balance. Its main
determinants appear to be obesity, diabetes, smoking and
pollution (Hertiš Petek et al., 2022; Cojocaru et al., 2023;
Niemann et al., 2017; Lupu A. et al., 2024). The role of
intervention in modulating these variables is vital, its absence
being accompanied by medium- and long-term consequences on
the health of patients (for example, chronic inflammation in
childhood increases the risk of atherosclerosis and
cerebrovascular diseases). Also, there is evidence of the direct
correlation between the level of oxidative stress, the relative risk
of cardiovascular damage and mortality and the value of
glycosylated hemoglobin (HbA1c), respectively the period of
manifestation of diabetes. The link is objectified by the escalation
of endothelial, inflammatory and pro-coagulant biomarker values
among patients with poorly controlled diabetes (Hertiš Petek et al.,
2022; Zhao et al., 2021; Domingueti et al., 2016; Seckin et al., 2006;
Letunica et al., 2021). For an easier presentation of the subject, in
what follows, we will subdivide the discussion into two directions of
interest, namely, cardiac and vascular damage.

3.5.1 Cardiomyopathy
The importance of the perinatal period (intrauterine and

postnatal) in the subsequent optimal development of the child is
well known. In this stage Topcuoglu S. et al. postulates the
implications played by the incompletely compensated oxidative
stress in determining the severity of the myocardial and
hematological damage encountered in the first days of life of
infants from diabetic mothers (Topcuoglu et al., 2015). Later, in
evolution, diabetic cardiomyopathy and heart failure appear as
consequences of metabolic and energetic disturbances induced by
the absence/insensitivity to insulin associated with the underlying
pathology. It is estimated that the risk increases by 30% - type
1 diabetes and respectively 8% - type 2 diabetes for each percentage
increase in HbA1c (Jia et al., 2018). Therefore, there is an increase in
oxidative stress, deregulation of calcium homeostasis, inadequate
activation of the renin-angiotensin-aldosterone system,
mitochondrial dysfunction, lipid peroxidation, post-translational
modification of proteins and the activation of several
inflammatory and signaling pathways involved in the promotion
of cardiac oxidative stress that mediates cellular and extracellular
lesions. Superoxide anion radicals produced in excess at the
mitochondrial level induce the inhibition of glyceraldehyde 3-
phosphate dehydrogenase, the increase in the flow of polyol and
hexosamine pathways, the formation of excess AGEs, the activation
of the receptor for AGEs (RAGE) and protein kinase C isoforms
(Duncan, 2011; Chen et al., 2022; Peng et al., 2022; Tang et al., 2022;
De Geest and Mishra, 2022). We encounter pathological cardiac
remodeling, interstitial fibrosis and cardiomyocyte apoptosis,
doubled by diastolic and systolic dysfunction. For an easier
differentiation, Table 1 illustrates the main characteristics of
cardiac damage depending on the form of diabetes manifested
(Tan et al., 2020). In the occurrence of mitochondrial and

cardiac changes induced by diabetes, a key role seems to be
played by the regulation of signaling pathways targeting mitogen-
activated protein kinases (e.g., extracellular signal-regulated kinase
1/2 -ERK1/2, n-terminal protein kinase c-Jun -JNK and p38 MAP
kinase) (Xu et al., 2016).

The three main directions in the fight against the excessive
production of oxygen radicals induced by hyperglycemia,
hyperlipidemia and hyperinsulinemia/increased insulin resistance
are endogenous antioxidant enzymes (SOD, catalase, glutathione
peroxidase, NRF2, heme oxygenase (HO)-1, redoxins, aldehyde
oxidases or sirtuins), the administration of targeted
pharmacological agents (mito-TEMPO, Resveratrol, Piceatannol,
Quercetin, Taxifolin, antidiabetics, angiotensin-converting
enzyme inhibitors, angiotensin receptor antagonists, renin
inhibitors) and respectively increased exogenous intake of
substances with antioxidant effect (Byrne et al., 2021; Huang
et al., 2020). Among the food components with cardioprotective
effects we mention flavonoids (e.g., Naringenin), sulforaphane,
N-acetyl cysteine, zinc (metallothionein cofactor), selenium,
vitamins E and C, β-carotene, α-lipoic acid, omega 3, coenzyme
Q (Tan et al., 2020; Byrne et al., 2021; Thandavarayan et al., 2011; Xu
et al., 2023). In murine models, Zhang C. et al. demonstrated the
benefit of non-mitogenic acid fibroblast growth factor
administration over a period of 6 months in the prophylaxis of
diabetic cardiomyopathy (Zhang et al., 2013). Other substances that
have demonstrated benefits are ursolic acid, curcumin, galangin,
acacetin, fisetin, dihydromyricetin or isoliquiritigenin (Wang et al.,
2018; Ren et al., 2020; Abukhalil et al., 2021; Song et al., 2022;
Althunibat et al., 2019; Chen Y. et al., 2023; Gu et al., 2020).

3.5.2 Angiopathy
The systemic pro-oxidative status characteristic of diabetes

brings about changes in the integrity of the vascular network
from the early stages. By following a group of 35 patients with
type 1 diabetes, Suys B. et al. hypothesize that the circulating level of
copper/zinc SOD (also known as SOD3) can be correlated with
vascular damage and the degree of arterial dilatation mediated by the
flow (Suys et al., 2007; Su et al., 2008). Further, El Samahy MH. et al.
note that the carotid intimate-medium thickness correlates
positively with nitric oxide values and negatively with systemic
antioxidant capacity (El et al., 2013). Ahmad FA. et al. widened
the horizons of screening by demonstrating the correlation between
epicardial fat thickness (limit value for prediction: 6.95 mm)
measured echocardiographically and vascular damage (Ahmad
FA. et al., 2022). Studies on murine models also facilitated the
inclusion of microRNA (miRNA), respectively miR-30d/e, among
possible relevant biomarkers in determining the degree of coronary
microvascular damage. At the same time, it represents a useful
prophylactic measure in preventing compromise of diastolic
function and progression to heart failure with preserved ejection
fraction (Veitch et al., 2022). In conclusion, Koutroumani N. et al.
note the existence among children with diabetes of a protective
mechanism against oxidative stress and angiopathy centered on the
different modulation of the AGE receptor (Koutroumani
et al., 2013).

