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Acutemyeloid leukemia (AML), amalignant disorder of the hematopoietic system,
arises from leukemic stem cells (LSCs) and is the most prevalent form of blood
cancer in adults. This study aimed to evaluate the therapeutic potential of
polydatin (PD) in AML through ex vivo and in vivo studies, respectively. This
study was prompted by PD’s novel role in enhancing tumor apoptosis and
modulating autophagy. In vitro studies were conducted using the PD-
responsive AML cell line KASUMI-1 and found that PD was able to suppress
cell proliferation and induce apoptosis by regulating the autophagy pathway.
Subsequently, molecular docking was employed to predict the interaction
between PD and Autophagy-related protein 5 (ATG5), a key regulator in the
autophagy pathway. It was observed that PD inhibited the ubiquitination of
ATG5 and enhanced its protein stability, leading to an increase in
ATG5 protein levels and subsequent activation of the autophagy pathway (see
in Abstract Graphed). The effectiveness and safety of PD in treating AML were
confirmed through in vivo experiments using a mouse transplant tumor model,
yielding definitive results. Collectively, these results suggest that PD is a promising
candidate for the early therapeutic intervention of AML, with a strong potential for
clinical application.
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GRAPHICAL ABSTRACT

1 Introduction

Acute myeloid leukemia (AML) is an aggressive hematological
malignancy that is more common in adults (Huan et al., 2022; Wafa
et al., 2022). According to the latest world health statistics, there are
approximately 474,519 confirmed cases of leukemia worldwide, with
311,497 deaths and a five-year survival rate of 29.5 percent (Siegel
et al., 2024). Epidemiological studies have shown that exposure to
radiation and chemical substances, myelodysplastic syndrome,
myelofibrosis and other hematological or hereditary diseases, as
well as immune system defects are the main risk factors for AML
(Aitbekov et al., 2022; Guo et al., 2022; Poto et al., 2022).
Pharmacological chemotherapy has long been the mainstay of
AML treatment (Gomez-Arteaga and Gyurkocza, 2020).
However, tumor drug resistance is often an important cause of
treatment failure in AML patients, with high tumor recurrence rate
and poor prognosis (Mohamed Jiffry et al., 2023; Allison et al., 2022).
Therefore, the search for new chemotherapeutic agents is
particularly urgent.

Traditional Chinese medicine (TCM) has shown specific
advantages in tumor prevention and treatment, including
enhancing the body’s vital energy to prevent tumor development,
mitigating the adverse effects of tradition interventions such as bone
marrow suppression and gastrointestinal reactions, and reducing the
recurrence and metastasis of cancer by balancing the body’s systems
and ehancing immune surveillance (Ling et al., 2014). Additionally,
TCM provides personalized treatment strategies tailored to

individual conditions through syndrome differentiation and
employs a multi-target approach, leveraging the diverse active
components in herbal remedies for a comprehensive disease
intervention (Yuan et al., 2022). These findings positioned TCM
as a significant complementary therapy in cancer care. PD, extracted
from the root and rhizome of Polygonum cuspidatum Sieb, which
possesses various biological activities including anti-
inflammatory, antioxidant, and antiviral effects (Idoudi et al.,
2024; Li et al., 2023). Recent research on PD has demonstrated its
significant inhibitory effect on tumor therapy, solidifying its
potential as a promising anti-tumor medication (Li et al.,
2023). Studies have shown that PD inhibits the proliferation
of liver cancer cells and induces apoptosis in tumor cells by
suppressing Protein kinase B (Akt) phosphorylation (Jiang et al.,
2019; Farooq et al., 2023; Enayati et al., 2022); In colon cancer
cells, the treatment of PD combined with 5-FU disrupts their
mitochondrial function and thus enhances tumor cell
chemosensitivity (Bae et al., 2021). Moreover, Guo et al. found
in their study of the lung cancer nude mouse transplanted tumor
model that PD demonstrated dual effects by alleviating radiation-
induced damage to healthy tissue and enhancing radiosensitivity
by inhibiting B-cell infiltration in tumor tissue, resulting in a
notable increase in apoptosis in lung cancer cells (Guo et al.,
2023). It is crucial to recognize that while PD has demonstrated
anti-tumor properties in certain cancers, its impact on the
progression of acute myeloid leukemia and associated
mechanisms remains unknown.
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Autophagy, an intracellular process essential for cellular
homeostasis and response to external stimuli through the
degradation of intracellular substances, has been a subject of
investigation in the field of oncology (Wang et al., 2022; Zhao
et al., 2022). Relevant literature suggests that activating autophagy
may influence tumor progression and treatment outcomes
(Ahmadi-Dehlaghi et al., 2023; Zhao et al., 2022; Magnano et al.,
2021). ATG5 is essential in the autophagy process as it aids in the
creation and breakdown of autophagosomes, thereby impacting the
regulation of both classical and nonclassical autophagy pathways
(Changotra et al., 2022; Chen et al., 2023). Previous research has
demonstrated that the upregulation of ATG5 expression following
treatment with chemotherapeutic agents activates the autophagy
pathway, leading to the inhibition of tumor cell proliferation and the
promotion of apoptosis (Zhu et al., 2019; Bahar et al., 2022; He et al.,
2022). This suggests that ATG5 may serve as a promising target for
treating tumors.

