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Background: There are currently no reliable diagnostic biomarkers or treatments
for lupus nephritis (LN), a complication of systemic lupus erythematosus.
Objective: We aimed to explore gene networks and potential biomarkers for
LN by analyzing theGSE32591 andGSE113342 datasets from theGene Expression
Omnibus database, focusing on IRF8 and IRF8-related genes.

Methods: We used differential expression analysis, functional enrichment,
protein-protein interaction (PPI) network construction, and the CIBERSORT
algorithm for immune infiltration assessment. To validate the expression levels
of the IRF8 gene in the kidneys of lupus mice models, we used quantitative real-
time PCR (qRT-PCR) and Western blotting (WB). A diagnostic classifier was built
using the RandomForest method to evaluate the diagnostic potential of selected
key genes. To bridge our findings with potential therapeutic implications, we used
the drug-gene interaction database to predict drugs targeting the
identified genes.

Results: Twenty co-differentially expressed genes (DEGs) were identified, with
IRF8 exhibiting significant expression differences and potential as a biomarker.
Functional enrichment analysis revealed pathways associated with immune
response. Validation through qRT-PCR and WB confirmed that the IRF8 gene
and its protein exhibited elevated expression levels in the kidneys of lupus mice
compared to control groups. The diagnostic classifier revealed impressive
accuracy in differentiating LN from control samples, achieving a notable area
under the curve values across various datasets. Additionally, immune infiltration
analysis indicated significant differences in the immune cell profiles between the
LN and control groups.

Conclusion: IRF8 and its related genes show promise as biomarkers and
therapeutic targets for LN. These findings contribute to a deeper
understanding of the molecular mechanisms involved in LN and may support
the development of precision medicine strategies for improved patient
outcomes.
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1 Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune
inflammatory disease of unknown etiology, affecting approximately
five million people worldwide (Kong et al., 2019; Udhaya Kumar
et al., 2020). The female-to-male ratio among patients with SLE is
approximately 7–9:1 (Kong et al., 2019). In patients with SLE,
immune dysregulation leads to the production of autoantibodies
targeting nuclear and cytoplasmic antigens. SLE also initiates
autoimmune responses and inflammation across multiple organs,
giving rise to a broad spectrum of clinical manifestations. Mild cases
may be limited to skin involvement, such as erythema or oral ulcers,
while severe cases can involve critical damage to the hematologic,
renal, or nervous systems, potentially posing life-threatening risks.
(Yap and Chan, 2019). LN is a manifestation of SLE that affects
approximately 39% of patients (Kong et al., 2019) and is a major risk
factor for morbidity and mortality (Almaani et al., 2017). LN is
characterized by glomerulonephritis (Yang and Li, 2019). About
10% of all patients with LN develop end-stage renal disease (ESRD)
(Almaani et al., 2017). However, the pathogenesis of LN remains
unclear. As LN has complex clinical manifestations and no specific
treatment, biomarkers and treatment targets are urgently needed.
With the advancement of bioinformatics and metabolomics,
increasing numbers of researchers are focusing on discovering
biomarkers for the early diagnosis of LN. Due to their non-
invasive nature, these methods may potentially serve as
alternatives to renal biopsy. Beyond classical serum markers for
LN, such as anti-double-stranded DNA (anti-dsDNA) antibodies
and C1q, abnormal DNA methylation, non-coding RNA, and
variations in levels of chemokines, interleukins, and urinary
proteins may all serve as potential new biomarkers (Alduraibi
and Tsokos, 2024). And the recent advent of gene testing and
bioinformatics analysis has gradually elucidated associations
between genes and diseases.

2 Materials and method

2.1 Data download

GSE32591 (Bethunaickan et al., 2011) and GSE113342 (Mejia-
Vilet et al., 2019) are two sets of gene expression profile data for LN,
downloaded from the official NCBI GEO website (https://www.ncbi.
nlm.nih.gov/geo/) (Barrett et al., 2007) using the GEOquery package
in R (Davis and Meltzer, 2007). GSE32591 and GSE113342 were
divided into tubular interstitial (TUB) and glomerular (GLOM) gene
expression groups. The gene expression profiles of patients with LN
and patients in the control group are presented in Table 1.

