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The kidney plays a crucial role in maintaining the body’s microenvironment
homeostasis. However, current treatment options and therapeutic agents for
chronic kidney disease (CKD) are limited. Fortunately, the advent of kidney
organoids has introduced a novel in vitro model for studying kidney diseases
and drug screening. Despite significant efforts has been leveraged to mimic the
spatial-temporal dynamics of fetal renal development in various types of kidney
organoids, there is still a discrepancy in cell types and maturity compared to
native kidney tissue. The extracellular matrix (ECM) plays a crucial role in
regulating cellular signaling, which ultimately affects cell fate decision. As a
result, ECM can refine the microenvironment of organoids, promoting their
efficient differentiation and maturation. This review examines the existing
techniques for culturing kidney organoids, evaluates the strengths and
weaknesses of various types of kidney organoids, and assesses the
advancements and limitations associated with the utilization of the ECM in
kidney organoid culture. Additionally, it presents a discussion on constructing
specific physiological and pathological microenvironments using decellularized
extracellular matrix during certain developmental stages or disease occurrences,
aiding the development of kidney organoids and disease models.
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1 Introduction

The kidney, is a vital organ that plays an important role in maintaining the homeostasis
of human body. Chronic kidney disease (CKD), a progressive and irreversible loss of kidney
function, is becoming increasingly prevalent due to rising comorbidities such as diabetes,
hypertension, obesity, and an aging population (Kishi et al., 2024; GBD Chronic Kidney
Disease Collaboration, 2020). Current therapeutic approaches for CKD are limited, relying
predominantly on antihypertensive agents, antidiabetic medications, and pharmacological
strategies aimed at controlling disease progression (Kishi et al., 2024). These treatments,
required prolonged administration and exhibited only moderate efficacy, failing to halt the
progression of kidney injury to end-stage kidney disease (ESKD), defined as an eGFR below
15 mL/min/1.73 m2 (Levey et al., 2005). Animal disease models has substantially enhanced
our understanding of the CKD pathophysiology and the clinical pharmacodynamics
(Schnell et al., 2022; Fu et al., 2024). However, the interspecies differences significantly
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FIGURE 1
Various strategies are employed in the fabrication of kidney organoids (Created in BioRender.com). (A) Current procedures employed to construct
ureteric bud (UB) organoids, kidney organoids and tubuloids using iPSCs and primary cells obtained from renal tissues. UB organoids are developed by
differentiating hiPSCs into anterior intermediate mesoderm, which is subsequently embedded in Matrigel for 3D culture, leading to the formation of UB
organoids that further differentiate into organoids containing collecting ducts. Kidney organoids, on the other hand, can be generated from hiPSCs
using either suspension or static culture systems, with variations in the cultivation process resulting in vascularized kidney organoids. Finally, tubuloids are
derived by embedding cells within a gel matrix and supplementing them with growth factors; their cellular origin may be either primary renal cells or
dissociated organoids. Solid arrows indicate the processing steps, while dashed lines signify areas that have been magnified for clarity. (B) Schematic
representation of further advancements in generation of sophisticated kidney organoids and acute kidney injury (AKI) organoid model achieved on
organoids-on-chip system, incorporating the induction of decellularized renal extracellular matrix from specific developmental and pathological stages,
co-culture with various exogenous cells, and introduction with fluidic shear stress, in order to simulate in vivo microenvironment. Solid arrows indicate
the processing steps, while dashed arrows represent abstract model diagrams.
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hinder the accurate extrapolation of disease mechanisms and the
therapeutic efficacy. This challenge emphasizes the necessity for
improved disease models that accurately reflect renal pathogenesis
and facilitate precise drug screening approaches (Musah et al., 2024).

Organoids, as self-assembled 3D cellular structures in vitro,
retain key characteristics of their in vivo counterparts and have
emerged as powerful tools for developmental biology and drug
screening. Kidney organoids have been a subject of research for
nearly a decade (Taguchi et al., 2014). Over this time, their
maturation has steadily advanced, enabling their use in
constructing kidney disease models and drug screening (Musah
et al., 2024; Tabibzadeh and Morizane, 2024; Dilmen et al., 2024;
Long et al., 2024; Oishi et al., 2024; Chambers et al., 2023). However,
their functional maturation and structural organization remain a
challenge, in part due to the complexity of the kidney
microenvironment (Garreta et al., 2019). The integration of
extracellular matrix (ECM) components into organoid cultures
has emerged as a promising strategy to mimic the in vivo
environment, supporting more accurate tissue development and
improving the functionality of kidney organoids (Kim J. W et al.,
2022; Lacueva-Aparicio et al., 2022).