Drawing on the aforementioned research foundation, the
primary objective of this study is to explore the therapeutic
efficacy of PD in the treatment of AML and elucidate the
precise mechanism involving the ATG5 autophagy pathway
through a combination of in vivo and in vitro experiments. It
is anticipated that the results of this research will enhance the
theoretical basis for the clinical treatment and
alleviation of AML.

2 Materials and methods

2.1 Cell lines, reagents and drug

Human AML cells: KG-1(No.CCL-246.1), HL-60 (No.CRL-
3306), KASUMI-1 (No.CRL-2724), KASUMI-6 (No.CRL-2775),
murine AML cell line: C1498 (No.TIB-49), all purchased from
American Type Culture Collection (ATCC) Cell Bank,
United States. SPF NCG mice, 4-5 weeks old, weighing
16–18 g, were purchased from Beijing Vital River Laboratory
Animal Co., Ltd. Animal production license number: SCXK
(Beijing) 2021-0011.

Reagents and drugs: fetal bovine serum (No.A5669701),
RPMI1640 medium (No.11875119) were purchased from Gibco,
United States; penicillin-streptomycin solution (No.C0222), cell
counting kit-8 (No.C0038) and BCA protein concentration
quantitative kit (No.P0010S) were purchased from Shanghai
Beyotime Biotechnology. Hematoxylin-eosin (HE) staining kit
(No. G1120) was purchased from Soleibao Biotechnology
Company, Beijing, China. 5-bromo-2-deoxyuracil (EDU) kit (No.
KGA9602-100), human interleukin-6 (IL-6), IL-1β, Tumor necrosis
factor -α (TNF-α) enzyme-linked immunosorbent assay (ELISA) kit
(No. KGC1111-48, KGC1103-48, KGC1122-48), flow cytometry
Annexin-v-FITC kit (No. KGA1101-100) were purchased from
China Jiangsu Keygen Biological Co., Ltd.

Mouse hemoglobin (Hb) ELISA kit (No. LE-M1587) was
purchased from Hefei Lyle Biotechnology Co., Ltd., China, and
mouse erythropoietin (Epo) ELISA kit (No.XG-E989530) was
purchased from Shanghai Xige Biotechnology Co., Ltd., China.
human B-cell lymphoma-2 (BCL2) antibody (No.12789-1-AP),
human Bcl-2 Associated X protein (BAX) antibody (No. 50599-

2-Ig), human Poly ADP-ribose polymerase (PARP) antibody
(No.13371-1-AP), ATG5 Monoclonal antibody (No. 66744-1-Ig)
and human Cleaved caspase3 antibody (No.19677-1-AP) were
purchased from Wuhan Proteintech Biological Co., Ltd.
Polydatin (No.HY-N0120A) was purchased from MCE Biological
Co., Ltd. The purity of Polydatin (batch number: HY-N0120A-29)
was 99.57%.

Instruments: DILITCEN22 desktop centrifuge, Suzhou Beirui
Instrument Co., Ltd., China; hBS-ScanX full wavelength microplate
reader, Nanjing Detieer Experimental Equipment Co., Ltd., China;
dYJ-905 inverted metallographic microscope, Shanghai Dianying
Optical Instrument Co., Ltd., China; Invitrogen iBright all-round gel
imager, Thermo Fisher Science and Technology Co., Ltd.,
United States; FACSCanto II flow cytometer, BD Biomedical,
United States; 1290 LC-MS, 1290 UHPLC with 6230TOF MS
System, Agilent, United States.