Regarding the exogenous means of antioxidant protection,
among them we find vitamins (A, C, E, complex B), polyphenols,
glutathione, α-lipoic acid, carotenoids, trace elements (copper, zinc
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and selenium), coenzyme Q, taurine, tetrahydrobiopterin,
L-arginine, folic acid or acetylcysteine. Effective pharmacological
therapy is represented by 3-hydroxy-3-methylglutaryl coenzyme A
reductase inhibitors (statins), although they do not show as a
mechanism of action the reduction of oxidative stress. Fibrates,
angiotensin-converting enzyme inhibitors, metformin and fish oils
can be added to this (in combination or not) (Laight et al., 2000;
Suganya et al., 2016; Yim et al., 2007; Hamilton et al., 2007). For the
pediatric population, the judicious use of cocoa and dark chocolate
can be considered an attractive option in order to increase
cardiovascular protection from the perspective of their
antioxidant capacities (Grassi et al., 2013).

Undoubtedly, the damage to the myocardial vasculature benefits
from increased attention in part because of the cardiac consequences
resulting from its disruption. It should not be neglected, however,
that angiopathy due to oxidative/nitrogen stress is a diabetic
complication that affects all the target organs (eyes, kidneys,
nervous system), disrupting the homeostatic balance and thereby
precipitating related comorbidities (Santilli et al., 2004; Tsukahara
et al., 2003; Grochowski et al., 2018). Further, Table 2 presents a
synthesis of the main therapeutic means (pharmacological and non-
pharmacological) that can be successfully approached in the curative
and adjuvant management of diabetes complications.

4 Themain antioxidant substances used
in management

We exposed in the initial part of the article the role played by the
imbalance between the formation and clearance of free radicals,
substances that give the internal environment a pro-oxidant
character. Its effects are felt both in the initiation, as well as in
the maintenance and aggravation of diabetic manifestations. It is
proven that the neutralization of reactive molecules can significantly
decrease the risk of developing endothelial dysfunction,
atherosclerosis, cardiomyopathy, retinopathy, nephropathy and
neuropathy. However, the current medical literature rather
encourages the use of antioxidants as a prophylactic means to
prevent the accumulation of reactive free radicals, rather than for
the purpose of cleaning them (Zatalia and Sanusi, 2013; Johansen
et al., 2005). Focusing on the category of food antioxidants, with
possible parallels in the pharmaceutical industry, we continue to
develop the basic characteristics of the most popular substances and

how they interfere with the prophylactic and curative management
of diabetes and its complications. In addition, we will refer to foods
with high antioxidant content, with the aim of popularizing a
nutritious, balanced diet.

4.1 Vitamins (A, C, E and B complex)

Vitamin A represents a group of fat-soluble retinoids, with
implications on growth, differentiation and cell signaling
(through the intranuclear receptor), gene regulation, muscle
integrity, resistance to infections and immunological balance. The
optimal dose is between 200 and 500 μg/day (Martini et al., 2020;
Iqbal and Naseem, 2015). Vitamin A is found in increased quantities
in the following foods: liver and liver products, kidney and offal, oily
fish and fish liver oils, eggs, carrots, red peppers, spinach, broccoli
and tomatoes (Webster-Gandy et al., 2006).

Vitamin C (ascorbic acid) is a water-soluble vitamin with a role
in the integrity of the connective tissue, the modulation of systemic
enzymatic reactions and the functions of the central nervous system.
At the same time, vitamin C increases nitric oxide production in
endothelial cells by stabilizing the nitric oxide synthase cofactor,
thereby neutralizing reactive oxygen species. Appropriate daily
doses are between 35 and 75 mg (Johansen et al., 2005; Martini
et al., 2020). Foods rich in vitamin C found in the daily diet are kiwi
fruit, citrus fruit (oranges, lemons, satsumas, clementines, etc.),
black currants, guava, mango, papaya, pepper, brussels sprouts,
broccoli and sweet potato (Webster-Gandy et al., 2006).

Vitamin E is a fat-soluble vitamin (along with vitamin A),
subdivided into 8 isoforms, of which the most active and
intensively studied in the human species is α-tocopherol.
Tocopherol reacts with the hydroxyl radical, neutralizing it by
forming a stabilized phenolic radical that will later be reduced to
the phenolic ring (Zatalia and Sanusi, 2013). Giannini C. et al.
demonstrate through the cross-over, double-blind study, over a
period of 12 months, the benefit brought by supplementation
with high doses of vitamin E (1,200 mg/day) on the reduction of
pro-oxidative markers and the improvement of antioxidant defense.
However, supplementation could not restore the damage already
done (Giannini et al., 2007). Later, Dotan Y. et al. disapprove the
supplementation without discrimination, basing his statement on
the results of recent meta-analyses that validate its correlation with
increased mortality. The authors emphasize the need to outline

TABLE 1 Characteristics of cardiac damage depending on the form of diabetes [adapted from Tan et al. (2020)].

Type of
diabetes

Histological and physiopathological
characteristics

Symptoms

Type 1 diabetes • loss of cardiomyocytes
• remodeling of the left ventricle
• increased deposition of myocardial collagen
• increased final diastolic volume in the left ventricle
• systolic function disturbances

- heart failure with low ejection fraction

Type 2 diabetes • coronary microvascular inflammation
• paracrine-mediated damage to cardiomyocytes and
endothelial cells

• concentric left ventricular remodeling and hypertrophy
• increased rigidity
• diastolic dysfunction

- heart failure with preserved ejection fraction, minimally symptomatic (assessed by
tissue Doppler imaging)

- late in the evolution of heart failure with low ejection fraction
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TABLE 2 Targeted therapeutic targets in the prophylactic/curative management of diabetic comorbidities.