This article provides a comprehensive review of the current
methods for the cultivation of kidney organoids (Figure 1A), with a
particular focus on discussing the advantages and disadvantages of
utilizing ECM for the culture of kidney organoids. It also proposes
corresponding improvement strategies and outlines the future
directions for the cultivation and application of kidney organoids.

2 Strategies for the construction of
kidney organoids

Based on the single-cell sequencing data, 25 distinct cell types
have been identified within the adult kidney tissue (Balzer et al.,
2022). The development of the mammalian kidney initiates with the
emergence of the nephrogenic cord, which is sequentially exposed to
Wnt/β-catenin and BMP signaling to form the intermediate
mesoderm (IM) (Schnell et al., 2022). This process provides two
sources of progenitor cells for the differentiation of the collecting
duct (CD) and the functional kidney units. Specifically, it involves
the ureteric bud (UB), which originates from the anterior
intermediate mesoderm (aIM), and the metanephric
mesenchyme, which arises from the posterior intermediate
mesoderm (pIM). However, currently kidney organoid culture
strategies are unable to simultaneously provide appropriate
culture conditions for both types of progenitor cells, which are
requisite for replicating the reciprocal inductive signals observed in
vivo. Specifically, GDNF secreted by MM initiates UB branching,
while WNT9B secreted by UB initiates the mesenchymal-to-
epithelial transition of the nephron (Oxburgh, 2018). Since the
first report of nephron organoids induced from hiPSCs in 2014
(Taguchi et al., 2014), various protocols for constructing nephron
organoids have endeavored to mimic the early kidney embryonic
development. These protocols involved the induction of mesoderm
formation in embryoid bodies through the activation of BMP4 and
WNT signaling pathway using the GSK3 inhibitor (CHIR99021)
(Lindsley et al., 2006; Magro-Lopez et al., 2024), followed by
exposure to FGF9 to induce and maintain the niche of nephron

progenitor cells (NPCs) (Muthukrishnan et al., 2015). The
advancements in these methods have enabled the development of
kidney organoids that provide a model that closely resembles human
physiology, allowing the study of kidney biology at the organ level,
and is superior to traditional two-dimensional culture systems or
non-primate models.

Over the past decade, several laboratories have consistently
improved the process of lineage reproduction of kidney
organoids in vitro. Resulting in models that feature a broader
spectrum of specialized cell types and increased structural
complexity (Table 1). These advancements have proven to be
crucial in understanding the pathogenesis of human kidney
diseases and facilitating extensive drug screening (Taguchi and
Nishinakamura, 2017; Takasato et al., 2014; Takasato et al., 2015;
Kumar et al., 2019; Freedman et al., 2015; Huang et al., 2024; Li et al.,
2016; Low et al., 2019; Morizane and Bonventre, 2017; Lawlor et al.,
2021) (Table 1). However, the current established kidney organoids
are characterized by an immature fetal state and transcriptionally
similar to the first or second trimester of human fetal kidney, and
lack an integrated vascular system, severely limiting their growth
rate and long-term culture in vitro. A multimodal atlas of kidney
organoid differentiation has delineated at least 15 highly specialized
cell types, with off-target cell proportions varying from 6% (Combes
et al., 2019) to 20% (Wu et al., 2018). Notably, the reproduction of
distal cell types (mainly distal tubule and collecting duct cells) in
organoids is comparatively less sophisticated than that of proximal
cell types (mainly proximal tubule cells) (Yoshimura et al., 2023).
Consequently, although kidney organoids demonstrate
morphological similarity to the developing renal tissue, they
encounter significant hurdles in attaining complete maturation
and intricacy, especially with regard to replicating the in vivo
filtration capabilities.