2.2 Cell culture

The cells were cultured in RPMI1640 medium supplemented
with 10% fetal bovine serum and 1% penicillin and streptomycin at
37°C with 5% CO2. Upon reaching a cell density exceeding 80%, the
cells were harvested by centrifugation and passaged at a ratio of 1:3.

2.3 Half maximal inhibitory concentration
(IC50) assay

KG-1, HL-60, C1498, KASUMI-1, and KASUMI-6 cells were
plated in 96-well plates at a density of 8 × 103 cells per well. PD stock
solution was prepared by dissolving in dimethyl sulfoxide (DMSO)
according to the manufacturer’s instruction. Following a 12-hour
incubation period to allow for cell adherence, the PD stock solution
was diluted with culture medium to achieve working concentrations
of 1, 5, 10, 20, 40, and 100 μM. The cells were then exposed to these
varying concentrations of PD for 48 h (Li et al., 2017). Subsequently,
10 μL of cell counting kit 8 (CCK-8) solution was added to each well,
followed by a 2-hour incubation in darkness. Absorbance at a
wavelength of 450 nm was measured using an enzyme labeling
instrument, and the IC50 value was calculated using GraphPad
Prism software.

2.4 CCK-8 assay

The KG-1, HL-60, C1498, KASUMI-1, and KASUMI-6 cells
were seeded in 96-well plates at a density of 3 × 10³ per well. After
12 h of adherence, the cells were treated with PD (0, 10, 20, and
40 μM), respectively, with 5 replicate wells in each group. At 24, 48,
72, and 96 h after drug treatment, 10 μL of CCK-8 solution was
added to each well, which was then incubated in the dark for 2 h. The
absorbance was then measured at a wavelength of 450 nm. The cell
proliferation rate was calculated according to the following formula:
The cell proliferation rate is calculated as follows: (Absorbance value
of experimental group - Absorbance value of blank well)/
(Absorbance value of control group − Absorbance value of
blank well) × 100%.
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2.5 RT-qPCR assay

KG-1, HL-60, C1498, KASUMI-1 and KASUMI-6 were seeded
in 6-well plates at a density of 1 × 106 per well. After adherent for
12 h, the cells were treated with PD (0, 10, 20, and 40 μM),
respectively. After 48 h, the total RNA was extracted with Trizol.
cDNA was synthesized using a reverse transcription kit according to
the manufacturer’s instructions. RT-qPCR was then conducted with
a SYBR Prime Script RTPCR kit utilizing custom primers (in
Supplementary Table S1). The relative expression levels of
mRNA were quantified using the 2∧−ΔΔCt method.

2.6 Cell treatment

KASUMI-1 cells were seeded in 96-well plates (or 6-well plates)
at a density of 3 × 103 (or 1 × 106) per well. After 12 h of attachment,
the cells were treated with PD (0, 10, 20, and 40 μM) for 48 h,
respectively. After treatment, the relevant experimental tests were
performed. The CCK-8 experimental steps were performed
according to the above description.

2.7 EDU staining

The EDU assay was carried out according to the protocol from
the EDU kit manual after treatment. In summary, the EDU reagent
was diluted with culture medium to create a working solution, and
then was added to the cells for incubation for 6 h. After the
incubation, 4% paraformaldehyde solution was added to fix the
cells, and 1% Triton X-100 solution was used for membrane
penetration. The Click-iT EdU reaction reagent was prepared
according to the EDU kit manual and added to the cell culture
plate for further incubation for 30 min. Finally, the cells were
observed under a fluorescence inverted microscope, and
photographs were taken for record.

2.8 Flow cytometry assay

Following drug treatment, the procedures outlined in the
Annexin V/PI Apoptosis Detection Kit manual were adhered to.
This included the collection and washing of cells and supernatant
with PBS solution three times, followed by the addition of 5 μL of
Annexin V solution and 5 μL of PI solution. Subsequently, the
samples were thoroughly mixed and incubated at room temperature
in the absence of light for 15–30 min. The samples were then
analyzed using appropriate equipment, and the resulting data
were processed utilizing Flow jo10.0 software.

