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Epilepsy, a complex neurological condition marked by recurring seizures, is
increasingly recognized for its intricate relationship with mitochondria, the
cellular powerhouses responsible for energy production and calcium
regulation. This review offers an in-depth examination of the interplay
between epilepsy, mitochondrial function, and aging. Many factors might
account for the correlation between epilepsy and aging. Mitochondria,
integral to cellular energy dynamics and neuronal excitability, perform a
critical role in the pathophysiology of epilepsy. The mechanisms linking
epilepsy and mitochondria are multifaceted, involving mitochondrial
dysfunction, reactive oxygen species (ROS), and mitochondrial dynamics.
Mitochondrial dysfunction can trigger seizures by compromising ATP
production, increasing glutamate release, and altering ion channel function.
ROS, natural byproducts of mitochondrial respiration, contribute to oxidative
stress and neuroinflammation, critical factors in epileptogenesis. Mitochondrial
dynamics govern fusion and fission processes, influence seizure threshold and
calcium buffering, and impact seizure propagation. Energy demands during
seizures highlight the critical role of mitochondrial ATP generation in
maintaining neuronal membrane potential. Mitochondrial calcium handling
dynamically modulates neuronal excitability, affecting synaptic transmission
and action potential generation. Dysregulated mitochondrial calcium handling
is a hallmark of epilepsy, contributing to excitotoxicity. Epigenetic modifications
in epilepsy influence mitochondrial function through histone modifications, DNA
methylation, and non-coding RNA expression. Potential therapeutic avenues
targeting mitochondria in epilepsy include mitochondria-targeted antioxidants,
ketogenic diets, and metabolic therapies. The review concludes by outlining
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future directions in epilepsy research, emphasizing integrative approaches,
advancements in mitochondrial research, and ethical considerations.
Mitochondria emerge as central players in the complex narrative of epilepsy,
offering profound insights and therapeutic potential for this challenging
neurological disorder.
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1 Introduction

Epilepsy affects millions globally and is characterized by
recurrent, unprovoked seizures. These seizures stem from
abnormal electrical activity in the brain and can present in
various forms, ranging from brief lapses in consciousness to full-

body convulsions (Abramovici and Bagić, 2016; Chen et al., 2022).
Epilepsy has far-reaching implications, including cognitive and
emotional disturbances, social stigmatization, and a substantial
reduction in the quality of life for those affected (Vrinda et al.,
2019). The etiology of epilepsy is diverse, with both genetic and
acquired factors contributing to its development. Despite the
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diversity in causative factors, many cases share standard features at
the cellular and molecular levels, making it an exciting area of
research (Falco-Walter, 2020). When compared to young people
and older people, epilepsy affects the elderly more frequently and is a
somewhat prevalent condition in this demographic (Lee, 2019).
Epilepsy tends to occur with age, not only because aging itself might
be a trigger for seizures but also because several epileptogenic
disorders are age-related. Considering such factors, an increase in
the prevalence of epilepsy can be linked to the continuous growth
and aging of the global population throughout time (Vrinda et al.,
2019; Piccenna et al., 2023; Brodie and Kwan, 2005).

Mitochondria, commonly known as the “powerhouses of the
cell,” are crucial for cellular energy regulation. These double-
membraned organelles generate adenosine triphosphate (ATP),
the primary energy currency of cells. By undergoing a series of
enzymatic reactions within the mitochondrial matrix, energy-rich
molecules like glucose and fatty acids are metabolized to produce
ATP through oxidative phosphorylation (Angelova and Abramov,
2018). ATP is essential for many cellular processes, including muscle
contraction, ion channel regulation, and neurotransmitter release.
Neurons, in particular, have a high demand for energy due to their
constant electrical activity and neurotransmission. Thus,
maintaining mitochondrial function is critical for regular brain
activity (Kann and Kovács, 2007). Mitochondria are now
understood to be more than just primary bioenergetic factories;
instead, they are sites for signaling molecules, critical components of
the natural immune system, and stem cell activity regulators. All of
these features, furthermore, offer insights into how mitochondria
may control aging and diseases associated with age (Sun et al., 2016).

The intriguing connection between mitochondria and neuronal
excitability has emerged as a focal point in epilepsy research. Neuronal
excitability refers to the propensity of neurons to generate electrical
impulses, a fundamental aspect of brain function (Alberti et al., 2022).
This excitability is tightly regulated to ensure the delicate equilibrium of
inhibition and excitation in the brain, maintaining stable neural
networks (Kann and Kovács, 2007). Mitochondrial dysfunction can
profoundly impact neuronal excitability. When mitochondria fail to
produce sufficient ATP or improperly regulate calcium levels, neurons
become vulnerable to hyperexcitability. This hyperexcitability can
manifest as increased spontaneous firing of action potentials, making
it easier for seizures to occur (Missiroli et al., 2020). ATP binding to
KATP channels keeps them closed, preventing excessive neuronal firing
(Xiao et al., 2023). However, when ATP levels are low due to
mitochondrial dysfunction, these channels open, leading to
hyperexcitability and potentially seizure activity (Huang and Afawi,
2011). Additionally, mitochondria are intimately involved in calcium
regulation within neurons (Matuz-Mares et al., 2022). Elevated
intracellular calcium levels can trigger a cascade of events, including
releasing neurotransmitters and activating signaling pathways that
contribute to hyperexcitability. Mitochondria help buffer and
regulate calcium levels, and when they malfunction, this regulation
is disrupted, further exacerbating excitability (Loewen et al., 2016).

2 Mitochondrial function in neurons

Mitochondria emerge as central players in the intricate tapestry
of neurological function, orchestrating a symphony of events critical

for neuronal health and vitality (Aguiar et al., 2012). The neuronal
mitochondrial population is not static; it undergoes fission and
fusion processes to adapt to changing energy needs and maintain
mitochondrial health. Mitochondrial physiology is characterized by
a series of biochemical reactions within their matrix. The Krebs cycle
and oxidative phosphorylation are central to their function. During
these processes, mitochondria metabolize substrates, such as glucose
and fatty acids, to produce ATP, the primary energy source for
neurons (Eckert and Pagani, 2011; Badole et al., 2021; Kale
et al., 2020).