2.2 Co-differentially expressed genes (DEGs)

To investigate the effect of gene expression on patients from the
LN and normal sample groups, data from GSE32591 and
GSE113342 were divided into TUB and GLOM categories. The
limma package in R was used to analyze the differences between
groups (Ritchie et al., 2015). DEGs were determined using an
adjusted p-value threshold of <0.05. Specifically, genes with
logFC >1 and an adjusted p-value <0.05 were deemed
upregulated DEGs, while those with logFC < −1 and an adjusted
p-value <0.05 were categorized as downregulated DEGs. The DEGs
identified across the four datasets were compared and intersected to
identify the co-DEGs. These DEGs were visualized using the
ggplot2 package in R (Maag, 2018). Additionally, the effects of
shared DEGs on patient stratification were assessed using the
heatmap package in R.

2.3 co-DEG function and pathway
enrichment analysis

In extensive gene enrichment studies, gene ontology (GO)
functional annotation analysis was used to explore biological
processes (BP), molecular functions (MF), and cellular
components (CC). The Kyoto encyclopedia of genes and
genomes (KEGG) database (Kanehisa and Goto, 2000) served
as a repository for information related to genomes, biological
pathways, diseases, and drugs. The clusterProfiler package in R
was used to perform GO function annotation and KEGG pathway
enrichment analyses of the identified co-DEGs (Wu et al., 2021).
A p < 0.05 was considered the threshold for statistical
significance.

2.4 Protein-protein interaction (PPI)
network construction

The STRING database, comprising established and predicted
PPIs, was used to construct a PPI network (Szklarczyk et al., 2019).
The PPI network model was visualized using Cytoscape software
(Shannon et al., 2003). Local clusters within the network,
characterized by closely connected interactions, could suggest
molecular complexes associated with biological functions.
Pearson’s correlation coefficients were calculated between the
expression levels of IRF8 and other genes to analyze the gene
expression profile data from the four datasets, with statistical
significance set at p < 0.05. Genes demonstrating a significant
correlation with IRF8 in at least three datasets were identified as
IRF8-associated genes. Selecting IRF8-associated genes was
depicted using the VennDiagram package in R (Chen and
Boutros, 2011). DAVID, an online resource located at http://
david.abcc.ncifcrf.gov/, integrates biological datasets and
analytical tools to facilitate the construction of extensive gene
or protein lists, provides detailed annotations of biological
functions, and supports the analysis of biological information
about these lists. In this study, DAVID was utilized for function
annotation and pathway enrichment analysis, considering a p < 0.
05 to be statistically significant.

TABLE 1 GEO database of LN patient data.

ID GLOM
(LN)

GLOM
(LD)

TUB
(LN)

TUB
(LD)

GSE32591 32 14 32 15

GSE113342 28 6 28 10

TUB, tubular interstitial; GLOM, glomerular.
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2.5 Diagnostic prediction, model
construction, and verification

Random forest is a bagging-based ensemble learning method
used for regression, classification, and other applications (Brieuc
et al., 2018). It is highly accurate, rapidly trained, and easy to
implement, and it also performs variable-importance ranking.
We intersected IRF8-related genes with co-DEGs to identify key
genes and further evaluated the impact of their expression levels on
patient diagnosis. The random forest algorithm was used for
classification and was implemented using the RandomForest
package in WEKA. Feature selection was performed, and a
diagnosis prediction model was built using the RandomForest
package in R (Svetnik et al., 2003), resulting in a classifier for the
feature genes. During the construction and validation of the
classifier, the training set comprised GLOM samples from the
initial analysis of GSE32591, which included 32 LN and
14 normal tissues, along with TUB samples from the same
dataset and GLOM and TUB samples from the
GSE113342 dataset. The classifier model was then tested, and the
pROC package in R was used to generate ROC curves and compute
the AUC (Robin et al., 2011).