2.9 Western blot assay

The total protein of the cells was extracted and quantified using a
BCA kit after treatment. Subsequently, according to the sample
order, 40 μg samples were fractionated using 10% SDS-
polyacrylamide gel electrophoresis (PAGE) and subsequently
transferred onto a PVDF membrane. Following blocking with 5%

non-fat milk, the membrane was incubated overnight at 4°C with the
respective primary antibody solution, which was diluted at a ratio of
1:1000. This was followed by a 5-hour incubation with the
appropriate secondary HRP-conjugated antibodies (1:8000).
Ultimately, the protein signal was visualized using an ECL
detection kit, and the strip’s gray value was analyzed using
ImageJ software.

2.10 ELISA assay

After the cells were treated with drugs, the operation was
performed according to the instructions of the ELISA detection
kit. In short, the cell supernatant solution was collected and added to
the pre-coated well plate. After the incubation, the antibody labeled
with the enzyme was washed and added to continue the incubation
with the specific antibody. The color reaction was performed, and
the absorbance was measured by a microplate reader.

2.11 Mechanism analysis

In terms of mechanism analysis, the cells were divided into 0 μM
group, 20 μM PD group, ATG5 autophagy inhibitor (agent-
82,10 μM) group, and 20 μM PD + ATG5 autophagy inhibitor
combination group (agent-82,10 μM) group. After 48 h of treatment,
the cells were tested according to the CCK-8, EDU, ELISA, Western
blot and flow cytometry operation steps described above.

2.12 Animal assay

NCG mice used to construct KASUMI-1 subcutaneous
transplantation tumor model. All mice were housed in a sterile
mouse house environment, alternating day and night every 12 h, and
were given adequate food and drinking water. After 1 week of
adaptation, the AML model was established by subcutaneous
injection of KASUMI-1 cells (2 × 107) in the right limb of mice.
When the tumor volume reached 100 mm3, the mice were treated
with drugs. PD stock solution was dissolved in 0.9% saline solution
to prepare the treatment solutions. The mice in each experimental
group received the PD solution via intragastric gavage once daily at
dosages of 50 mg/kg, 100 mg/kg, and 200 mg/kg, respectively. The
control group was given an equal amount of DMSO diluted in saline
solution (Zhang et al., 2019; Li et al., 2023). During the treatment,
the tumor volume and the body weight of the mice were measured
every 3 days. The tumor volume was calculated according to the
formula V = L × W2/2, where L represents the tumor length and W
represents the tumor width. After 4 weeks, peripheral blood was
extracted from the tail vein of mice, and 2 mL was mixed with 38 mL
Turk blood diluent, and then the white blood cell count (WBC) was
observed under a microscope. The remaining blood was centrifuged
at 12,000 rpm for 5 min, and the supernatant was collected. The
expression levels of hemoglobin (Hb) and erythropoietin (Epo) were
detected using a whole blood automatic analyzer. After that, the
mice were euthanized, and the lung, kidney, spleen and liver tissues
of the mice were collected, and then the tissue samples were stained
with hematoxylin and eosin. All experimental animals were
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euthanized for cervical dislocation with a high concentration of CO2,
and the animal experiments were approved by the Ethics Committee
for the Institutional Animal Care and Ethics Committee of The
Second Affiliated Hospital, University of South China (Animal
Ethics 230319).

2.13 HE staining

After the lung, kidney, spleen and liver tissues of mice were fixed
and embedded, they were cut into 6 μm slices by frozen section
machine. The operation was carried out according to the
instructions of HE staining kit, and the pathological structure of
the tissues was analyzed by taking photos under the microscope.

2.14 Molecular docking

The three-dimensional structure of PD and ATG5 protein was
obtained by PubChem. The active binding sites of PD and ATG5 were
defined by AutoDock software, and the network was generated.

2.15 Pharmacokinetic analysis

The real-time drug concentration of PD in the blood of healthy
mice was analyzed by high-performance liquid chromatography
(HPLC), with six mice in each group undergoing alternate blood
collection. The blood was collected at the following time points:
0 min, 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 16 h, and 24 h. The
following parameters were used for the determination: flow rate: The
flow rate was set at 0.1 mL/min, the temperature at 25°C, the column
at Bonus-PR, and the mobile phase comprised 20 mM sodium
phosphate buffer (pH2.5)-acetonitrile (90:10).