It is not unexpected that disorders that vary fromminor changes
in the activity of neurons to cell death and neurodegeneration are
caused by disruptions in the brain’s energy metabolisms (Rink and
Khanna, 2011). The research of age-associated mitochondrial
deficits is gaining attention to understand the process
contributing towards either normal aging or neurodegenerative
illnesses, considering the pivotal role mitochondria play regarding
energy consumption and controlling redox equilibrium (Brand
et al., 2013).

2.1 ATP production and energy metabolism
in neurons

Mitochondria fulfill this energy demand by generating ATP
through oxidative phosphorylation. This process entails the transfer
of electrons across several protein complexes within the inner
membrane of mitochondria, ultimately leading to ATP synthesis
(Xavier et al., 2016; Umare et al., 2021). Notably, neurons exhibit
diverse energy demands based on their activity levels and location
within the brain. Synaptic terminals, for instance, require rapid ATP
production to support neurotransmission. Mitochondria are
strategically positioned at synapses to meet this need promptly.
Moreover, during increased neuronal activity, mitochondria move
along axons and dendrites to the sites of higher energy consumption,
ensuring a continuous energy supply (Tiwari et al., 2021; Brown
et al., 2006).

2.2 Calcium homeostasis and mitochondria

Calcium ions (Ca2+) are pivotal in neuronal signaling and
neurotransmitter release. Maintaining precise control over
intracellular calcium concentrations is essential to prevent
excessive excitability and excitotoxicity (Beal, 1995; Gibson et al.,
2010). When neurons experience increased calcium influx, as occurs
during neurotransmission, mitochondria buffer excess calcium ions,
preventing their accumulation in the cytosol (Rharass et al., 2014;
Panov et al., 2002). This buffering action helps dampen excitatory
signals and leads to synaptic event termination (D’Angelo et al.,
2023). Moreover, mitochondria sequester calcium within their
matrix, where it can be safely stored and released as needed. This
calcium-handling capability of mitochondria is particularly relevant
in the context of epilepsy. Dysfunctional mitochondria can lead to
disrupted calcium regulation, potentially resulting in heightened
neuronal excitability and an increased susceptibility to seizures
(Matuz-Mares et al., 2022). Wide harmful events, including
elevated ROS generation and abnormalities in the control of
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intracellular calcium concentrations, have been linked to a critical
role for mitochondria in aging-related diseases. These events have
been linked to mPTP activation, which has significant implications
for cell viability. Consequently, mPTP becomes a viable strategy for
neuroprotection in neurodegenerative disorders associated with
aging (Baev et al., 2022; Pivovarova and Andrews, 2010; Baev
et al., 2024).

Cells can adjust and operate in a constantly evolving cellular
setting by establishing interaction among organelles. At particular
locations known as mitochondria-associated membranes (MAMs),
ER and mitochondria combine to regulate several cellular processes,
like lipid generation and transfer, apoptosis, mitochondrial
dynamics, and calcium signaling (Saneto and Perez, 2022).
Furthermore, these activities are notably impacted early in the
pathophysiology of neurodegenerative conditions, indicating a
potential role for MAMs in the etiology of these conditions (Kim
et al., 2022).

3Mitochondrial Dysfunction in Epilepsy

Mitochondrial dysfunction in epilepsy represents a critical nexus
where cellular energy regulation and excitability intersect. This
section delves into the intricate relationship between epilepsy and
mitochondrial dysfunction, with a focus on its role in seizure
generation, the impact of ROS, and the influence of genetic and
environmental factors on mitochondrial function in epilepsy (Kann
and Kovács, 2007; Aguiar et al., 2012; Shin et al., 2011; Upaganlawar
et al., 2021).

As individuals age, they encounter a growing number of risk
factors for seizures and epilepsy due to the higher prevalence of
comorbidities compared to children and adults. Various age-related
diseases are linked to seizures, including Alzheimer’s disease and
other dementias, stroke, and other vascular conditions, as well as
several metabolic disorders, primarily diabetes and electrolyte
imbalances (Figure 1) (Liu et al., 2016)

3.1 Role of mitochondrial dysfunction in
seizure generation

Mitochondrial dysfunction has emerged as a compelling
contributor to the genesis of seizures in epilepsy. This subsection
delves into the intricate mechanisms through which impaired
mitochondrial function can fuel hyperexcitability and provide a
fertile ground for seizure initiation (Shin et al., 2011).

3.1.1 ATP depletion
Neurons have an insatiable appetite for energy due to their

continuous electrical activity, neurotransmitter synthesis and
release, and the maintenance of ion gradients across their
membranes (Chang and Reynolds, 2006). When mitochondrial
function is compromised, as can occur in various forms of
mitochondrial dysfunction, ATP production is hampered. This
reduction in ATP levels can have profound consequences for
neuronal excitability (V Terry et al., 2023). Neurons rely on
ATP-dependent pumps and channels to maintain ion gradients
necessary for normal membrane potential. When ATP becomes
scarce, these pumps and channels struggle to function optimally
(Pivovarov et al., 2019).This situation leads to the depolarization of
the neuronal membrane, reducing the threshold for spontaneous
action potential firing. Essentially, ATP depletion due to
mitochondrial dysfunction renders neurons more excitable,
increasing their susceptibility to spontaneous, uncontrolled
electrical discharges–the hallmark of seizures (Pearson-Smith and
Patel, 2017; Waldbaum and Patel, 2010a).

3.1.2 Enhanced glutamate release
Another facet of mitochondrial dysfunction’s impact on seizure

generation is its effects on calcium homeostasis within neurons.
Mitochondria are crucial for buffering and regulating calcium levels
within cells. However, when mitochondrial function falters, this
regulation becomes compromised. Elevated intracellular calcium
concentrations can lead to excessive glutamate release at excitatory

FIGURE 1
Mitochondrial Dysfunction in Epilepsy. ROS: Reactive oxygen species; ATP: Adenosine triphosphate.
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synapses (Dong et al., 2009). Glutamate is the primary excitatory
neurotransmitter in the CNS, and its release activates postsynaptic
receptors, leading to neuronal excitation (Lewerenz and Maher,
2015; Kim et al., 2020; Aglawe et al., 2021). When mitochondria fail
to buffer and control calcium levels efficiently, it can trigger an
aberrant release of glutamate, leading to synaptic overactivity. This
glutamate excess can propagate as a wave of excitation, potentially
culminating in the synchronized firing of a population of neurons–a
seizure. (Verma et al., 2022).