Furthermore, attempts have been dedicated to construct higher-
order kidney organoids with higher lineage integrity and fully
recapitulating in vivo renal developmental structures. To achieve
this, some groups have developed ureteric bud (UB)/CD organoids
derived from hiPSCs or UB progenitor cells extracted from mouse
and human fetal kidneys, characterized by expandable, serially
passaged and repeat branching morphogenesis (Howden et al.,
2021; Mae et al., 2020; Shi et al., 2023; Uchimura et al., 2020;
Zeng et al., 2021). Additionally, several proof-of-concept studies
generated engineered kidney by aggregating 3D co-cultured NPCs
with UB organoids derived from mice (Zeng et al., 2021), which
preliminarily replicated the interconnected nephron and CD
structures mimicking the reiterative inductive process of kidney
development in vitro, shedding light on the developmental and
regeneration mechanisms of the CD system (Zeng et al., 2021).
However, akin to the limitations of nephron organoids, CD
organoids derived from UB progenitors remain phenotypically
immature compared to their in vivo counterparts, and functional
evaluation demonstrating secretion and electrolyte reabsorption
process is yet to be fully established (Mae et al., 2020).

To overcome the limitations of the extensive induction time and
inadequate maturity of kidney organoids, researchers have turned to
the induction and cultivation of tubuloids derived from primary
renal tubular epithelial cells which were also found in urine (Gijzen
et al., 2021; Schutgens et al., 2019). Intriguingly, tubuloid-derived
cells can form polarized, leak-tight kidney tubules capable of
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TABLE 1 Induction strategies for kidney organoids.

Ref. Sources Improvement Method Organoids

Krupa et al., 2024 (PMID:
38984433)

hiPSCs Support the growth and maturation of
kidney organoids

Cultured in Self-assembling polypeptide
hydrogels and GelMA hydrogels

Kidney organoids

Garreta et al. (2019) (PMID:
30778227)

hiPSCs Accelerate the differentiation of
kidney organoids

Cultured in 1kp polyacrylamide hydrogel

Homan et al., 2019 (PMID:
30742039)

hiPSCs Generates vascularized kidney
organoids with more mature
podocyte, enhanced cellular polarity

3D-printed millifluidic chips were
embedded in gelatin-fibrin ECM and
applied for low or high fluid shear stress

Sun et al. (2020) (PMID:32698872) hiPSCs The usc organoids self-organized well
with no significant cell death

Cultured in optimal kidney ECM Usc organoids

Lee et al., 2021 (PMID:34748091) hiPSCs More mature podocytes and vascular
structures

Microfluidic chip was coated with 1.5%
Matrigel and 1.5% Matrigel containing
100 ng/mL VEGF

Kidney organoids

Kim J. W et al. (2022) (PMID:
35322595)

hiPSCs Increase the formation of blood vessel
network and promote the maturation
of kidney organoids

Kidney decellularized matrix hydrogel

Nerger et al., 2024 (PMID:
38180232)

hiPSCs Affect the roundness of nephron
segments, spatial localization and the
ratio of glomerulus to tubules

Sodium alginate hydrogel

Pecksen et al. (2024) (PMID:
38702808)

hiPSCs Decrease the apoptosis of iPSCs
induced by CHIR, promote the
differentiation of renal organoids and
promote vascularization

A monocyte of human origin coculture
with iPSCs by transwell cuture system

Garreta et al. (2024) (PMID:
38762768)

hiPSCs Maintain organoid differentiation and
promote vascularization

Kidney derived decellularized matrix
hydrogel, hPSCs derived endothelial
organoids were embedded for three-
dimensional culture

Maggiore et al. (2024) (PMID:
38901605)

hiPSCs Increase the vascularization of renal
organoids and improve the maturity of
nephron. Generate different
endothelial cell subtypes

iETV2-iPSCs were integrated into the
previously constructed renal organoid
system, and ETV2 expression was induced
at day5 after culture

Takasato et al. (2015) (PMID:
26444236)

hiPSCs The first report for in vitro kidney
organoids induction; Optimization the
exposure period of Wnt, FGF, and RA
in fate selection

2D induced cell were spun down to form a
pellet and transferred onto a Transwell
under the sequential induction by
Wnt, FGF

Freedman et al. (2015) (PMID:
26493500)

hiPSCs Simplified induction procedure;
validate the Genome-modified kidney
organoids form PKD-specific cysts

Induction Procedure followed by the
formation of cavitated spheroids, then
through MET induction to form nephron-
like organoids