2.6 Immune infiltration analysis

CIBERSORT, available at https://cibersort.stanford.edu/,
utilizes linear support vector regression to deconvolute
immune cell subtype expression from gene expression
matrices based on predefined reference profiles and a set of
gene expression features representing 22 white blood cell
subtypes (Newman et al., 2019). In this study, RNA-Seq data
were used to estimate the levels of immune cell infiltration. The
CIBERSORT algorithm was subsequently employed to evaluate
the relationship between the co-DEGs and immune cell
infiltration.

2.7 Mice

Female MRL/Mpj and MRL/lpr mice were obtained from
Shanghai Jihui Laboratory Animal Care Co. Ltd (Shanghai,
China) and housed in a pathogen-free facility at Fudan
University. The Institutional Animal Care and Use
Committee of Fudan University approved all animal
experiments.

2.8 Quantitative real-time polymerase chain
reaction (qRT-PCR)

RNA extraction from tissue samples was performed using
TRIzol Reagent (15,596,026, Invitrogen, United States) following
the manufacturer’s guidelines. The PrimeScript RT Reagent Kit
(Takara, Japan) was used for cDNA synthesis. Expression levels
of IRF8 were quantified using TB Green Premix Ex Taq II
(Takara, Japan) on a QuantStudio 6 Flex Real-Time PCR
System (ABI, United States). Data were analyzed using the

delta-delta Ct method. Primer sequences are provided in
Supplementary Table S1.

2.9 Western blot

Samples were lysed using RIPA lysis buffer (P0013C, Beyotime,
China). The protein concentrations were measured using a BCA
assay kit (P0010S, Beyotime, China). Proteins were then analyzed
through standard Western blotting techniques. Membranes were
incubated overnight at 4°C with primary antibodies, specifically anti-
interferon regulatory factor 8 (IRF-8) (1:1,000, 5,628, CST,
United States) and GAPDH (1:1,000, 2,118, CST, United States).
Following washing, the membranes were incubated with goat anti-
rabbit IgG secondary antibody (1:2000, 7,074, CST, United States)
for 1 h at room temperature. Detection was carried out using ECL
reagent (Millipore, United States), and images were obtained using a
LAS-3000 imager (Fujifilm, Japan). Image quantification was
conducted using Photoshop (Adobe).

2.10 Regulatory networks and target drugs
of hub genes

The potential influence of drugs on the expression of hub genes
was investigated using the drug–gene interaction database (DGIdb),
which aggregates drug-gene interaction information from
30 different sources (Cotto et al., 2018). Additionally, the
Cytoscape software was employed to facilitate a more detailed
analysis of the drug network, enhancing the examination of the
interactions within (Shannon et al., 2003).

2.11 Statistical analysis

Data processing and analysis were conducted using the R
software (version 4.0.2; R Core Team, Vienna, Austria).
Graphical representations were generated using the
ggplot2 package. The pROC package in R (Robin et al., 2011)
was used to create ROC curves, compute the AUC, assess the
accuracy of risk scores, and predict prognosis. Statistical
comparisons between the two groups were conducted using the
Student’s t-test, with a p < 0.05 considered statistically significant.

3 Results

3.1 Co-DEGs

We used the limma package to perform differential expression
analysis to investigate the impact of gene expression in patients with LN
compared to normal controls. This allowed us to identify DEGs,
categorized into upregulated and downregulated DEGs across four
sample groups, as demonstrated in Figures 1A–D and Supplementary
Table S2. We then intersected the downregulated DEGs from dataset
GSE32591with those fromGSE113342 and the upregulatedDEGs from
GSE32591 with those from GSE113342. This process identified 20 co-
DEGs. To assess the relevance of these co-DEGs for clinical diagnosis,
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classification heatmaps were generated (Figures 1E–H). The heatmaps
demonstrated that the 20 co-DEGs differentiated the disease samples
from the normal ones. Furthermore, statistical analysis of the gene
expression levels within the co-DEGs indicated a significant elevation in
IRF8 expression in the LN group (Figure 2).