3.1.3 Altered ion channel function
Mitochondrial dysfunction can also perturb the function of

ion channels in neurons, further exacerbating hyperexcitability.
One critical set of ion channels affected by this dysfunction is the
ATP-sensitive potassium (KATP) channels. KATP channels play
a vital role in regulating neuronal excitability (Nikbakht et al.,
2021).Typically, ATP inhibits them, and their closure leads to
membrane hyperpolarization and reduced excitability
(O’Rourke, 2000). However, in mitochondrial dysfunction,
where ATP levels are diminished, these channels may fail to
remain closed. This failure allows potassium ions to flow out of
the neuron, leading to membrane depolarization and increased
neuronal excitability (Walz, 2003). In essence, mitochondrial
dysfunction can indirectly affect the behavior of ion channels,
like KATP channels, exacerbating hyperexcitability and
potentially facilitating the onset of seizures (Picca et al., 2017).

3.2 Impact of ROS in epileptogenesis

ROS are decidedly reactive molecules that contain free radicals
like superoxide (O2

−) and hydrogen peroxide (H2O2). They are
natural byproducts of various cellular processes, including
mitochondrial respiration. While ROS plays vital roles in cell
signaling and immune defense under normal circumstances, an
excessive build-up of ROS, often associated with mitochondrial
dysfunction, can have profound implications for epileptogenesis,
leading to epilepsy (Upaganlawar et al., 2021; Waldbaum and Patel,
2010a; Dong et al., 2009).

3.2.1 Oxidative stress
Mitochondrial dysfunction, frequently observed in epilepsy, can

upset the balance between ROS production and the body’s antioxidant
defenses. This imbalance results in oxidative stress, a condition where
ROS levels exceed the cell’s ability to neutralize them. Oxidative stress
can have harmful effects on neurons (Umare et al., 2021; Upaganlawar
et al., 2021). Oxidative stress can harm lipids, proteins, and DNA,
leading to neuronal dysfunction and potentially cell death. This damage
may induce structural and functional changes in neurons, fostering
conditions favorable to epileptogenesis. Additionally, oxidative stress is
strongly linked to neuroinflammation, forming a reciprocal
relationship. These processes create a feedback loop, each
intensifying the other and fostering a pro-epileptogenic setting in the
brain (Pearson-Smith and Patel, 2017; Morimoto et al., 2018; Nigar
et al., 2016; de Araújo Filho et al., 2018).

All aerobic cells create reactive oxygen and nitrogen species
(RONS), which are crucial in aging and age-related illnesses. The
oxidative stress hypothesis about aging, formerly known as the free

radical theory of aging, is predicated on the structural breakdown
theory, which holds that the build-up of oxidative damage to
macromolecules causes age-related functional deficits. Movement
and cognitive dysfunction impact older people’s longevity and
standard of life (Tiwari et al., 2021; Beal, 1995; Liguori et al.,
2018; V Mangrulkar et al., 2023).

Several neuropsychiatric disorders, including epilepsy, which
can lead to progressive movement impairment and cognitive
deterioration or eventual immobility, significantly affect older
individuals. Research has shown that cellular oxidative damage
plays a role in the development of dementia and seizures.
Numerous studies have investigated the relationship between
cognitive function, as assessed by the Mini-Mental State
Examination (MMSE), and levels of various indicators of ROS
(Mrakic-Sposta et al., 2018).

3.2.2 Neuronal excitability
ROS can influence the function of ion channels and receptors

that regulate neuronal excitability. One important target is the
NMDA receptor, a glutamate receptor subtype essential for
synaptic plasticity and excitatory neurotransmission (Dong et al.,
2009; Verma et al., 2022; Vezzani et al., 2016). ROS can enhance the
activity of NMDA receptors, making them more responsive to
glutamate. Heightened NMDA receptor activity can increase
calcium influx into neurons (Liu et al., 2013; Sluka et al., 1985;
John et al., 2022). Elevated intracellular calcium concentrations can
lead to excitotoxicity. Furthermore, ROS can influence other ion
channels and receptors that affect neuronal membrane potential and
excitability. The net effect is often an increased propensity for
neurons to fire spontaneously, which can lower the threshold for
seizures (de Vrese et al., 2011; Yap and Lye, 2020).

3.2.3 Neuroinflammation
ROS contributes to the initiation and persistence of

neuroinflammation, activating immune cells and releasing pro-
inflammatory molecules in the brain. Neuroinflammation is
increasingly acknowledged as a critical factor in the development of
epilepsy (Upaganlawar et al., 2021; Xanthos and Sandkühler, 2014). ROS
can activate pro-inflammatory pathways within glial cells (Rauf et al.,
2024). Activated cells release cytokines, chemokines, and other
inflammatory mediators that can influence neuronal function and
connectivity (Xanthos and Sandkühler, 2014; Lyman et al., 2014;
Kovács et al., 2014). Additionally, neuroinflammation can result in
BBB dysfunction, allowing immune cells from the bloodstream to
infiltrate the brain. This immune cell infiltration and the ensuing
inflammatory response can further contribute to neuronal
hyperexcitability and promote epileptogenesis (Okuneva et al., 2016;
Beaurain et al., 2019).

4 Mitochondrial dynamics in
epileptic brain

4.1 Mitochondrial fusion and fission: Cellular
implications

Mitochondrial dynamics involve two opposing processes: fusion
and fission (Picca et al., 2021; Lee and Yoon, 2016). Mitochondrial
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fusion merges individual mitochondria into a single, interconnected
network. This mechanism facilitates the transfer of mitochondrial
contents, such as proteins and DNA, promoting the mingling of
healthy and impaired mitochondria. Fusion additionally supports
the preservation of an optimal mitochondrial membrane potential
and the restoration of damaged mitochondrial DNA. It ensures a
uniform mitochondrial population, vital for effective energy
generation and calcium regulation (Chakravorty et al., 2019; Suen
et al., 2008; Wankhede et al., 2022). Mitochondrial Fission,
conversely, partitions mitochondria into smaller organelles.
This mechanism is vital for quality control, enabling the
segregation and elimination of impaired or dysfunctional
mitochondria. Fission also aids in distributing mitochondria
to regions with elevated energy requirements, such as synaptic
terminals (Chen et al., 2023). Collectively, fusion and fission
uphold a dynamic balance of mitochondrial structure and
function, pivotal for cellular homeostasis (Badole et al., 2021;
Suárez-Rivero et al., 2017).