2.16 Statistical analysis

All experiments were repeatedmore than 3 times, and data analysis
was performed using GraphPad Prism (version 9.0). All results are
presented as mean ± standard error (SEM). The difference between the
two groups was performed using a 2-tailed Student’s t-test. One-way
analysis of variance (ANOVA) was used for comparison between
multiple groups. P < 0.05 was considered significant.

3 Results

3.1 Effects of PD on drug sensitivity and
ATG5 expression in AML cell lines

The study investigated the drug sensitivity and cytotoxic effects
of PD on acute myeloid leukemia (AML) cell lines. The IC50 values
of PD for KG-1, HL-60, C1498, KASUMI-1 and KASUMI-6 cells
were determined to be 33.21, 32.39, 30.09, 25.88, and 35.02,
respectively (Figure 1A). PD exhibited a reduction in cell viability
in AML cells, with the KASUMI-1 cell line demonstrating the lowest
proliferative viability and highest drug sensitivity (Figure 1B).

Furthermore, RT-qPCR analysis revealed a significant
upregulation of ATG5 expression in KASUMI-1 cells
(Figure 1C). This resulted in the choice of the KASUMI-1 cell
line for subsequent experimental investigations.

3.2 PD inhibits the proliferation and the
inflammatory factors expression of AML
cells in vitro

CCK-8 assay demonstrated that PD reduced KASUMI-1 cell
viability in a dose-dependent manner at different times (Figure 2A).
And the analysis of EDU assay showed that the red fluorescence
intensity of the cells was significantly lower than that of the control
group with the increase of PD concentration (Figures 2B, C),
indicating that PD significantly inhibited KASUMI-1 cell
proliferation. Additionally, the levels of IL-6, TNF-α, and IL-1β
expression were assessed following treatment with PD. The results
demonstrated a clear dose-dependent reduction in the expression of
IL-6, TNF-α, and IL-1β (Figures 2D–F). These findings suggest that
PD has the potential to effectively suppress the proliferation and
inflammatory factor expression of AML cells in an in vitro setting.

3.3 PD induces apoptosis of AML cells in vitro

To assess the impact of PD on the apoptosis of AML cells in an
in vitro setting, flow cytometry and western blot experiments were
conducted subsequent to PD administration. The findings indicated a
notable increase in the rate of apoptosis in KASUMI-1 cells following
PD treatment, as determined through flow cytometry analysis, in a
manner that was dependent on the dosage administered (Figures 3A,
B). Consistently, western blot analysis demonstrated that PD incubation
decreased the expression of the anti-apoptotic protein Bcl-2, while
increasing the expression levels of the pro-apoptotic signals Bax, cleaved
caspase-3, and cleaved PARP (Figure 3C).

3.4 PD activates ATG5-mediated autophagy
pathway in vitro

The Autodock software was utilized to predict the binding activity
between PD and ATG5. The analysis revealed multiple amino acid
binding sites and binding energies below −5 kJ/mol (Figure 4A),
suggesting a strong binding affinity between PD and ATG5.
Furthermore, the results indicated that ATG5 may serve as a
potential target for PD. Subsequent western blot analysis
demonstrated a dose-dependent induction of autophagy in
KASUMI-1 cells following PD treatment, as evidenced by the
upregulation of ATG5, ATG7, Beclin1, and Microtubule-associated
protein 1A/1B-light chain 3 (LC3) (Figures 4B, C). Various
concentrations of PD have been found to have a notable impact on
the ubiquitination process of ATG5, with a concentration of 40 μM
demonstrating a significant reduction in the ubiquitination level of
ATG5 (Figure 4D). The collective findings suggest that PD plays a role
in decreasing the ubiquitination level of ATG5, consequently enhancing
the protein stability of ATG5, increasing the expression of ATG5, and
facilitating the initiation of autophagy (Figure 4E).
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3.5 PD exerts anti-AML tumor effect by
regulating ATG5-mediated
autophagy pathway