Affect Endogenous
antioxidants

Exogenous antioxidants Pharmacological/alternative
substancesa

Retinopathy SOD α lipoic acid Antidiabetics/Insulin

CAT Taurodeoxycholic acid Anti-VEGF

TrxR Apocynin Vitrectomy

GR Taurine Diphenyleneiodonium

GPX Lutein Apocynin

GSH Phenethyl ester of caffeic acid Triamcinolone acetonide

polyphenols Dexamethasone sodium phosphate

Vitamins (E, C, B1) Fluocinolone acetonide

Trace elements (zinc, copper, selenium, manganese) Statins

Sirtuin pathway modulators (AntagomiR, Resveratrol,
Glycyrrhizin, Melatonin)

Fenofibrate

N-acetyl cysteine

Benfotiamine

Nicarnitine

Capsaicin

β-carotene

Cannabidiol

Green tea

Nephropathy kelch-like ECH-associated
protein 1

Chinese medicinal plants Antidiabetics/Insulin

NRF2 Soy Rapamycin

Lx Vitamins Ruboxistaurin

GPx-1 Trace elements (selenium, zinc) Pentoxifylline

Catechins Ursolic acid – Empagliflozin

Coenzyme Q10 Aspirin and COX-2 inhibitors

Omega-3 fatty acids HMG-CoA reductase inhibitors

Resveratrol Adiponectin

Curcumin MCP-1 and MCP-2

Quercetin

Dioscine

α-lipoic acid

Phenolic acid

Neuropathy α-lipoic acid Antidiabetics/Insulin

Vitamins (A, C, E) Aldose reductase inhibitors (Epalrestat, Ranirestat)

Acetyl L-carnitine Anti-AGE agents (Benfotiamine)

Taurine Phosphodiesterase inhibitors (Rolipram and/or
Pentoxifylline)

Melatonin Antiepileptics (Pregabalin, Gabapentin)

Quercetin Antidepressants (Duloxetine)

(Continued on following page)
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some indications for its use in order to reduce the consequences,
among them are the people known to be subject to oxidative stress
(Dotan et al., 2009). Among the food’s rich in vitamin E,
recommended for daily consumption, we note wheat germ
oil, almonds, sunflower seeds and oil, safflower oil,
hazelnuts, peanuts, peanut butter and corn oil (Webster-Gandy
et al., 2006).

The B vitamin complex is made up of thiamin (B1), riboflavin
(vitamin B2), niacin (B3), pantothenic acid (B5), pyridoxine (B6),
biotin (B7), folic acid (B9) and cobalamin (B12). These vitamins
are water-soluble and target various physiopathogenic stages
during oxidative stress (Martini et al., 2020; Webster-Gandy
et al., 2006). B1 plays an essential role in the oxidative
decarboxylation of multienzyme branched chain ketoacid

TABLE 2 (Continued) Targeted therapeutic targets in the prophylactic/curative management of diabetic comorbidities.

Affect Endogenous
antioxidants

Exogenous antioxidants Pharmacological/alternative
substancesa

N-acetylcysteine Opioid pain relievers (Tramadol)

Methylcobalamin NSAIDs

Cardiomyopathy SOD Flavonoids Antidiabetics/Insulin

CAT Sulforaphane mito-TEMPO

GPX N-acetyl cysteine Resveratrol

NRF2 Trace elements (zinc, selenium) Piceatannol

HO-1 redoxins Vitamins (E, C) Quercetin

aldehyde oxidase β-carotene Taxifolin

α-lipoic acid ACE

Omega 3 ARBs

Coenzyme Q renin inhibitors

Ursolic acid

Curcumin

Galangin

Acacetin

Fisetin

Dihydromyricetin

Isoliquiritigenin

Angiopathy SOD Vitamins (A, C, E, B complex) statins

trace elements (copper, zinc, selenium) fibrates

Polyphenols ACE

Glutathione Metformin

α-lipoic acid

Carotenoids

Coenzyme Q

Taurine

Tetrahydrobiopterin

L-arginine

Folic acid

Acetylcysteine

SOD, superoxide dismutase; CAT, catalase; TrxR, thioredoxin reductase; GR, glutathione reductase; GPX, glutathione peroxidase; GSH, reduced glutathione; NRF2, nuclear factor erythroid

2–related factor 2; Lx, lipoxin; GPx-1, glutathione peroxidase −1; HO-1, heme oxygenase (HO)-1; VEGF, vascular endothelial growth factor; MCP-1 and MCP-2, monocyte-chemoattractant

protein inhibitor-1 and 2; HMG-CoA, reductase, 3-hydroxy-3-methylglutaryl CoA reductase; COX2, cyclooxygenase-2; ARBs, angiotensin receptor antagonists; ACE inhibitors, angiotensin-

converting enzyme inhibitors; NSAIDs, nonsteroidal anti-inflammatory drugs.
aPrescription conditions and dose adaptation according to age/comorbidities are done in accordance with international guidelines and recommendations.
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dehydrogenase complexes of the citric acid cycle. At the same
time, its level can mark the neuroprotection/neurodegeneration
balance (Depeint et al., 2006; Gibson and Zhang, 2002). B2 is a
necessary cofactor for the flavoenzymes of the respiratory chain,
glutathione reductase, simultaneously mitigating oxidative
reperfusion injuries and lipid peroxidation (Depeint et al.,
2006; Ashoori and Saedisomeolia, 2014). In parallel, B3 is a
cofactor in the synthesis of NADH, being important in the
economy of the amount of protons required for oxidative
phosphorylation (Depeint et al., 2006). B5 is a necessary
substrate for the formation of coenzyme A. It is also involved
in the dynamics of the alpha-ketoglutarate and pyruvate
dehydrogenase complexes, but also in the oxidation of fatty
acids (Depeint et al., 2006). B6 is mentioned as an enzyme
cofactor in more than 140 chemical reactions. Distinct from
this, B6 has properties of reactive oxygen species scavenger,
being a strong antioxidant, metal chelator and carbonyl
cleaner (Depeint et al., 2006; Mooney and Hellmann, 2010;
Wondrak and Jacobson, 2012). B7 is required for
gluconeogenesis and fatty acid oxidation (Iqbal and Naseem,
2015). B9, together with its metabolite (5-
methyltetrahydrofolate) regulates the bioavailability of nitric
oxide by increasing the production and coupling of
endothelial nitric oxide synthase. Thus, it interferes directly
with the cleaning of superoxide radicals (Stanhewicz and
Kenney, 2017). Mainly, B12 has the role of stabilizing DNA,
being a cofactor for enzymes such as methionine synthase and
methylmalonyl-CoA mutase. At the same time, it is involved in
cleaning free radicals and reducing oxidative stress (Depeint
et al., 2006; Halczuk et al., 2023).