4.2 Altered mitochondrial dynamics
in epilepsy

Recent findings indicate disruptions in mitochondrial dynamics
in epilepsy. These disruptions can carry substantial implications for
neuronal wellbeing and excitability. Investigations using animal
models of epilepsy and postmortem brain tissue from epilepsy
patients have unveiled discrepancies in the regulation of
mitochondrial fusion and fission dynamics (Olkhova et al., 2023).
In certain instances, an abundance of fission occurs, resulting in
fragmented mitochondria, whereas in other cases, fusion prevails,
yielding elongated, interconnected networks. These imbalances can
interfere with mitochondrial quality control, impede the elimination
of impaired mitochondria, and undermine overall mitochondrial

function (Kundap et al., 2020). Further, proper mitochondrial
trafficking along axons and dendrites is essential for meeting the
energy demands of specific neuronal regions (Chang and Reynolds,
2006; Gao et al., 2017; Schwarz, 2013). Changes in fusion-fission
dynamics can disturb mitochondrial trafficking, leading to irregular
distribution and compromised energy supply to vital regions. This
disparity in mitochondrial distribution might contribute to
heightened neuronal hyperexcitability, a characteristic feature of
epilepsy (Reddy et al., 2011; Bossy-Wetzel et al., 2008; Chen and
Chan, 2009). Altered mitochondrial dynamics can also affect
calcium regulation within neurons. Mitochondria participate in
buffering intracellular calcium levels, and disruptions in fusion
and fission events can lead to imbalances in calcium handling.
Elevated intracellular calcium concentrations can enhance
neuronal excitability, making neurons more susceptible to
seizures (Figure 2).

4.3 Role of mitochondrial dynamics in
seizure propagation

The interaction between mitochondrial dynamics and epilepsy
represents a multifaceted area of investigation, drawing increasing
attention within the field of epilepsy research. Neurons, known for
their voracious energy demands, depend heavily on the finely tuned
orchestration of mitochondrial dynamics to maintain essential
cellular processes. In the context of epilepsy, these dynamics play
a pivotal yet intricate role in seizure propagation (Suárez-Rivero
et al., 2017). Age-related disorders and aging have been consistently
linked to aberrant mitochondrial architecture, suggesting that
cellular dynamics are degraded with cellular aging (Bhatti et al.,
2017). Several investigations indicate that mitochondrial activity
effectively regulates the aging process in addition to pathological
conditions. Moreover, alterations to the structure or function of

FIGURE 2
Imbalances in mitochondrial fusion and fission dynamics.
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mitochondria can directly impact an organism’s lifetime (Guo
et al., 2022).

4.3.1 Mitochondrial health and seizure threshold
Central to the discussion is that well-functioning mitochondria

are paramount for neurons to maintain normal membrane potential
and energy equilibrium. Perturbations in mitochondrial dynamics,
resulting in mitochondrial fragmentation or dysfunction, have been
observed in animal models and human epilepsy cases (Lee et al.,
2004; Walker et al., 2020). In such instances, neurons are more
susceptible to hyperexcitability. Heightened neuronal excitability
effectively lowers the threshold for seizure initiation and
propagation. Studies have highlighted the importance of
mitochondrial fusion and fission events in modulating neuronal
excitability. Imbalances in these processes can disrupt the normal
functioning of mitochondria, contributing to altered membrane
potential dynamics. Consequently, neurons with compromised
mitochondria are more prone to firing spontaneously, a hallmark
of epileptic seizures (Flippo and Strack, 2017; Marde et al., 2022;
Marde et al., 2021).

4.3.2 Calcium buffering and excitotoxicity
Mitochondria regulates intracellular calcium levels, a factor

intricately linked to neuronal excitability. Dysfunctional
mitochondrial dynamics can impair their capacity to buffer
calcium ions effectively, leading to unchecked calcium
accumulation within neurons during seizures (Zong et al., 2024).
Excessive intracellular calcium concentrations, a consequence of
impaired calcium buffering, amplify excitotoxicity–a process where
overstimulation of glutamate receptors leads to neuronal damage.
Heightened excitotoxicity not only contributes to the severity of

seizures but also facilitates their spread to neighboring regions
(Figure 3) (Rharass et al., 2014; Pivovarova and Andrews, 2010;
Valko et al., 2005)

4.3.3 Mitochondrial quality control and seizure-
induced stress

During seizures, neurons endure significant metabolic stress due
to heightened energy demands. Mitochondrial dynamics become
crucial in maintaining mitochondrial quality control under such
conditions. Dysfunctional dynamics can hinder the removal of
damaged mitochondria from the cell (Xanthos and Sandkühler,
2014; Rho and Boison, 2022). The accumulation of dysfunctional
mitochondria intensifies cellular stress and exacerbates the
persistence of seizures (Rodolfo et al., 2018; Pickrell et al., 2009).
Research from experimental models and genetic studies highlights
the significance of mitochondrial dynamics in epilepsy. In
experimental epilepsy models, scientists have noted
mitochondrial fragmentation and dysfunction in neurons during
seizures. Furthermore, changes in genes related to mitochondrial
dynamics have been associated with epilepsy (Kalra, 2023; Lehtinen
et al., 2009). This convergence of evidence underscores the pivotal
role mitochondrial dynamics play in epileptic processes. Higher
amounts of oxidized protein molecules, lipids in the membrane, and
damaged DNA are factors at the cellular level that cause functional
and structural abnormalities, eventually resulting in cell death.
Proteotoxic stress and the build-up of oxidized lipids are
noteworthy correlations with age-related deficiencies in
autophagy (Su et al., 2019).

5 Bioenergetics and epileptic seizures

One critical aspect of seizure generation and propagation is the
intricate interplay between energy metabolism and neuronal
excitability. This section explores the bioenergetics of epileptic
seizures, including the energy demands during seizures and the
contributions of mitochondria to seizure energetics.