3.2 Functional enrichment analysis of
co-DEGs

To explore the relationship between co-DEGs and various BP,
MF, CC, and pathways, we performed functional enrichment

FIGURE 1
Differentially Expressed Genes in GSE32591 and GSE113342. (A–D) Volcano plots showing differentially expressed genes with log2(Fold Change) on
the x-axis and -log10(p.adjust) on the y-axis. (E–H) Heatmaps showing expression levels of differentially expressed genes across patient samples.
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analysis of the 20 identified co-DEGs. These genes were primarily
associated with BP, such as the regulation of complement activation,
synapse pruning, regulation of the humoral immune response, and
cell junction disassembly. Regarding MF, the co-DEGs were
enriched in activities such as toll-like receptor binding, peptide
binding, transcription coactivator binding, and amide binding.
Furthermore, they were linked to CC, including blood
microparticles, specific granules, secretory granule membranes,
and collagen trimers (Figure 3A). The co-DEGs were also
enriched in biological pathways, such as those involved in
pertussis, Staphylococcus aureus infection, complement and
coagulation cascades, Leishmaniasis, and Chagas
disease (Figure 3B).

3.3 Construction of PPI network andmodule
extraction

We used the STRING database to construct a PPI network
(Figure 4A) consisting of 16 genes and 34 interaction pairs to explore
the interactions between co-DEGs. Within this network, the

IRF8 node exhibited the highest degree of connectivity. To
explore the impact of IRF8 on LN, we calculated genes highly
correlated with IRF8 expression levels and identified 1080 IRF8-
related genes in GSE32591-GLOM, 1,373 in GSE32591-TUB, 96 in
GSE113342-GLOM, and 108 in GSE113342-TUB. An intersection
of the four IRF8-related gene sets revealed 35 genes significantly
correlated with IRF8 across at least three datasets (Figure 4B). We
extracted a PPI network for these 35 IRF8-related genes using the
STRING database (Figure 4C), which included 35 genes and
139 interactions, encompassing 11 co-DEGs (Figure 4D). C1QA
and C1QB, validated by the literature to be related to LN (Wu et al.,
2020), were among these. This indicates a close correlation between
IRF8-related genes and LN. Subsequent analysis of the biological
functions affected by IRF8-related genes revealed that these 35 genes
were mainly enriched in BP, such as regulation of immune effector
processes, adaptive immune responses based on somatic
recombination of immune receptors built from immunoglobulin
superfamily domains, lymphocyte-mediated immunity, and
neutrophil degranulation (Figure 4E). They were also enriched in
CC-like specific granules, MHC protein complexes, specific granule
membranes, and secretory granule membranes (Figure 4F) and MF,

FIGURE 2
Expression levels of IRF8 across datasets.
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including peptide, amide, peptide antigen, and integrin binding
(Figure 4G). Furthermore, they affected biological pathways, such
as Staphylococcus aureus infection, pertussis, complement and
coagulation cascades, and cell adhesion molecules (Figure 4H).

3.4 Characteristic gene screening and
diagnostic value assessment

By intersecting IRF8-related genes with the co-DEGs, we
identified 11 key genes. To assess their diagnostic value for LN,

we used the RandomForest feature selection method within
WEKA on the GSE32591-GLOM dataset and constructed a
diagnostic classifier using the RandomForest package in R,
resulting in an importance score for the 11 feature genes
(Figure 5A). We validated the diagnostic classifier using three
datasets: GSE32591-TUB, GSE113342-GLOM, and GSE113342-
TUB and plotted ROC curves. The results illustrated that the
AUC for GSE32591-TUB was 0.738 (Figure 5B), for GSE113342-
GLOM was 0.929 (Figure 5C), and for GSE113342-TUB was
0.914 (Figure 5D), indicating that our diagnostic classifier can
effectively differentiate disease samples from normal samples.

FIGURE 3
GO functional enrichment analysis and KEGG pathway enrichment analysis. (A) GO functional enrichment analysis. The x-axis represents
-log(p.adjust), and the y-axis represents GO terms. (B) KEGG pathway enrichment analysis. The x-axis represents generation, and the y-axis represents
pathway names. The size of the nodes indicates the number of genes enriched in the pathway, while the node color represents -log10(p-value).
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Furthermore, we analyzed whether IRF8 could distinguish
diseased samples from normal samples. The results indicated
that the AUC for IRF8 in GSE32591-GLOM was 0.877
(Figure 5E), in GSE32591-TUB was 0.744 (Figure 5F), in

GSE113342-GLOM was 0.807 (Figure 5G), and in
GSE113342-TUB was 0.752 (Figure 5H), respectively,
demonstrating that the expression level of IRF8 significantly
affected LN diagnosis.