In conclusion, the B vitamin complex is involved in ameliorating
the toxicity induced by oxidative stress. However, supplementation
must be judicious, Kandel R. et al. noting that prolonged exposure to
large amounts of folic acid can induce acute renal cytotoxicity and
fibrotic changes. The risk was reduced by the addition of
N-acetylcysteine. Therefore, the use of vitamins from the B
complex must be judicious. Of these, we note as a dosage
standard a requirement of 0.7–2 μg/day of vitamin B12,
respectively 110–320 μg/day of folic acid (Kandel and Singh,
2022). Food sources rich in these are eggs, milk and milk
products (e.g., cheese, yoghurt), liver, kidney, yeast extracts,
fortified breakfast cereals, bananas, yeast, offal, peanuts, nuts,
brussels sprouts, cabbage, kale, spinach, broccoli, cauliflower,
chickpeas, green beans, icebergs, lettuce, beans, peas, spring
greens, potatoes, brown rice, whole grain pasta, beef, pork,
chicken, salmon, game, wheat flour and maize flour (Webster-
Gandy et al., 2006).

4.2 Minerals (zinc, copper,
selenium, magnesium)

Their main role in the systemic oxidative economy is
attributed to their function as enzyme cofactors. Taking zinc
as an example, it modulates metallothionein activity. Protein rich
in cysteine, metallothionein has the property of binding metals,
modulating cellular and immune homeostasis. Thus, it exerts its
antioxidant, antiapoptotic, detoxifying and anti-inflammatory

effects. Intervenes in the signaling pathways induced by stress,
thereby imprinting the evolutionary course of diabetes (Park
et al., 2018). Foods recommended in the daily diet to avoid
microelement deficiencies are lamb, green vegetables, pulses,
leafy and root vegetables, crabs and shellfish, beef, offal, whole
grains, pork, fish, poultry, milk and milk products, eggs, nuts
(Webster-Gandy et al., 2006).

4.3 Glutathione

It represents one of the major redox buffering systems. Its roles
are bidirectional, acting both as a direct scavenger and as a cofactor
for the enzyme glutathione peroxidase (Johansen et al., 2005). In
order to supplement it, the current literature notes that the oral
intake of preformed glutathione, the supplementation of other
constituents that regulate its level (e.g., N-acetylcysteine, omega
3, riboflavin, vitamin C, vitamin E, α-lipoic acid, selenium) are also
possible options. and the increased intake of protein foods, in
parallel with the optimal maintenance of gastric hydrochloric
acid and pancreatic enzymes necessary for digestion. Food
sources rich in glutathione are asparagus, broccoli, green beans,
lemon, grapefruit, mango, avocado, banana, orange, papaya, parsley,
potato, red pepper, bell pepper, spinach, strawberry, tomato,
cucumber, carrot, yellow squash, cauliflower (Minich and
Brown, 2019).

4.4 Polyphenols

These are compounds found mainly in foods of vegetable origin,
which have antioxidants, anti-inflammatory and
immunomodulatory properties. It exerts its antidiabetic role
mainly by reducing the intestinal absorption of glucose,
increasing pancreatic insulin secretion, modulating the intestinal
microbiota and its metabolites. Depending on the chemical
structure, polyphenols are divided into four groups, respectively
flavonoids, stilbenes, phenolic acids and lignans. The number of
phenolic units and their combination leads to different physical,
chemical and biological properties. A representative model is
perhaps the antithesis of flavonoids (e.g., Quercetin) - stilbenes
(e.g., Resveratrol, Curcumin) (Jin et al., 2023). The main sources of
dietary flavonoids are pomelo, blueberries, roselles, oranges,
grapefruit, lemons and limes (Sapian et al., 2021).

Quercetin is a bioflavonoid compound (flavonol), composed of
15 carbon atoms joined in the form of two benzene rings and a
heterocycle. It has demonstrated effects in the suppression of cell
proliferation, inflammation and oxidative stress, in part by
regulating glycolipid metabolism and improving the
bioavailability of nitric oxide (Zhang et al., 2021; Sapian et al.,
2021). At the molecular level, it activates the NRF2/HO-1 pathway,
suppresses the AGE-RAGE pathway, improves the expression of
SOD, GPx and CAT, increases the content of high-density
lipoproteins, simultaneously reducing the expression of
triglycerides, low-density lipoproteins and the expression of
inflammatory molecules (Jin et al., 2023). Renal, one of the
mechanisms of action, according to Wan H. et al., is the miR-
485-5p/yes-associated protein (YAP1) pathway. YAP1 is a
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multipotent protein, involved in various processes such as osteoblast
differentiation, tumor biology and diabetes complications (e.g., it
promotes kidney damage). Its modulation favors the improvement
of interstitial fibrogenesis (Wan et al., 2022). Its effects are not
limited to the nephrotic component, the consumption of flavonol
stopping retinal degeneration, offering cardio and neuroprotection
by controlling apoptosis, inflammation, neurodegeneration and
cardiac remodeling that occur following oxidative stress. In
conclusion, it is noted that the optimal intake of quercetin
(90–150 mg/kg/day, for 2–4 months) improves renal function,
increases the formation of nephrin and podocin, decreases
desmin, improves the deletion of podocytes and improves renal
histology. Foods rich in quercetin are onions, cabbage, lettuce,
tomatoes, grapes, apples and berries (Jubaidi et al., 2021; Ola
et al., 2018).

Resveratrol has a similar action to quercetin, but a different
chemical structure, resveratrol activates antioxidant enzymes and
decreases the secretion of superoxide anion, hydroxyl radical, and
inflammatory cytokines by modulating the NRF2/kelch-like ECH-
associated protein 1 signaling pathway and AMPK expression.
Additionally, it modulates Cyto C transport activity, thus
delaying the progression of podocyte and tubular apoptosis (Jin
et al., 2023). Curcumin is an extract of medicinal plants with
significant antioxidant properties. It can reduce hypoxia and
prevent angiogenesis by modulating hypoxia-inducible factor 1. It
is noted that curcumin supplementation can inhibit VEGF
expression (Li et al., 2017).