5.1 Energy demands during seizures

Despite its relatively small size, the brain is a remarkably energy-
intensive organ, consuming a disproportionate amount of the body’s
total energy. Neurons, in particular, are voracious energy consumers
due to their constant electrical activity, neurotransmitter synthesis
and release, and the maintenance of ion gradients across their
membranes. Epileptic seizures represent a state of heightened
neuronal activity characterized by repetitive and synchronized
firing of neurons. This heightened activity places substantial
metabolic demands on the brain. The energy demands during
seizures are primarily met through the ATP generated by the
mitochondria (Vergara et al., 2019).

During seizures, neurons experience a surge in energy demands,
primarily to support the multiple processes. Neurons rely on energy-
consuming ion pumps, such as the sodium-potassium pump (Na+/
K+ pump), to maintain ion gradients across their membranes. These
ion gradients are essential for normal neuronal excitability and
neurotransmission (Zsurka and Kunz, 2015). During seizures, the

FIGURE 3
Role of calcium in excitotoxicity. TCA: Tricarboxylic acid.
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Na+/K+ pump works overtime to restore membrane potential,
consuming considerable ATP. Additionally, the repetitive firing
of action potentials during seizures demands substantial energy.
Each action potential requires the active transport of ions across the
neuronal membrane, which is energetically costly. Further, releasing
neurotransmitters, such as glutamate and GABA, is energy-intensive
(Kann and Kovács, 2007; Zsurka and Kunz, 2015; Taksande et al.,
2017). These neurotransmitters are packaged into synaptic
vesicles and released into the synaptic cleft during neuronal
communication. The postsynaptic response to neurotransmitter
release involves the activation of ion channels, such as NMDA
receptors, which are critical for synaptic plasticity and excitatory
neurotransmission. These receptor activations are energy-
dependent. Epileptic seizures dramatically increase the energy
demands of neurons due to the heightened electrical activity and
neurotransmission (Sumadewi et al., 2023). These demands are
met primarily through mitochondrial ATP production (Badole
et al., 2021; Tiwari et al., 2021; Upaganlawar et al., 2021; Kim
et al., 2020).

5.2 Mitochondrial contribution to seizure
energetics

Mitochondria play a pivotal role in meeting the heightened
energy demands of seizures by serving as the primary ATP
generators within neurons. Mitochondria exhibit flexibility in
utilizing substrates for ATP production. During seizures, the
brain resorts to anaerobic glycolysis as an alternative energy
source, producing lactate. Subsequently, mitochondria can
convert lactate back into pyruvate and employ it for oxidative
phosphorylation. This lactate-pyruvate shuttle is essential for
sustaining energy production during prolonged seizures (Zsurka
and Kunz, 2015). It plays a pivotal role in buffering intracellular
calcium levels during seizures. The excessive calcium influx into
neurons can lead to excitotoxicity. Mitochondria, with their
ability to sequester calcium within their matrix, help prevent
this calcium-induced neuronal damage. This calcium buffering is
energy-dependent and relies on the electrochemical gradient
maintained by mitochondria (Kovac et al., 2017).
Mitochondria also contribute to redox balance, which is
essential during seizures. The production of ROS is elevated
during heightened neuronal activity. Mitochondria are both
sources and targets of ROS. They can produce ROS as natural
byproducts of respiration, but they also have antioxidant
defenses to mitigate oxidative stress. Maintaining this delicate
balance is crucial for cellular health during seizures (Umare
et al., 2021).

6 Excitability and ion channels

Epileptic seizures are characterized by abnormal and
synchronized neuronal firing, highlighting the pivotal role of ion
channels in regulating neuronal excitability. This section delves into
the intricate relationship between excitability, ion channels, and
mitochondria in epilepsy.

6.1 Ion channels and their regulation
in neurons

Neurons have an impressive array of ion channels that
meticulously regulate their excitability. These channels fall into
several categories, each with unique properties and functions.

6.1.1 Voltage-gated ion channels
These channels, including sodium (Na+), potassium (K+),

and calcium (Ca2+) channels, play a fundamental role in
generating action potentials, the electrical signals that transmit
information within neurons. Voltage-gated sodium channels
initiate and propagate action potentials, while voltage-gated
potassium channels are critical for repolarizing and
terminating these signals. Voltage-gated calcium channels,
particularly the L-type, regulate calcium influx, impacting
neurotransmitter release and synaptic plasticity (V Frolov
et al., 2016; Lerche et al., 2013).

6.1.2 Ligand-gated ion channels
These channels, such as N-methyl-D-aspartate (NMDA) and

gamma-aminobutyric acid (GABA) receptors, are activated by
neurotransmitters. NMDA receptors are essential for synaptic
plasticity and excitatory neurotransmission, while GABA
receptors mediate inhibitory neurotransmission, dampening
neuronal excitability (Lerche et al., 2013).

6.1.3 Transient receptor potential (TRP) channels
TRP channels participate in diverse cellular processes, including

thermosensation, osmosensation, and nociception. Temperature
changes activate some TRP channels, while others respond to
various chemical and physical stimuli, contributing to neuronal
excitability and sensory perception (Lerche et al., 2013).

6.1.4 Calcium-activated ion channels
Calcium-activated potassium (KCa) channels and calcium-

activated chloride channels are channels modulated by
intracellular calcium concentrations. They play critical roles in
shaping action potentials, regulating synaptic transmission, and
modulating neuronal excitability (Lerche et al., 2013).