Morizane et al. (2015) (PMID:
26458176)

hiPSCs First reported strategy to replated 2D
NPCs into 3D suspension culture with
distinct lumens mimics the nephron

Generation of SIX2+SALL1+WT1+PAX2+
NPCs with high efficiency followed by the
formation of PAX8+LHX1+ renal vesicles that
self-organized into 3D nephron structures

Taguchi and Nishinakamura (2017)
(PMID:29129523)

Mouse and hiPSCs Higher-order structures with
branching morphogenesis by co-
culturing independently induced
ureteric bud, nephron and stromal
progenitor lineages

Identified mutually distinct inductive
signals between the NP and UB lineages in
every step of differentiation; Co-culture
iNPs, iUB, and the Pdgfra+ SP population
sorted from E11.5 embryonic kidneys. iUB:
induced UB; iNPs: NP induction from the
mESCs; SP: stromal progenitors

Li et al. (2016), Huang et al. (2024)
(PMID:27570066 PMID:38692273)

Primary mouse and
human NPCs/hiPSCs

Develop systems for long-term
expansion of induced NPCs generated
nephron organoids with minimal off-
target cell types and enhanced
maturation of podocytes relative to
other strategies; podocyte
reprogramming to an NPC-like state

Manipulation of p38 and YAP activity
allowed for long-term clonal expansion of
primary mouse and human NPCs and
induced NPCs from hiPSCs

Vanslambrouck et al., 2022, 2023
(PMID:37770563 PMID:36209212)

hiPSCs PT-enhanced organoids with distinct
S1 - S3 proximal tubule cell types;
improved albumin and organic cation
uptake, improved expression of SARS-

Extended the monolayer differentiation of
nephron progenitor to 12–14 days cultured
in enhanced BMP7 condition to 10 ng/mL

(Continued on following page)
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performing trans-epithelial transporter activity (Yousef Yengej
et al., 2023). Tubuloids serve as a highly physiologically
relevant model for simulating infectious, malignant, and
genetic kidney diseases, including tubulopathies such as

Fanconi syndrome (Jamalpoor et al., 2021), re-invigorating the
understanding of renal transport mechanisms, drug screening,
and personalized medicine. Nonetheless, the capacity of tubuloids
to accurately replicate diseases with complex multi-cellular

TABLE 1 (Continued) Induction strategies for kidney organoids.

Ref. Sources Improvement Method Organoids

CoV-2 entry factors resulting in
increased viral replication

Przepiorski et al. (2018), Przepiorski
et al. (2021) (PMID:
30033089 PMID:33938892)

hiPSCs Establish a fast, efficient and cost-
effective suspension culture method,
allows large-scale organoid
production

Bioreactor-Based

Kumar et al. (2019) (PMID:
30846463)

hiPSCs Modified suspension culture method,
a three- to fourfold increase in final
cell yield and a 75% reduction in cost
per million organoid-derived kidney
cells compared with static culture

Low speed (60 rpm) swirling on an orbital
shaker to form cell aggregates

Lawlor et al. (2021) (PMID:
33230326)

hiPSCs Rapid and high-throughput; highly
uniformly patterned; increasing
nephron yield

3D bioprinting

Howden et al. (2021) (PMID:
33378647)

Distal nephron epithelim
from kidney organoids

Shift the identity of this GATA3+/
EPCAM + epithelial population
toward UE, including ureteric tips,
cortical and medullary UE, by altering
the in vitro culture conditions

GATA3+/EPCAM + epithelial population
isolated by FASC and induced in the
presence of GDNF, CHIR, FGF2, ATRA
and Y-27632

UB/Collecting duct
organoids

Mae et al. (2020) (PMID:32726627) hiPSCs Induced UB organoids have tubular
lumens and repeat branching and
differentiated into collecting duct
progenitors.

iPSC induced to AIM and then ND stage
embedded in 2% Matrigel for 6 days to
constitute induced UB organoids with
epithelial polarity and tubular lumens

Uchimura et al. (2020) (PMID:
33326782)

hiPSCs Combine independently differentiated
MM-like and UB-like progenitors to
generate human kidney organoids
with a collecting system. Detect for the
first time urothelial (Uro) cells