4.5 Coenzyme Q10

This is an endogenous, fat-soluble compound, considered to act
on the electron balance of complex II in the mitochondrial transport
chain. It is noted that, in high concentrations, it helps the clearance
of free radicals, thereby improving endothelial function (Johansen
et al., 2005). Food sources of coenzyme Q10 are mainly meat, fish,
nuts and some oils. To these, dairy products, vegetables, fruits and
cereals are added, in a significantly lower quantity. It is also worth
mentioning the variability of the concentration of coenzyme Q10 in
foods depending on the geographical area from which they come
(Pravst et al., 2010).

4.6 Melatonin (N-acetyl-5-methoxy
tryptamine)

It is considered one of the miracle molecules at the moment,
performing numerous roles such as cleaning free radical
species, regulating insulin metabolism, supporting the immune
system, slowing down aging, counteracting insomnia,
systemic inflammation, malignancies, periodontal pathologies,
neuroprotection, mood balancing, sexual maturation and body
temperature control. Looking specifically at the role of melatonin
in counteracting systemic oxidative stress, we know that it plays the
role of scavenger of excessive free radicals, more potent compared to
nicotinamide adenine dinucleotide phosphate (NADPH), vitamin C
and vitamin E. It also increases the efficiency of the electron
transport chain in the mitochondria, thereby reducing the

generation of free radicals and preventing the leakage of
electrons. Last but not least, melatonin interferes in a beneficial
sense with the generation and potentiation of endogenous
antioxidants (e.g., glutathione, SOD, CAT, GPx, nitric oxide
synthase) (Zephy and Ahmad, 2015; Nishida, 2005). Food
sources of animal origin are meat (lamb, beef, pork, fish,
chicken), eggs and dairy products. Vegetable sources (e.g., corn,
rice, wheat, barley, oats, strawberries, cherries, grapes, walnuts,
pistachios, almonds, tomatoes, peppers, mushrooms, black/white
mustard seeds, soybeans) are subject to variability in the amount of
melatonin dictated by the environment in which they are grown
(e.g., temperature, duration of exposure to sunlight, ripening
process, agrochemical treatment) (Meng et al., 2017).

4.7 α-lipoic acid

It is included in the category of hydrophilic antioxidants,
exerting its effects in both aqueous and lipid environments. By
reducing it to dihydrolipoate, dietary α-lipoic acid participates in the
regeneration of other antioxidants (e.g., vitamins C and E, reduced
glutathione), thus being considered an inducer molecule (Johansen
et al., 2005). The endogenous source is a cofactor for mitochondrial
α-keto acid dehydrogenases, while exogenous sources cannot be
used in this sense. However, the exogenous supply of α-lipoic
acid stimulates a series of biochemical reactions with
pharmacotherapeutic value. There are added interactions with
systemic inflammatory status, redox balance, the NRF2/kelch-like
ECH-associated protein 1 pathway, glycolipid metabolism or metal
chelation. α-lipoic acid is therefore considered a strong antioxidant,
with insulin-mimetic and anti-inflammatory activity (Shay et al.,
2009; Rochette et al., 2015; Packer et al., 1995). Food sources are
muscle meat, heart, kidney and liver, and to a lesser extent fruits and
vegetables. They cannot supply the entire organic requirement, thus
recommending the use of food supplements as the primary source of
nutrients (Shay et al., 2009).

4.8 N-acetyl cysteine

It is a vegetable antioxidant, precursor of glutathione, usually
found in onions. Its role in oxidative dynamics is bivalent, in
accordance with other molecular agents of the “thiol” type.
N-acetyl cysteine is therefore involved both in cleaning reactive
oxygen species and hydroxyl radicals (antioxidant effect), as well as
in reducing transitional metals (pro-oxidative effect) (Šalamon
et al., 2019).

In conclusion, we consider it appropriate to discuss the results
obtained by Neri S. et al. regarding the importance of combining
antioxidants (in this case N-acetylcysteine, vitamin E and vitamin C)
in counteracting oxidative stress and preventing the harmful effects
of a disorganized lifestyle (Neri et al., 2005). Similar results were
observed in studies on adults and regarding associations such as
vitamin A-vitamin E-zinc or high doses of B complex vitamins.
These combinations led to the improvement of glycemic control, β-
cell function and insulin secretion, while also promoting
myelination, cellular metabolism and energy storage (Ford et al.,
2018; Said et al., 2020).
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5 Practical implications of the use of
antioxidants in pediatrics

Pediatric patients with diabetes face several distinct challenges
that include both physiological, psychological and developmental
aspects. Among the most important in this regard, we mention
incomplete metabolic development and the vulnerability of organs
to glycemic fluctuations, which can cause damage to target organs
(e.g., heart, kidneys) from an early age. At the same time, children
face difficulties in maintaining a stable glycemic control due to
growth, hormonal fluctuations and constant changes in physical
activity. Oxidative stress is reported both in times of hyperglycemia
and hypoglycemia. Last but not least, the immaturity of neural
connections predisposes children’s brain tissue to hypersensitivity in
response to systemic oxidative stress. Over time, this produces
cognitive and emotional disorders, which can escalate to social
maladjustment and adherence to treatment in the morning
through denial/unawareness of the disease. Antioxidant
interventions and the reduction of oxidative stress through drugs
or specific supplements can contribute to reducing inflammation,
protecting organs from the negative effects of free radicals and better
stabilizing blood sugar levels. Ultimately, these interventions can
increase the quality of life of children with diabetes, reducing the risk
of complications and supporting healthy development (Brownlee,
2005; Bacha and Klinepeter Bartz, 2016; Matough et al., 2012;
Silverstein et al., 2005).

Regarding the antioxidants mentioned above, there are clinical
trials in the literature that debate the effectiveness of their use in
pediatric diabetes depending on the choice of the moment of
intervention. Thus, we note the research carried out by
Ludvigsson J. et al. in the form of a randomized, double-blind
study, carried out over 3 years and which included 46 children with
type 1 diabetes at onset. The active substances used in comparison
with placebo were nicotinamide, vitamin C, vitamin E, beta-carotene
and selenium. The doses were adapted according to body weight.
The monitored parameters were insulin requirement, C peptide,
blood glucose and HbA1c. The statistical analysis of the data did not
objectify a significant difference in the dynamics of the two groups.
Consequently, the authors claim that the initiation of
supplementation with high doses of antioxidant agents at the
diagnosis of diabetes does not demonstrate the effectiveness of
preserving beta cell function or metabolic balance. However, we
do not lose sight of the absence of negative side effects, an aspect that
requires the continuation of studies in various stages of the
pathology (Ludvigsson et al., 2001).