To elucidate the precise mechanism by which PD acts against
AML tumors in vitro, functional recovery experiments were
conducted utilizing ATG5 inhibitors. The suppressive impact
of PD on EDU positivity in KASUMI-1 cells was attenuated when

co-administered with an ATG5 inhibitor (agent-82) (Figures 5A,
B). ELISA analysis revealed that the combined treatment of
agent-82 and PD reversed the inhibitory effects of PD on the
expression of IL-6, IL-1β, and TNF-α (Figure 5C). Flow
cytometry results indicated that the co-treatment of agent-82
and PD led to a significant decrease in the apoptosis rate of
KASUMI-1 cells compared to those treated with PD alone
(Figures 5D, E). Additionally, the combined treatment

FIGURE 1
Effects of polydatin on drug sensitivity and ATG5 expression in AML cell lines (A). The IC50 value of polydatin on KG-1, HL-60, C1498, KASUMI-1 and
KASUMI-6 cells were determined using the CCK-8 assay. (B) The cell viability of polydatin on KG-1, HL-60, C1498, KASUMI-1 and KASUMI-6 cells were
assessed using the CCK-8 assay. Comparedwith KASUMI-1, **P < 0.01. (C) The ATG5mRNA expression of KG-1, HL-60, C1498, KASUMI-1 and KASUMI-6
cells were detected using the RT-qPCR assay. Compare with KASUMI-1 cell, *P < 0.05, **P < 0.01.

FIGURE 2
Polydatin inhibits the proliferation of AML cells and the expression of inflammatory factors in vitro (A). CCK-8 assay was used to detect the effect of
different concentrations of polydatin on the proliferation of KASUMI-1 cells; (B). EDU assay was used to detect the effect of different concentrations of
polydatin on the proliferation of KASUMI-1 cell; (C). Statistical analysis of EDU results; (D–F) ELISA was used to detect the expression levels of IL-6, TNF-α
and IL-1β in different concentrations of polydatin. *P < 0.05; **P < 0.01; *P < 0.001.
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reversed the upregulation of pro-apoptotic proteins Bax, cleaved
caspase3, and PARP, as well as the downregulation of the anti-
apoptotic protein Bcl2 induced by PD treatment alone
(Figures 5F, G).

Furthermore, we conducted additional experiments to
determine if agent-82 could reverse the autophagy-inducing
effects of PD on KASUMI-1 cells. Western blot analysis revealed
a significant decrease in the expression of ATG5 following treatment
with agent-82, as well as a decrease in the expression of other
autophagy-related proteins including ATG7, Beclin1, and LC3 when
compared to the control group (Figures 6A, B). Interestingly, when
PD was combined with agent-82 treatment, the expression of ATG5,
ATG7, Beclin1, and LC3 was further suppressed (Figures 6B–E). The
aforementioned findings indicate that PD may potentially act as an
anti-AML agent through the modulation of the ATG5-mediated
autophagy pathway.

3.6 PD inhibits AML tumor growth in vivo

The impact of PD on acute myeloid leukemia (AML) was
further explored through in vivo studies utilizing NCG mice
xenografts harboring KASUMI-1 cells. Analysis of Figures 7A–C
indicated a significant reduction in tumor growth, volume, and
weight following PD treatment. Kaplan-Meier survival analysis
demonstrated a higher survival rate in mice treated with PD
compared to the control group receiving DMSO throughout the

30-day observation period (Figure 7D). Interestingly, no
significant difference in body weight changes was observed
between the DMSO and PD treatment groups (Figure 7E).
Additionally, the immunofluorescence findings demonstrated a
significant induction of apoptosis in AML cells in vivo by PD
(Figures 7F, G). Immunohistochemical analyses further validated
the upregulation of Cleaved caspase3 and LC3 proteins, and
downregulation of Ki67 protein in AML cells in vivo following
PD treatment (Figure 7H). These results suggest that PD exhibits
anti-tumor properties through the stimulation of cell autophagy
in AML nude mouse models, without causing evident toxicity or
adverse effects in mice.

3.7 PD improves AML tumor-related blood
indicators in vivo

Hematoxylin and eosin staining indicated that PD did not have a
significant impact on the histological changes of the heart, liver,
spleen, kidney, and lung compared to the DMSO group (Figure 8A).
A pharmacokinetic analysis was conducted to assess the metabolism
of different doses of PD in mice (Figure 8B). Consistent with its
inhibitory effects on AML cells in vitro, PD led to a dose-dependent
decrease in white blood cell count in vivo (Figure 8C). Subsequent
studies revealed a significant upregulation of hemoglobin and
erythropoietin expression in mice following treatment with PD
(Figures 8D, E).