The activity of ion channels in neurons is tightly regulated to
ensure precise control over neuronal excitability. Several
mechanisms modulate ion channel function. Protein kinases,
such as protein kinase A (PKA) and protein kinase C (PKC),
phosphorylate ion channels, altering their conductance and
gating properties. This regulation is essential for synaptic
plasticity and the fine-tuning of neuronal excitability (Lerche
et al., 2013; Chambers and Kramer, 2008). Also, the binding of
neurotransmitters to receptors can either enhance or inhibit ion
channel activity. For example, glutamate binding to NMDA
receptors permits calcium influx, while GABA binding to GABA
receptors enhances chloride influx, inhibiting neuronal firing.
Furthermore, intracellular signaling pathways modulate ion
channel activity, including the cyclic AMP (cAMP) and
phosphoinositide pathways. These pathways can be activated by
various extracellular signals, further fine-tuning neuronal
excitability (Smart and Paoletti, 2012).
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6.2 Interplay between mitochondria and ion
channels in epilepsy

Mitochondria exert a multifaceted influence on neuronal
excitability through their intricate interactions with ion channels.
Firstly, they serve as the primary energy suppliers, generating ATP
through oxidative phosphorylation, which is essential for operating
ion pumps like the sodium-potassium (Na+/K+) pump (Baev et al.,
2022). Reduced mitochondrial ATP production can disrupt ion
balance, leading to neuronal hyperexcitability (Clemente-Suárez
et al., 2023). Secondly, mitochondria act as vital regulators of
intracellular calcium levels, efficiently buffering elevated calcium
concentrations that can activate calcium-sensitive ion channels,
including calcium-activated potassium (KCa) channels. This
calcium buffering function helps maintain proper ion channel
activity and prevents aberrant neuronal excitability (Kann and
Kovács, 2007; Kovac et al., 2017; V Frolov et al., 2016). Lastly,
mitochondria are a significant source of ROS, which plays a role in
redox signaling. ROS can directly modulate ion channel function,
inducing changes in neuronal excitability, thus contributing to the
intricate interplay between mitochondria and ion channels in
regulating neuronal activity and excitability (Umare et al., 2021;
V Frolov et al., 2016).

6.2.1 Mitochondria and ion channels in epilepsy
The interplay between mitochondria and ion channels becomes

particularly significant in epilepsy. Mitochondrial dysfunction, a
common feature of epilepsy, can disrupt the delicate balance of ion
channel regulation, contributing to hyperexcitability and seizure
generation. Mitochondrial dysfunction often results in reduced ATP
production. This energy deficit compromises the function of the

Na+/K+ pump, leading to membrane depolarization and increased
neuronal excitability (Chen et al., 2022; Vezzani et al., 2011).
Impaired mitochondrial calcium handling can disrupt calcium
homeostasis in neurons. Elevated intracellular calcium levels can
activate calcium-sensitive ion channels, exacerbating excitability and
seizure susceptibility (Zündorf and Reiser, 2011; Gleichmann and
Mattson, 2011). Mitochondrial dysfunction can lead to excessive
ROS production. ROS can modulate ion channel activity, enhancing
excitability and promoting seizure generation. For example, ROS
can modulate NMDA receptor function, intensifying excitatory
neurotransmission (Figure 4) (Umare et al., 2021; Tiwari et al., 2021)

6.2.2 Mitochondrial calcium handling and
excitability

Mitochondria serve a crucial role in controlling intracellular
calcium concentrations. Utilizing the mitochondrial calcium
uniporter (MCU) complex, mitochondria uptake and regulate
calcium ions. This mechanism holds substantial implications for
neuronal excitability. Mitochondria, as calcium sinks, efficiently
buffer excessive cytoplasmic calcium, which is vital for preserving
the function of ion channels and averting excitotoxicity (an
occurrence where an excess influx of calcium causes neuronal
harm) (Rharass et al., 2014; Li et al., 2020). Intra-mitochondrial
calcium also influences the activity of enzymes involved in
mitochondrial metabolism. This calcium-dependent regulation
impacts ATP production and the generation of ROS, ultimately
influencing neuronal excitability (Zorov et al., 2014). The dynamic
modulation of excitability by mitochondrial calcium handling
extends to various aspects of neuronal function. Mitochondria
can influence neurotransmitter release by regulating calcium
levels in presynaptic terminals, thereby shaping synaptic strength

FIGURE 4
Calcium imbalance and Neuronal Excitability caused by mitochondrial disfunction. NMDA: N-Methyl D- Aspartate, ROS: Reactive Oxygen Species,
ATP: Adenosine triphosphate, Na+/K+ ATPase: Sodium Potassium ATPase pump.
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and overall neuronal network activity (Vos et al., 2010).
Additionally, mitochondrial calcium uptake and release can
impact the initiation and propagation of action potentials,
contributing to changes in membrane potential and neuronal
excitability. This multifaceted role of mitochondria in calcium
handling underscores their significance in the complex regulation
of neuronal excitability in health and disease, including epilepsy
(Walters and Usachev, 2023).

6.2.3 Role of mitochondrial calcium handling
in epilepsy

Dysfunctional mitochondrial calcium handling stands out as a
hallmark of epilepsy and significantly contributes to the
pathophysiology of this neurological disorder. One critical
consequence of impaired calcium regulation within mitochondria
is excitotoxicity, a process where excessive calcium influx into
neurons triggers cell damage and death (Verma et al., 2022; Vos
et al., 2010; V Varga et al., 2015). This excitotoxicity not only
exacerbates neuronal injury during seizures but also perpetuates a
cycle of neural damage. Furthermore, altered mitochondrial calcium
handling can lower the threshold for seizure initiation by disrupting
membrane potential and synaptic transmission (Kann and Kovács,
2007; Panov et al., 2002; Pickrell et al., 2011). This disruption
increases neuronal excitability, rendering the brain more
susceptible to the spontaneous and synchronized firing of
neurons characteristic of seizures. Additionally, the dysregulation
of calcium levels withinmitochondria can increase the production of
ROS. These ROS can further perturb calcium handling and ion
channel function, creating a positive feedback loop of
hyperexcitability and oxidative stress, which plays a central role
in the progression and perpetuation of epilepsy (Baev et al., 2022).

7 Mitochondrial epigenetics in
epileptogenesis

Mitochondrial epigenetics in epileptogenesis explores how
epigenetic modifications, such as DNA methylation, histone
modifications, and non-coding RNA expression, influence
mitochondrial function (Ren et al., 2023). These modifications
can directly impact mitochondrial genes, leading to changes in
energy metabolism, ROS generation, and mitochondrial
biogenesis (Henshall and Kobow, 2015). Understanding the
crosstalk between epigenetics and mitochondria sheds light on
the molecular mechanisms underlying epileptogenesis, offering
potential avenues for therapeutic interventions to restore
mitochondrial function and mitigate neuronal hyperexcitability
in epilepsy.