Aldosterone and AVP drive collecting duct
maturation

Zeng et al. (2021) (PMID:34131121) Mouse and human fetal
kidneys; hiPSCs

UB organoids generate collecting duct
organoids, with differentiated
principal and intercalated cells
Develope a screen to establish
conditions supporting the
differentiation of CD organoids

Sorting of KIT + cells were used to enrich
the precursor population then induced in
chemically-defined culture conditions

Shi et al., 2023 (PMID:36038632) hiPSCs Exhibit authentic morphological
behavior and responses to
developmental stimuli; recapitulate
the morphogenetic pattern in
isolated UBs

Ensure at least 90% efficiency at the
mesendodermal and pronephric
intermediate mesoderm (IM) stages
without using cell sorting or mechanical
dissection

Yousef Yengej et al. (2023) (PMID:
36724260)

iPSC-derived organoids Selectively expand the mature
functional renal epithelium without
off-target cells and provide easy apical
access that enables evaluation of
tubular transport

Tubular fragments and cells from
D7+18 organoids resuspended in Basement
Membrane Extract (BME) gel and plated
on suspension culture wells plates

Tubuloid organoids

Lindoso et al., 2022 (PMID:
35841001)

Tubuloid-derived cells
+ EVs

EVs from kidney tubular epithelial
cells can phenotypically improve
in vitro tubuloid maturation

Tubuloids cultured with EV

Schutgens et al. (2019), Gijzen et al.
(2021) (PMID:30833775 PMID:
33674788)

Adult kidney tissue or
urine

Long-term growth and can be
expanded for at least 20 passages;
Model infectious, malignant and
hereditary kidney diseases; Adopt a
tubular conformation and display
active (trans-) epithelial transport
function

Establishing kidney tubuloids and
characterization of tubuloid cell–derived
3D tubular structures in a perfused
microfluidic multi-chip platform, the
OrganoPlate 3-Lane

Ref. for Reference, hiPSCs, for human indued pluripotent stem cells; USCs, for urine-derived stem cells, Extracellular vesicle (EVs), Ureteric bud (UB), Nephron progenitor cells (NPCs).

Frontiers in Pharmacology frontiersin.org05

Wang et al. 10.3389/fphar.2024.1472361

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1472361


interactions and intricate pathological mechanisms necessitates
further investigation.

Although kidney organoid with similar degrees of differentiation
have been established via cohort of procedures, most induction
programs are time intensive and require the administration of costly
exogenous growth factors, severely limiting the development of
large-scale organoid culture strategies (Morizane and Bonventre,
2017). The complexity and high costs associated with these methods
pose significant barriers to their widespread use in research and
therapeutic applications. Therefore, establishing a controllable, and
highly reproducible culture process, is essential for optimizing the
lifespan, architecture complexity, homogeneity, and differentiation
fidelity of organoids. This prospect is crucial for the standardization
and large-scale generation of the next-generation organoids. Alan’s
(Przepiorski et al., 2018; Przepiorski et al., 2021) and Little’s
laboratory (Kumar et al., 2019) have developed suspension
organoid culture systems resulted in a 3-4 fold increase in final
cell yield compared to static culture, providing a highly promising
platform for the automation and large-scale production of kidney
organoids. Furthermore, the integration of bioprinting technologies
can automate the production of organoids with highly homogeneity
in conformation, improving the throughput of manufacture up to
9 fold (Lawlor et al., 2021). The large-scale production of kidney
organoids via bioengineering strategies provides versatile platform
for optimizing organoid technology towards revolutionizing the
regenerative medicine and clinical applications. The integration
of automated high-throughput imaging techniques enables the
phenotypic analysis of kidney organoids, which can be utilized
for drug screening related to nephrological disorders (Czerniecki
et al., 2018; Wang et al., 2022).

In summary, the advancements of kidney organoids with the
capability of recapitulating early temporal-spatial embryonic
developmental trajectories are now used as faithful substitutes in
studying kidney development in vitro. Organoid models enable the
reproduction of tissue structures, providing opportunities to
investigate the mechanism of kidney development and disease
through functional screening (Huang et al., 2024). However, the
efficacy of kidney organoid models depends on their developmental
fidelity to primary tissue, and to what extent can they mimic
embryonic organ development on cellular characteristics and
architectural complexity levels remains challenging (Little and
Combes, 2019). Consequently, modifying the in vivo biophysical
microenvironment in spatiotemporal dimensions exhibits great
potential for driving the determination of cell fate and
commitment to lineage during organoid development.