Further research was undertaken with particular reference to
substances such as vitamin D, the B vitamin complex, zinc or
magnesium. About the first one, Giri D. et al. notes through the
retrospective analysis of a cohort of 271 children with type
1 diabetes that the supplementation of 25-hydroxy vitamin D
supplements led to the improvement of HbA1c values. The
effectiveness of the intervention was dependent on the pre-
treatment values of HbA1c and 25 hydroxy vitamin D (Giri
et al., 2017). Similarly, a randomized double-blind study
undertaken by Sharma S. et al. attested to the increased
prevalence of vitamin D deficiency among children with type
1 diabetes. The intervention consisted of oral supplementation,
monthly, for a period of 6 months, with doses of vitamin D

between 60,000 IU and 120,000 IU (depending on age child). It
was thus observed that, in the group that benefited from the
intervention in addition to standard insulin therapy, C peptide
levels were significantly higher, without a difference in terms of
HbA1c and insulin requirements. The authors therefore conclude
that oral vitamin D can be used in the adjuvant treatment of type
1 diabetes with the aim of increasing the residual function of beta
cells and improving insulin secretion (Sharma et al., 2017).

Next, regarding the complex of B vitamins (B1, B6, B12),
Elbarbary NS. et al. followed in a randomized controlled manner,
the effects of oral supplementation on the dynamics of pediatric
diabetic nephropathy. The evaluation was carried out over a period
of 12 weeks, the monitored indicators being plasma homocysteine,
HbA1c, urinary albumin excretion (EAU) and cystatin C. The
statistical analysis demonstrates the effectiveness of the
intervention on improving glycemic control and renal function,
doubled by the objectification of a negative correlation between the
initial value of cystatin C and the level of vitamin B12 (Elbarbary
et al., 2020).

Finally, the implications of supplementing with trace elements
are a controversial subject. So, Lobene AJ. et col. evaluated the
effectiveness of zinc supplementation (9 mg of elemental zinc) over a
period of 4 weeks, among healthy girls aged between 9 and 11 years.
Statistical data were equivocal, indicating that the chosen
supplementation method (dose and duration) was not optimal
for influencing insulin secretion or insulin resistance in healthy
adolescent females (Lobene et al., 2017). Subsequently, Matter RM.
et al. analyzed in particular the population with diabetes in the
context of β-thalassemia major. In this situation, oral
supplementation with zinc 40 mg/day for 12 weeks demonstrated
effectiveness in reducing iron load, lowering glycemic levels,
increasing insulin secretion and improving glycemic control,
without notable adverse effects (Matter et al., 2020). There were
similar results in the case of magnesium supplementation among
children with diabetes and associated hypomagnesemia. Shahbah D.
et al. demonstrated positive correlation of magnesium with high-
density lipoprotein, mean body volume and platelet count and
negative with age, HbA1c, triglycerides, total cholesterol, low-
density lipoprotein and duration of diabetes. Supplementation
with 300 mg of magnesium oxide for 3 months demonstrated the
effectiveness of improving glycemic control and the lipid profile
(reduction of the atherogenic lipid fraction, doubled by the increase
of the protective lipid fraction) (Shahbah et al., 2017).

Although the implications of the manipulation of the oxidative
status in reducing the damage caused by diabetes in children are in
full research, a bias identified in the reporting resides in the poor
certification of the effect of specific antioxidants in the evolution of
complications. This may be due in part to a long period of follow-up
of human patients needed to establish such correlations. The data
obtained from murine, in vivo or vitro studies being more generous.
Consequently, we encourage the concentration of global efforts on
obtaining data on the effectiveness, administration regimen and
safety of the use of antioxidants in the chronic management of
diabetic complications. Thus, an important aspect of the supplement
is represented by the knowledge of the bioavailability of the
substances involved. Table 3 summarizes the most important
observations regarding exogenous antioxidants possibly involved
in the evolutionary dynamics of pediatric diabetes.
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TABLE 3 Bioavailability of the main exogenous antioxidants (Webster-Gandy et al., 2006; Carazo et al., 2021; Maurya et al., 2020; Subroto et al., 2021; Borel
et al., 2013; Hrubša et al., 2022; Lindschinger et al., 2019; Maares and Haase, 2020; Ferreira et al., 2021; Pardo et al., 2021; Kaşıkcı and Bağdatlıoğlu, 2016;
Kemper et al., 2022).

Class Substance Doses recommended in pediatrics Remarks

Vitamins Vitamin A 0–1: 350 ug/day
1–3: 400 ug/day
4–10: 500 ug/day
11–14: 600 ug/day
Males 15+: 700 ug/day
Females 15+: 800 ug/day
Toxicity: more than 100 mg
Toxicity signs:
- Acute: vomiting, abdominal pain, anorexia, blurred vision,
headache, and irritability

- Chronic: headache
- muscle and bone pain, ataxia, skin disorders, alopecia, liver toxicity,
and - hyperlipidaemia. Not all the chronic symptoms are reversible.

Sources: diet, oral, intramuscular or topical medications
Absorption: predominantly intestinal in diet/oral forms of
administration
Conversion rate dependent on: dose, body retinol levels and dietary
fat content
Circulation of retinoids: bound to proteins
Excretion: renal or hepatic (bile)
Medications (e.g., estrogens and oral contraceptives) stimulate
retinoid absorption, while alcohol inhibits vitamin A metabolism
Vitamin A susceptible to oxidation of its dense structured electrical
ridges, for bioavailability various encapsulation techniques are used

Vitamin C 0–1: 25 mg/day
1–10: 30 mg/day
11–14: 35 mg/day
Males 15+: 40 mg/day
Females 15+: 40 mg/day
Toxicity: 1–10 g/day
Toxicity signs:
- diarrhoea and risk of kidney oxalate stone formation
- sudden cessation of high dose supplements may precipitate
rebound scurvy