7.1 Epigenetic modifications and their
influence on mitochondrial function

Epigenetic modifications play a critical role in regulating gene
expression concerning mitochondrial function. These
modifications, including DNA methylation, histone modifications,
and non-coding RNAs, intricately shape the epigenetic
environment, controlling the expression of genes associated with

mitochondrial biogenesis, metabolism, and function. In epilepsy,
disruptions in these epigenetic patterns are increasingly
acknowledged as factors contributing to the abnormal neuronal
excitability observed during seizures (Henshall and Kobow, 2015).
DNA methylation, which entails adding methyl groups to cytosine
residues in CpG dinucleotides, can directly impact mitochondrial
function by regulating the expression of genes responsible for
encoding mitochondrial proteins (Dostal and Churchill, 2019).
For example, hypermethylation of the PGC-1α gene, a master
regulator of mitochondrial biogenesis and function, has been
linked to reduced mitochondrial density and compromised
oxidative metabolism in epilepsy (Abu Shelbayeh et al., 2023).
Histone modifications (acetylation, methylation, and
phosphorylation) regulate chromatin structure and gene
expression. In epilepsy, changes in histone acetylation and
methylation patterns have been linked to alterations in gene
expression, particularly those governing ion channel regulation
and synaptic transmission. Significantly, these histone
modifications can indirectly affect mitochondrial function by
influencing the expression of nuclear-encoded mitochondrial
genes, thereby impacting mitochondrial biogenesis and oxidative
capacity (Boison and Rho, 2020). Non-coding RNAs, including
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs),
have become vital regulators in epigenetic processes. In epilepsy,
dysregulation of miRNAs directly affects mitochondrial genes,
leading to compromised mitochondrial function, reduced ATP
production, and increased oxidative stress levels. Moreover,
lncRNAs have been demonstrated to influence mitochondrial
dynamics and bioenergetics by interacting with nuclear-encoded
mitochondrial genes, thereby introducing additional complexity to
the epigenetic control of mitochondrial activity (Catanesi et al.,
2020; Wang and Zhao, 2021). In summation, epigenetic
modifications profoundly impact mitochondrial function through
diverse mechanisms, revealing their central role in the molecular
intricacies of epileptogenesis and offering potential avenues for
therapeutic intervention aimed at restoring mitochondrial
function and mitigating the hyperexcitability characteristic
of epilepsy.

7.2 Epigenetics in epilepsy: Implications for
mitochondrial involvement

The intricate interplay between epigenetics and epilepsy has
illuminated a multifaceted landscape of molecular mechanisms
driving epileptogenesis, with profound implications for
mitochondrial involvement. Epilepsy, characterized by recurrent
seizures and abnormal neuronal excitability, has increasingly
been linked to epigenetic alterations, such as DNA methylation,
histone modifications, and non-coding RNA expression. These
epigenetic modifications exert far-reaching effects on gene
expression patterns within neurons, influencing the expression of
genes directly associated with mitochondrial function and
homeostasis (Henshall and Kobow, 2015; Boison and Rho, 2020).
In epilepsy, such epigenetic modifications can lead to mitochondrial
dysfunction through various avenues, profoundly affecting neuronal
excitability. One notable consequence is metabolic reprogramming,
where altered epigenetic patterns steer neuronal energy metabolism
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away from oxidative phosphorylation and towards glycolysis. This
metabolic shift diminishes mitochondrial ATP production,
depriving neurons of the energy required for ion pump operation
and overall excitability regulation. Moreover, epigenetically induced
mitochondrial dysfunction contributes to increased production of
ROS, exacerbating oxidative stress and further perturbing
mitochondrial membrane integrity and electron transport chain
function (Bhatti et al., 2017). This cascade of events significantly
contributes to neuronal hyperexcitability, a hallmark of epilepsy.

Furthermore, epigenetic regulation extends to mitochondrial
biogenesis, impacting mitochondrial density and function. Altered
DNA methylation and histone modifications can either promote or
hinder mitochondrial biogenesis, affecting the capacity for energy
production and calcium buffering and thereby influencing neuronal
excitability (Henshall and Kobow, 2015; Jiang et al., 2008; Van Vliet
et al., 2007). Additionally, epigenetic changes can directly influence
ion channel expression, disrupting ion homeostasis and membrane
potential, ultimately promoting hyperexcitability and lowering the
seizure threshold (Qureshi and Mehler, 2010). Collectively, these
intricate interactions underscore the vital role of epigenetics in the
pathophysiology of epilepsy and its direct implications for
mitochondrial involvement. Understanding these molecular
intricacies offers promising avenues for therapeutic intervention
in epilepsy, with strategies aimed at restoring mitochondrial
function and mitigating the aberrant neuronal excitability that
characterizes this neurological disorder.

8 Therapeutic Strategies Targeting
Mitochondria in Epilepsy

Therapeutic strategies targeting mitochondria in epilepsy aim to
restore mitochondrial function and mitigate neuronal

hyperexcitability. These approaches include enhancing
mitochondrial biogenesis, improving oxidative phosphorylation,
and reducing oxidative stress. Modulating mitochondrial calcium
handling and preserving membrane potential are also under
investigation. Additionally, compounds like antioxidants and
mitochondrial-targeted agents hold promise in attenuating
mitochondrial dysfunction and its contribution to epileptogenesis
(Catanesi et al., 2020; Madireddy and Madireddy, 2023). These
emerging therapies represent a novel frontier in epilepsy treatment
that potentially addresses the root causes of neuronal
hyperexcitability and provides more effective mitochondria-
focused interventions for individuals with epilepsy (Figure 5).

8.1 Mitochondria-targeted antioxidants

Mitochondria-targeted antioxidants represent a promising
therapeutic approach for addressing mitochondrial dysfunction
and oxidative stress in epilepsy. These compounds are designed
to accumulate within the mitochondria, where they can
neutralize ROS and protect mitochondrial components from
oxidative damage. The rationale behind using mitochondria-
targeted antioxidants in epilepsy is their potential to mitigate the
harmful effects of excessive ROS production, a common feature
of mitochondrial dysfunction in this neurological disorder
(Umare et al., 2021). Mitochondria-targeted antioxidants
typically contain an antioxidant molecule linked to a
lipophilic cation, allowing them to accumulate selectively in
the mitochondria due to the organelle’s negative membrane
potential. Once inside the mitochondria, these antioxidants
scavenge ROS, including superoxide and hydrogen peroxide,
which are natural byproducts of oxidative phosphorylation
(Yang et al., 2020; Mukhopadhyay et al., 2012). Firstly, they