3 The construction of a
microenvironment specific to kidney
tissue facilitates the differentiation of
kidney organoids

Early embryonic development involves the formation of three
germ layers, where cell fate is regulated by intracellular and
extracellular signaling pathways. A multitude of studies have
underscored the determinant role of specific transcription factors
in lineage commitment (Wang et al., 2013; Takahashi and
Yamanaka, 2006; Rigillo et al., 2021; Chen et al., 2024). However,

research on how to specifically regulate cell fate through extrinsic
signals is still limited (Walma and Yamada, 2020). The ECM
significantly influences cell fate by activating various signaling
pathways, which play a crucial role in cell fate decisions (Tang
et al., 2022; Tang et al., 2013; Amran et al., 2024; Kersey et al., 2024;
Li et al., 2024; Zhang et al., 2023; Sun et al., 2020). Therefore,
elucidating the composition and dynamic changes of the ECM
during the processes of cell development, aging, and disease
progression is crucial for simulating and constructing the
microenvironment of tissue at different developmental stages,
injuries, and pathological processes.

The complexity of the ECM arises from its diverse constituents,
including core structural proteins and regulatory factors that can
initiate ECM remodeling and impact development and disease
(Yamada et al., 2022; Rekad et al., 2022; Zhou et al., 2018;
Damjanovski et al., 2001; Kaneko et al., 2024). Advances in tissue
engineering allow for the simulation of ECM using biomaterials to
achieve in vitro/in vivo cell fate regulation. However, disparities exist
between commercial biomaterials and tissue ECM, which influence
cell fate regulation and the efficacy of disease treatment (Zhang et al.,
2023; Kim S. et al., 2022). Decellularized extracellular matrix
(dECM) hydrogels are prepared through chemical or physical
decellularization processes that remove immunogenic and
pathogenic elements from natural tissues, followed by freeze-
drying, grinding, and enzymatic digestion. These hydrogels retain
the majority of bioactive proteins from the original tissue (ZhangW.
et al., 2021). Therefore, the use of dECM derived from tissues to
simulate the physiological microenvironment has attracted
increasing attention for organoid studies. For example, Sun et al.
demonstrated that the dECM hydrogels from spinal cord of neonatal
rabbits can promote the axonal growth and functional maturation of
spinal cord organoids (Sun et al., 2024). Similarly, in the aging
process, the composition and mechanical properties of the ECM
have also changed, thereby affecting tissue function. Culturing
normal human mammary epithelial cells with the ECM from
aged breast tissue reinforced the invasive capability of cells, and
increased the expression of inflammatory cytokines and cancer-
related genes and proteins (Bahcecioglu et al., 2021). Moreover,
cervical squamous cell carcinoma (CSCC) patients’ adjacent cervical
tissue can be used to prepare uterine cervical extracellular matrix
(UCEM) hydrogels, which faithfully defined the microenvironment
of cervical cancer tissue. CSCC organoids cultured with UCEM
hydrogel exhibit superior characteristics compared to those cultured
with Matrigel, as evidenced by increased expression of cervical
cancer-related genes and signaling pathways, resulting in a closer
resemblance to patient-derived CSCC tissues (Song et al., 2024). The
above studies indicated that the preparation of dECM from tissues
under different physiological/pathological conditions can help
construct more mature organoids and disease models.