FIGURE 3
Polydatin induces apoptosis of AML cells in vitro (A). Flow cytometry was used to detect the effect of different concentrations of polydatin on the
apoptosis of KASUMI-1 cells; (B). Statistical analysis of flow cytometry apoptosis test results; (C). Western blot was used to detect the effects of different
concentrations of polydatin on apoptosis-related proteins in KASUMI-1 cells; ***P < 0.001.
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FIGURE 4
Polydatin activates ATG5-mediated autophagy pathway in vitro (A). Molecular docking diagram of polydatin and ATG5; (B). Western blot was used to
detected the effect of polydatin on the expression of autophagy-related proteins; (C). Statistical analysis of Western blot results. (D)Western-Blot analysis
the level of ATG5 ubiquitination in KASUMI-1 cells treated with 0, 10, 20, 40 μM Polydatin; (E) Schematic illustration of the molecular mechanism of
polydatin inhibits ATG5 ubiquitination to promote autophagy *P < 0.05; **P < 0.01; *P < 0.001.
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FIGURE 5
Polydatin exerts anti-AML tumor effect by regulating ATG5-mediated autophagy pathway (A). EDU was used to detect the effect of polydatin
combined with agent-82 on the proliferation of KASUMI-1 cells. (B) Statistical analysis of EDU results; (C) ELISA was used to detect the effect of polydatin
combined with agent-82 on the expression of IL-6, IL-1β and TNF-α in KASUMI-1 cells. (D) Flow cytometry was used to detect the effect of polydatin
combined with agent-82 on the apoptosis of KASUMI-1 cells; (E) Statistical analysis of flow cytometry apoptosis test results; (F) Western blot was
used to detect the effect of polydatin combined with agent-82 on apoptotic proteins in KASUMI-1 cells; (G) Statistical analysis of apoptotic protein
expression results. Compared with control group, *P < 0.05; **P < 0.01; *P < 0.001; compared with polydatin group, #P < 0.05; ##P < 0.01; ###P < 0.001.
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4 Discussion

AML, characterized by pronounced drug resistance and high
mortality rates, poses a significant challenge in oncology (Chen et al.,
2022; Stelmach and Trumpp, 2023). Identifying and developing
innovative therapeutics is essential to combat the pressing issue of
AML. This study investigated the therapeutic efficacy and
underlying mechanisms of PD in AML. The findings in this
study indicated that PD potently inhibited the proliferation of
AML cells in vitro, induced apoptosis, and diminished
inflammatory responses. The results demonstrated that PD
effectively inhibited the proliferation of AML cells in vitro,
induced apoptosis, and reduced inflammatory markers.
Furthermore, in vitro studies revealed a substantial decrease in
tumor growth and WBC count after treatment with PD.
Moreover, histopathological assessments of vital organs, including
the heart, liver, kidneys, spleen, and lungs, exhibited no

abnormalities post-treatment, and body weight changes were
comparable between the PD-treated group and the control
group. In addition, PD increased Hb and Epo levels in mice after
treatment, indicating PD did not had myelosuppression effects,
which is a commonly seen side effects of AML therapy. These
findings suggest a lack of discernible toxicity and adverse effects of
PD on the mice. This research presents the initial evidence of PD’s
anti-tumor potential specifically in the context of AML, highlighting
its promise as a novel therapeutic candidate.

The pathological process of AML is complicated, involving the
defects of the immune system and the disorder of cell metabolism
(Cai and Levine, 2019; Ayyadurai et al., 2022). Autophagy, as a
cellular self-cleaning mechanism, is crucial for maintaining cellular
homeostasis (Debnath et al., 2023). It has been shown that the
macrolide antibiotic brefeldin A (BFA) triggers endoplasmic
reticulum stress-mediated expression of binding immunoglobulin
(such as Bip) in colorectal cancer cells, leading to a decrease in Akt