Absorption: gastrointestinal tract by active transport and passive
diffusion
The rate of gastric emptying may affect absorption, so co-
administration with food or use of slow-release forms may improve
absorption
Factors influencing bioavailability: pH (acidity of the environment
affects absorption of vitamin C), interaction with other compounds
(e.g., organic compounds, minerals).
Particularities: Vitamin C is volatile and degrades easily depending
on temperature, humidity and oxygen level

Vitamin E Acceptable levels of intake are indicated by values of 5–20 μg/mL in
adults and children aged 12 years and over, and 3–15 μg/mL for
younger children.
Toxicity: intakes greater than 900 mg per kg of the diet.
Toxicity signs:
- headache, nausea, muscle weakness, double vision, and creatinuria,
and gastrointestinal disturbances

Forms: Natural vitamin E (d-alpha-tocopherol) is more
bioavailable than synthetic vitamin E (dl-alpha-tocopherol)
Absorption efficiency: varies significantly, between 10% and 79%.
Factors influencing bioavailability: food matrix, fat content,
interaction with fat-soluble micronutrients

B vitamin
complex

B1: 0–12 months: 0.3 mg/1,000 kcal
1–50: 0.4 mg/1,000 kcal
Toxicity: more than 3 g/d
Toxicity signs:
- headache, irritability, insomnia, weakness, tachycardia, and pruritis
B2: 0–1 years: 0.4 mg/day
1–10 years: 0.6–1 mg/day
Males 11–14: 1.2 mg/day
Males 15+: 1.3 mg/day
Females 11+: 1.1 mg/day
Toxicity: low
B6: 0–6 months: 8 μg/g protein
7–9 months: 10 μg/g protein
10–12 months: 13 μg/g protein
1–50 years: 15 μg/g protein
Toxicity: >500 mg/day
Toxicity signs:

- peripheral neuropathy and loss of sensation in the feet
B9: 0–1 years: 50 μg/day
1–3 years: 70 μg/day
4–6 years: 100 μg/day
7–10 years: 150 μg/day
Males 11+ years: 200 μg/day
Females 11+ years: 200 μg/day
Toxicity: low
B12: 0–1 years: 0.3–0.4 μg/day
1–3 years: 0.5 μg/day
4–6 years: 0.8 μg/day
7–10 years: 1 μg/day
11–14 years: 1.2 μg/day
Males 15+ years: 1.5 μg/day
Females 15+ years: 1.5 μg/day
Toxicity: not reported

Various processes, including thermal preparation (boiling, baking,
frying) of food can reduce the amount of vitamins in the B complex
Natural and synthetic B vitamins had comparable bioavailability
Serum levels of each B vitamin following a supplementation period
of approximately 6 weeks
Thiamine (B₁): +23% (Natural), +27% (Synthetic)
Riboflavin (B₂): +14% (Natural), +13% (Synthetic)
Pyridoxine (B₆): +101% (Natural), +101% (Synthetic)
Folic acid (B₉): +86% (Natural), +153% (Synthetic)
Cobalamin (B₁₂): +16% (Natural)

Minerals Zinc 0–6 months: 4.0 mg/day
7 months–3 years: 5.0 mg/day
4–6 years: 6.5 mg/day

Absorption: intestinal
The fractional absorption of dietary zinc in humans is usually in the
range of 16%–50%, regulated by zinc homeostasis

(Continued on following page)
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Finally, in agreement with the above, we reiterate that the
administration of antioxidants in pediatric patients with diabetes
involves distinct challenges. In this sense, it is necessary to institute
some well-regulated supplementary measures, to avoid the risks of
toxicity. Primarily, the clinician must consider the fact that
children, mainly those with diabetes, have a particular
metabolism. This is partly due to both the underlying disease
and the rapid growth stage they are facing. Consequently, they are
more susceptible to the accumulation of free radicals. Also, their
endogenous antioxidant capacity is still developing, thus there is a
marked risk of imbalances. The challenge in this situation is to
provide an adequate intake of antioxidants without interfering
with the body’s physiological functions. To achieve this, regular
monitoring of metabolic status and glycemic levels is
recommended. The dosage, frequency and form of
administration must be carefully adapted to the age, weight and
metabolic status of each child. An obstacle in this initiative is
represented by the limitation of the existence of clinical studies
investigating the effectiveness and safety of antioxidants (e.g.,

alpha-lipoic acid, coenzyme Q10 and glutathione) in children.
However, certain antioxidant substances such as vitamin A,
vitamin E, selenium or natural herbal products are known to be
toxic at high doses. They can interfere with liver function, bone
balance or even blood clotting. Also, excessive intake of
antioxidants can stimulate a strong pro-oxidant effect. The final
effect is, contrary to the therapeutic purpose, the production of free
radicals or the potentiation of their reactivity. Last but not least,
antioxidant supplements can interact with insulin or other
antidiabetic drugs, thereby destabilizing the glycemic balance
and therapeutic effectiveness. The strategies useful in limiting
the overdose of antioxidants are represented by the observance
of the recommended doses (where these are known) - mentioned
in table 3, as well as the preference towards the promotion of a diet
rich in natural antioxidant foods. The periodic evaluation of the
individual metabolic response remains indispensable (Franco
et al., 2021; Timbo et al., 2006; Timbo et al., 2018; Or et al.,
2019; Geller et al., 2015; Navarro and Seeff, 2013; Vogiatzi et al.,
2014; Ibrahim et al., 2021).

TABLE 3 (Continued) Bioavailability of themain exogenous antioxidants (Webster-Gandy et al., 2006; Carazo et al., 2021;Maurya et al., 2020; Subroto et al.,
2021; Borel et al., 2013; Hrubša et al., 2022; Lindschinger et al., 2019; Maares and Haase, 2020; Ferreira et al., 2021; Pardo et al., 2021; Kaşıkcı and
Bağdatlıoğlu, 2016; Kemper et al., 2022).