The influence of extracellular matrices (ECMs) on renal
development and functionality has been extensively investigated,
yielding insights into various aspects such as kidney morphogenesis,
branching patterns, pathologies, and regenerative processes
(Abdollahzadeh et al., 2022). Several research groups have
employed proteomics to analyze the ECM composition in
normally developing kidneys, aging kidneys, and kidney diseases
(Diedrich et al., 2024; Rende et al., 2023; Randles et al., 2021;
Eckersley et al., 2023; Li et al., 2023; Lipp et al., 2021; Lennon
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et al., 2014). Understanding the composition and dynamic changes
of kidney ECM under different physiological and pathological
conditions provides the basis for constructing microenvironments
of renal tissues with diverse physiological and pathological
characteristics. Furthermore, a series of studies has utilized
kidney dECM for renal cell culture (Quinteira et al., 2024;
Bongolan et al., 2022; Sobreiro-Almeida et al., 2020), renal injury
repair (Kim et al., 2024), and organoid culture (Kim J. W et al., 2022;
Garreta et al., 2024). In terms of renal cell culture, dECM-based
hydrogels have been shown to effectively support renal progenitor
cell survival, proliferation, and differentiation into tubular cells and
podocytes, thereby providing a biocompatible platform conducive to
renal regeneration (Quinteira et al., 2024). Furthermore, optimizing
the decellularization process—such as using lower concentrations of
SDS during the procedure—helps to preserve essential ECM
components, enhancing renal cell survival and distribution,
although challenges remain regarding mature cell migration
(Bongolan et al., 2022). Additionally, dECM can serve as a
substitute for the tubular basement membrane, simulating the
physiological relevance of the in vivo environment. Co-culturing
renal progenitors with endothelial cells has enabled the construction
of a tubular bilayer model, which mimics the native tissue
environment more closely (Sobreiro-Almeida et al., 2020). In the
aspect of renal injury repair, an implantable decellularized
extracellular matrix sponge has demonstrated not only rapid
hemostasis during partial nephrectomy surgery but also superior
wound healing, offering a promising solution for both managing
renal hemorrhage and enhancing tissue regeneration at the lesion
site (Kim et al., 2024). Collectively, these studies highlight the
potential of dECM to advance renal research and therapeutic
applications, including the enhancement of renal cell cultures
and injury repair. Decellularized materials created in various
laboratories have demonstrated the ability to promote
differentiation, maturation, vascularization, and the development
of tubular and glomerular-like structures in kidney organoids (Kim
J. W et al., 2022; Garreta et al., 2024), reinforcing the promising role
of dECM in advancing both basic research and clinical applications.
Additionally, some laboratories have developed decellularized
matrices from fibrotic kidneys to assess the impact of dECM on
endothelial progenitor cells (Zhang R. et al., 2021). Although studies
have not yet reported how these dECMs derived from pathological
kidneys impact kidney organoid differentiation, they hold potential
for constructing disease model organoids that may better simulate
pathological conditions. However, there are still gaps in the maturity
of kidney organoids (including the presence of precursor cells and
cell cycle cells), the representation of cell types (lacking pericytes and
distal tubular cells), and structural complexity (vascular wrapping
and podocyte wrapping structures) compared to mature renal
tissues (Kim J. W et al., 2022). In addition, the kidney organoids
may contain off-target cell populations (Kim J. W et al., 2022). One
potential explanation is that the current manufactured dECM
primarily recapitulates the matrue renal-favor microenvironment.
In contrast, kidney organoids are usually generated from hiPSCs,
which contain numerous cells in the early stages of differentiation.
As a result, the dECM derived from mature tissues may not be
optimal for supporting the maturation of these early-stage
differentiated cells in kidney organoids, leading to hindrances in
their development. This mismatch between dECM derived from

mature tissue and kidney organoids composed of early-stage
differentiated cells highlights a crucial challenge in the field.
Despite the absence of direct studies comparing early-stage and
mature kidney dECM in renal organoid cultures, clues can be drawn
from existing studies on the dECM in other organ systems. For
instance, a study on rabbit spinal cord dECM found that neonatal
dECM contained higher levels of proteins like pleiotrophin (PTN)
and tenascin (TNC), which promote neural development, axonal
growth, and regeneration, while mature dECM had more inhibitory
components like chondroitin sulfate proteoglycans (CSPGs),
limiting regenerative potential (Sun et al., 2024). This shift in
ECM composition highlights a potential mismatch when
applying mature tissue-derived ECM to support the maturation
of progenitor cells in organoids. Early-stage ECM is optimized for
promoting cell proliferation and differentiation, while mature ECM
may lack these developmental cues, potentially hindering organoid
maturation and limiting its functionality. By understanding and
mimicking the developmental ECM environment, researchers may
be able to better support the maturation and functional development
of organoids, leading to more effective tissue models for both
research and therapeutic applications.