FIGURE 6
ATG5 inhibitor reversed polydatin-induced autophagy in AML cells. (A) Western blot was used to detect the effect of different concentrations of
polydatin on autophagy protein in KASUMI-1 cells; (B–E) Statistical analysis of the results of western blot detection of the effect of polydatin on the
expression of autophagy protein. Compared with control group, *P < 0.05; **P < 0.01; *P < 0.001; compared with polydatin group, #P < 0.05; ##P < 0.01;
###P < 0.001.
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phosphorylation, which activates autophagy and ultimately
apoptosis (Zhou et al., 2019). Similarly, estrogen receptor beta
has been shown to suppress breast cancer cell migration and

invasion through CLDN6-mediated autophagy (Song et al.,
2019). Notably, inhibition of autophagy has been associated with
increased apoptosis in various tumor types, including hepatocellular

FIGURE 7
Polydatin inhibits the growth of AML tumor cells in vivo. (A) Tumor gross appearance; (B) Average tumor volume; (C) Average tumor weight. (D) The
survival curve of leukemia-bearingmice calculated by Kaplan-Meier estimate. (E) Bodyweight changes ofmice; (F) The level of apoptosis was detected by
immunofluorescence; (G) Statistical analysis of immunofluorescence results. Compare with DMSO group, *P < 0.05; **P < 0.01; *P < 0.001; (H)
Immunohistochemical staining for Ki67, Cleaved caspase 3, LC3 in tumor tissues at different doses.
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carcinoma and non-small cell lung carcinoma (Wu et al., 2021; Xue
et al., 2022; Lin et al., 2021), thereby exerting anti-tumor effects. This
suggests that autophagy may be heterogeneous in different tumors.
In this study, PD was found to mitigate the progression of AML by
reducing the ubiquitination of ATG5, thereby enhancing its protein
stability and activating autophagy-related pathways that promote
apoptosis in AML cells.

ATG5 is one of the key proteins in the autophagy pathway,
serving as a biomarker for the initiation and progression of
autophagy (Hamasaki et al., 2013). During the process of
autophagy, ATG5 and ATG12 undergo covalent binding to form
the ATG5-ATG12 complex (Okai et al., 2022). This complex

subsequently interacts with ATG16 to yield the ATG5-ATG12-
ATG16 complex (Fang et al., 2022). The assembly of this
consortium complex plays a pivotal role in the initial stages of
autophagic vesicle membrane formation, which supports the
maturation of autophagic vesicles (Simon and Friis, 2014;
Romanov et al., 2012). Evidence suggested that the suppression
of ATG5-mediated autophagy may contribute to the development
and progression of breast cancer (Liang et al., 2021). This study
elucidated that PD suppresses the proliferation of AML cells and
triggers apoptosis by activating ATG5-mediated autophagy.
Specifically, ATG5 may regulate exogenous apoptotic pathways
by competitively binding to Fas-associated proteins with death

FIGURE 8
Polydatin improves AML tumor-related blood indicators in vivo (A) H&E staining for liver, spleen, kidney, lung and heart tissue sections from the
DMSO or polydatin treated mice; (B) Analysis diagram of drug metabolism of polydatin in vivo; (C)WBC counting of leukemia-bearing mice; (D, E) ELISA
was used to detect the effect of polydatin on the expression of Hb and Epo in vivo. *P < 0.05; **P < 0.01.
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domains (FADD), thereby blocking the interaction between FADDs
and death-inducing signaling complexes, which trigger
exogenous apoptotic signaling pathways (Pyo et al., 2005).
Yousefi et al. proposed that overexpression of ATG5 increases
the sensitivity of cells to chemotherapeutic drugs, while
knockdown of ATG5 reduces drug-induced apoptosis (Yousefi
et al., 2006). However, the downregulation of ATG5 did not
impact FADD-dependent cell death, and its inhibition of cysteine
asparaginase expression did not influence autophagosome
formation (Luo and Rubinsztein, 2007), which suggests that
ATG5 may play a role in both autophagy and certain specific
cell death pathways, yet these two biological processes can
function independently of each other.

In conclusion, this research has established that PD ameliorated
the pathogenesis of AML through the modulation of autophagy,
specifically by inhibiting the ubiquitination of ATG5. Given the
potent tumor-suppressive effects and low toxicity, PD emerges as a
promising candidate for AML treatment. In future studies, the
evaluation of the efficacy of PD in AML should be further
strengthened in the clinic, with a view to providing a stronger
basis for the treatment of AML in the clinic.
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