Class Substance Doses recommended in pediatrics Remarks

7–10 years: 7.0 mg/day
11–14 years: 9.0 mg/day
Males 15+ years: 9.5 mg/day
Females 15+ years: 7.0 mg/day
Toxicity: 2 g or more

The bioavailability of zinc from a mixed or vegetarian diet based on
refined grains is estimated to be 26%–34%, while 18%–26% is
absorbed from a diet based on unrefined grains

Selenium 0–3 months: 10 mg/day
4–6 months: 13 mg/day
7–12 months: 10 mg/day
1–3 years: 15 mg/day
4–6 years: 20 mg/day
7–10 years: 30 mg/day
11–14 years: 45 mg/day
Men 15–18 years: 70 mg/day
19+ years: 75 mg/day
Women 15+ years: 60 mg/day
Toxicity: >6 μg/kg/zi
Toxicity signs:
- nausea, vomiting, and fever
- intakes of 50 mg of Zn have been shown to interfere with Cu and Fe
metabolism

The bioavailability of selenium depends primarily on its chemical
form
Selenocompounds (both organic and inorganic) play a vital role in
improving the bioavailability of selenium
Intestinal microflora metabolize these selenocompounds, turning
them into selenomethionine, which is then incorporated by
intestinal bacteria
Assessing selenium status
- Biomarkers of intake: these assess food consumption through
questionnaires
- Biomarkers of retention/excretion: these measure selenium levels
in urine, feces, nails, hair and plasma
- Biomarkers of selenium functionality: these include GPX3 in
plasma as well as GPX1 in erythrocytes, lymphocytes and tissue
samples

Magnesium 0–3 months: 55 mg/day
4–6 months: 60 mg/day
7–9 months: 75 mg/day
10–12 months: 80 mg/day
1–3 years: 85 mg/day
4–6 years: 120 mg/day
7–10 years: 200 mg/day
11–14 years: 280 mg/day
15–18 years: 300 mg/day
Toxicity: If renal function is normal hypermagnesaemia is virtually
impossible to achieve by dietary means.

There is a difference in bioavailability between different forms of
presentation of magnesium (effervescent tablets or granule
formulations are more effective than tablets due to their solubility)
The percentage of absorption decreases with increasing dose
Organic forms are better absorbed than inorganic forms.
Magnesium taurate appears to be one of the most bioavailable salts

Polyphenols Quercetin There are no reports Dietary sources of quercetin include lettuce, chili peppers,
blueberries, onions, black chokeberry, black elderberry, capers,
tomatoes, broccoli, and apples
The type of sugar moiety attached to quercetin affects its
bioavailability
Quercetin is lipophilic and dietary fat increases its bioavailability
Indigestible fiber can improve the absorption of quercetin

Resveratrol There are no reports Resveratrol undergoes rapid metabolism in the liver, resulting in
low oral bioavailability
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Another peculiarity of toxicity induced by antioxidants resides
in the drug-drug interaction (DDI). Thus, remembering that
antioxidants, especially those from a diet rich in polyphenols, can
interact to influence the absorption, metabolism, distribution and
elimination of certain drugs. The mechanisms targeted by
polyphenols are the modulation of the activity of CYP450 liver
enzymes (responsible for drug metabolism) or transporter proteins
(essential in regulating the bioavailability of drugs). Among the most
common examples of drug-antioxidant interactions include:

- Green tea/grapefruit juice can potentiate the activity of statins,
antidepressants or anxiolytics by increasing their blood
concentration.

- Flavonoids from fruits and vegetables can inhibit
P-glycoprotein, leading to the accumulation of some drugs
(e.g., protease inhibitors, digoxin, cyclosporine) in the body.

- The antioxidants in green tea and dietary fibers can interfere
with the absorption of drugs such as tetracyclines or
bisphosphonates, reducing their effect if they are
administered simultaneously.

- Vitamin C can influence the absorption of other drugs (e.g.,
ketoconazole) through its effect on the characteristics of the
internal environment - the pH.

- Vitamin E and polyphenols can increase the risk of bleeding if
they are administered simultaneously with anticoagulants such
as warfarin, whose metabolism rate they can change.

- Antioxidants (e.g., vitamin C) can reduce the effectiveness of
chemotherapeutics (e.g., cisplatin) by combating oxidative
stress, a mechanism used by pharmaceutical substances to
destroy tumor cells.

- In particular, it has been reported that resveratrol and
curcumin can cross the blood-brain barrier, modulating the
levels of neurotransmitters as well as the effectiveness of
antidepressants or anxiolytics (Chang, 2009; Du et al., 2012;
Hanley et al., 2011; Zha, 2018; Parasuraman and Maithili,
2014; Saso and Firuzi, 2014; Fan et al., 2017; Heaney et al.,
2008; Rendeiro et al., 2015; Wang et al., 2022).

To mitigate the effects of DDI, the medical literature proposes
the periodic evaluation of patients following chronic treatments with
drugs metabolized by CYP450, especially if they use antioxidant
supplements. Thus, regular blood tests are considered to estimate
and adjust drug doses. It also emphasizes the importance of
educating patients about the potential risks of supplements and
antioxidants, especially if they are on a therapeutic regimen that
includes drugs considered critical in terms of interactions (Chang,
2009; Saso and Firuzi, 2014; van Roon et al., 2005).

6 Conclusion

Diabetes is a multifaceted condition that is primarily distinguished
by elevated blood glucose levels. The excessive production of free
radicals and oxidative stress are among the most notable
consequences of this imbalance. Free radicals above the normal
amount interfere with internal homeostasis, causing damage at the
cellular level. This is one of the pathogenic ways leading to the
emergence of chronic diabetic complications. Consequently, the role

of antioxidants in the management of pediatric diabetes (prophylactic/
adjuvant) represents an essential aspect of the approach, partly due to
the ability to counteract oxidative stress. The key points of the paper are
represented by the summary presentation of the interferences between
nutrients and the metabolic pathways affected by oxidative stress, as
well as by highlighting the main nutrient-rich foods. Consequently, we
believe that the present study has succeeded in publicizing the
advantages of food antioxidants and pharmacological products in
safeguarding cells from injuries. In turn, it contributes to the
reduction of morbidity in the medium and long term. Nevertheless,
it is crucial to reiterate that the utilization of antioxidants must be
conducted with prudence, caution, and the guidance of a physician.
Otherwise, inadequate doses or uncontrolled use may have unwanted
effects. Thus, the modulation of oxidative stress and diabetic pathology
by means of antioxidants represents a topical issue of particular
importance both in research and in clinical practice. The primary
objective of future perspectives is to reduce the burden of the disease
and improve the pharmacological treatment by focusing on the
deepening of studies on antioxidants in a variety of inflammatory or
autoimmune pathologies, in conjunction with the development of
personalized dietary schemes.
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