4 Conclusion and prospect

Amidst the rapid advancements in multidisciplinary
technologies, despite significant advancements in cellular
diversity, structural complexity, functional repertoire, and
developmental maturity of kidney organoids, a discernible
disparity remains when compared to mature renal tissues. To
address this, one potential method is the construction of a tissue
microenvironment based on tissue-specific dECM, which could
facilitate the maturation of kidney organoids. Both human and
porcine renal dECM have been found to promote the
differentiation of kidney organoids (Garreta et al., 2024). This
discovery not only paves the way for potential commercialization
of renal dECM but also addresses ethical concerns related to the use
of human dECM.

Although current dECM derived from mature renal tissues can
partially promote the maturation and vascularization of organoids,
there are limitations in terms of cell types and structures, with the
presence of non-renal cell types. The continued differentiation and
maturation of kidney organoids require an ECM that is distinct from
mature renal tissues. To address this, single-cell sequencing can be
utilized to analyze various stages of kidney development and aging,
as well as different regions. Furthermore, the ECM can be identified
using mass spectrometry. Through the integration and comparison
of single-cell multi-omics data at different development stages of
kidney and kidney organoid differentiation, it becomes possible to
identify the ECM that best corresponds to the kidney organoids.
Culturing organoids with the corresponding stage’s ECM and
introducing exogenous cells such as macrophages (Liu et al.,
2020; Pecksen et al., 2024) and endothelial cells (Maggiore et al.,
2024), a complex cellular microenvironment can be constructed to
simulate physiological conditions to the greatest extent (Figure 1B).
Furthermore, microfluidic chips can be utilized to apply fluid shear
stress to the three-dimensional co-cultured organoids, thereby
mimicking the processes of kidney development, aging, and
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disease (Figure 1B). Developing organoids at these specific stages
can help elucidate the mechanisms of development, aging, and
disease occurrence, and also provide a promising direction for
drug screening in nephropathy using kidney organoids.

There are numerous causes of kidney disease, including
congenital genetic conditions such as polycystic kidney disease
(Cornec-Le Gall et al., 2018), as well as a significant proportion
of kidney diseases induced by nongenetic factors, such as obstructive
nephropathy or nephrotoxic drugs leading to acute kidney injury
(AKI) (Chávez-Iñiguez et al., 2020; Perazella and Rosner, 2022).
Genetic factors, which induced kidney diseases can be modeled by
gene editing of hiPSCs followed by the induction of kidney organoid
to obtain the corresponding disease models. However, there is still
limited research on how to construct kidney organoid disease
models induced by nongenetic factors. Although several
organoids models of AKI have been developed through the use
of various inflammatory stimuli or nephrotoxic drugs (Morizane
et al., 2015), there is still a certain gap between these organoid
models and AKI due to thematurity of organoids (Bejoy et al., 2022).
Moreover, due to the multitude of causes of AKI, various alterations
in ECM proteins are also markers of AKI, such as nidogen-1
glycoprotein (Gui et al., 2024) and Metalloproteinase 1 and 3
(Klimm et al., 2024). However, our understanding of the
dynamics of the overall ECM composition and cellular
microenvironment during the occurrence and development of
AKI is still limited. Therefore, how to use the ECM related to
AKI diseases in combination with kidney organoids to construct a
more physiologically relevant AKI model is also a direction for
future research.

In summary, kidney organoids serve as crucial multicellular
models for studying renal development, aging, and disease in vitro,
and offer distinct advantages over traditional animal and cell
models. Their greatest strength lies in the presence of multiple
interacting cell types and a certain level of physiological structure,
allowing them to simulate the microenvironment of kidney tissue
in vitro. However, there remains a gap between current kidney
organoids and mature renal tissues, both in terms of cell types and
maturity. Furthermore, there is limited research on constructing
organoids that precisely mimic specific stages of human kidney
development, aging, and disease. One viable approach to address
these challenges involves utilizing kidney dECM that correspond to
the developmental stages of tissue. By co-culturing immune-related
cells and creating a complex cellular microenvironment that closely
resembles physiological conditions, it becomes possible to obtain
more differentiated cell types and maturity in kidney organoids.
Subsequently, these advanced models enable more accurate and
reliable drug screening. Furthermore, the application of microfluidic
chip technology enables the construction of micro-physiological
models that replicate multi-organ interactions in disease states,

facilitating the study of organ interactions under normal
physiological and disease conditions and also drug screening.
These avenues represent future directions for the advancement of
kidney organoid research.
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