FIGURE 5
Therapeutic strategies targeting mitochondria in epilepsy.
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play a crucial role in reducing oxidative stress within the
mitochondria, effectively curbing the accumulation of ROS.
This reduction in oxidative stress is instrumental in
mitigating mitochondrial dysfunction, thereby preserving the
organelle’s pivotal functions in ATP production and calcium
buffering. Secondly, these antioxidants contribute to
neuroprotection by safeguarding mitochondrial integrity. In
epilepsy, where seizures and oxidative stress often lead to
neuronal damage and cell death, the preservation of
mitochondria’s structural and functional integrity offers a
promising strategy for shielding neurons from seizure-
induced injury (Waldbaum and Patel, 2010a; Waldbaum and
Patel, 2010b). Lastly, mitochondria-targeted antioxidants may
indirectly influence neuronal excitability by maintaining ion
channel function and cellular energy balance. This
modulation of excitability, stemming from the preservation of
mitochondrial function and reduction in oxidative stress, can
potentially decrease the likelihood of seizure initiation and
propagation (Apostolova and Victor, 2015). Collectively, these
diverse benefits underscore the therapeutic potential of
mitochondria-targeted antioxidants in managing epilepsy,
addressing the symptoms and underlying cellular and
molecular mechanisms contributing to this neurological
disorder (Table 1).

8.2 Modulation of mitochondrial dynamics
for seizure control

Modulation of mitochondrial dynamics represents an emerging
strategy for seizure control in epilepsy (Cardoso et al., 2022).
Therapeutic interventions aimed at restoring proper
mitochondrial dynamics hold promise for mitigating seizure
activity (Luo et al., 2020). Promoting mitochondrial fusion can
enhance the organelle’s bioenergetic capacity and calcium
buffering capabilities, potentially raising the seizure threshold
(Uittenbogaard and Chiaramello, 2014). Conversely, encouraging
mitochondrial fission may facilitate the removal of damaged
mitochondria, reducing the generation of reactive oxygen species
and oxidative stress, both associated with epileptogenesis (Chen
et al., 2012). While the field of mitochondrial dynamics modulation
for seizure control is still in its infancy, it offers an intriguing avenue
for the development of innovative epilepsy therapies targeting the

very core of mitochondrial dysfunction underlying this
neurological condition.

8.3 Ketogenic diet and metabolic therapies

The ketogenic diet and related metabolic therapies have
garnered substantial attention for their potential in managing
epilepsy, particularly drug-resistant forms. The ketogenic diet is
characterized by high-fat, low-carbohydrate, and moderate-protein
intake, which induces a metabolic shift in the body, producing
ketone bodies as an alternative energy source (Shaaban et al., 2023).
Ketone bodies, such as beta-hydroxybutyrate, acetoacetate, and
acetone, have been shown to exert neuroprotective effects,
modulate neuronal excitability, and enhance mitochondrial
function (Yang et al., 2019). These metabolic changes may help
raise the seizure threshold and reduce seizure frequency in some
individuals with epilepsy. Other metabolic therapies, including the
modified Atkins diet and medium-chain triglyceride (MCT) oil
supplementation, offer variations of the ketogenic approach,
providing flexibility in dietary management (D’Andrea Meira
et al., 2019; Borowicz-Reutt et al., 2024).While the mechanisms
underlying the antiepileptic effects of these therapies are not fully
understood, they likely involve a combination of factors, including
increased mitochondrial efficiency, reduced oxidative stress, and
altered neurotransmitter metabolism. Although the ketogenic diet
and metabolic therapies may not be suitable for all epilepsy patients,
they represent valuable adjunctive options, especially for those with
drug-resistant epilepsy, offering a non-pharmacological approach to
seizure control and improved quality of life.

9 Future directions and challenges

Advancements in mitochondrial research offer the potential for
greater comprehension of the intricate connection between epilepsy
and mitochondrial function. Future investigations may unveil novel
mitochondrial targets for therapeutic intervention, refining
treatment approaches for individuals affected by epilepsy.
Pursuing more selective and effective mitochondria-targeted
therapies and enhanced diagnostic tools to evaluate
mitochondrial function in patients represents a critical area of
study. Additionally, delving deeper into the role of mitochondrial

TABLE 1 Mitochondria Targeted Antioxidant for the treatment of epilepsy.

Sr No. Mitochondria-targeted
antioxidant

Mechanism of action

1 MitoQ It accumulates in mitochondria, scavenges ROS, and protects mitochondrial components from oxidative damage

2 SS-31 It targets mitochondria, reduces oxidative stress, and maintains mitochondrial membrane potential, preserving
mitochondrial function

3 SkQR1 It accumulates in mitochondria, scavenges ROS, and protects mitochondrial DNA and proteins from oxidative
damage

4 Szeto-Schiller (SS) Peptides Selectively accumulate in mitochondria, reduce ROS production, and maintain mitochondrial membrane
potential

5 MitoTEMPO It accumulates in mitochondria, scavenges superoxide, and reduces oxidative stress, preserving mitochondrial
function
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genetics and epigenetics in epilepsy susceptibility could pave the way
for personalized treatment strategies.

As mitochondrial-based therapies, such as mitochondrial
transplantation and gene editing techniques like mitochondrial
replacement therapy (MRT), progress, ethical considerations
come to the forefront. Safety, long-term consequences, consent
protocols, and equitable access to emerging treatments are vital
concerns. Establishing ethical guidelines and robust regulatory
frameworks is imperative to ensure the responsible advancement
and integration of these therapies into clinical practice.

10 Conclusion

The intricate interplay between epilepsy and mitochondrial
function highlights the complex nature of this neurological
condition. Mitochondria play a central role in governing energy
metabolism, calcium balance, and oxidative stress, which influence
neuronal excitability and seizure susceptibility. With the prevalence
of epilepsy in elderly populations growing, addressing this issue is
increasingly vital. Despite significant strides in understanding these
associations, challenges persist in translating these findings into
effective treatments. The future of epilepsy management may hinge
on personalized approaches targeting mitochondrial dysfunction.
Advancements in research, innovative therapeutic strategies, and
ethical considerations will be instrumental in advancing toward
better outcomes and enhancing the quality of life for individuals
grappling with epilepsy.
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