FIGURE 4
PPI and Functional Analysis. (A) PPI network of co-DEGs. (B) IRF8-related genes obtained from four datasets. (C) PPI network of IRF8-related genes.
(D) Intersection of IRF8-related genes and co-DEGs. (E–H) Functional annotation and pathway enrichment analysis of genes in functional modules using
DAVID, with node color representing the degree of IRF8-related gene nodes.
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FIGURE 5
Construction and Validation of the Diagnostic Classifier. (A) Feature selection and diagnostic classifier model construction using the random forest
algorithm on the GSE32591-GLOM dataset, ranking the importance scores of 11 key feature genes. (B–D) Testing the diagnostic classifier model on
three additional datasets: GSE32591_TUB, GSE113342_GLOM, and GSE113342_TUB, with ROC curves plotted. (E–H) ROC curves of the IRF8 gene in
GSE32591_GLOM, GSE32591_TUB, GSE113342_GLOM, and GSE113342_TUB datasets.
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FIGURE 6
Immune Infiltration Analysis and Correlation between Key Genes and Immune Cells. (A) Immune infiltration in the GSE32591_TUB group, with the x-
axis representing immune cells and the y-axis representing immune cell abundance. Asterisks indicate significance levels: *p < 0.05, **p < 0.01, ***p <
0.001. Similar plots are shown for GSE32591_GLOM (C), GSE113342_TUB (E), and GSE113342_GLOM (G). (B) Correlation between 11 key feature genes
and immune cells in the GSE32591_TUB group. The x-axis represents immune cells, and the y-axis represents feature genes, with orange indicating
positive correlation and green indicating negative correlation. Node size represents the level of significance. Similar plots are shown for GSE32591_GLOM
(D), GSE113342_TUB (F), and GSE113342_GLOM (H).
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3.5 CIBERSORT immune infiltration analysis

The CIBERSORT algorithm was utilized to evaluate immune
cell infiltration differences across two distinct RNA
modification patterns. The analysis revealed substantial
variations in immune cell populations between LN and LD
groups. Specifically, in GSE32591-TUB, there were significant
differences in the proportions of activated dendritic cells,
M1 macrophages, activated and resting mast cells, activated
NK cells, and follicular helper T cells (p < 0.05, Figure 6A).
Moreover, a significant correlation was observed between key
genes and the number of M1 macrophages and activated and
resting mast cells (Figure 6B). In GSE32591-GLOM, memory
B cells, naïve B cells, activated and resting dendritic cells, and
eosinophils were significantly different (p < 0.05, Figure 6C),
with memory and naïve B cells exhibiting significant
correlations with key gene expression levels (Figure 6D). For
GSE113342-TUB, significant differences were observed in the
content of M1 and M2 macrophages, activated and resting mast
cells, and monocytes (p < 0.05, Figure 6E); M1 macrophages and
resting mast cells also demonstrated significant correlations
with key gene expression levels (Figure 6F). Last, in
GSE113342-GLOM, notable differences were detected in the

levels of activated mast cells, resting mast cells, monocytes,
neutrophils, and activated NK cells (p < 0.05, Figure 6G), with
significant correlations between resting mast cells, monocytes,
and multiple key genes.

3.6 Validation of IRF8 and levels of its
related genes

Recent study have demonstrated that 18-week-old MRL/lpr
mice displayed glomerular swelling and significant kidney
inflammatory cell infiltration (Chen et al., 2023).
Consequently, we assessed IRF8 expression levels in the
kidneys of these mice using qRT-PCR and Western blot
analysis (Figures 7A–C). The results showed that both gene
and protein expression levels of IRF8 were significantly
elevated in the kidneys of 18-week-old MRL/lpr mice
compared to control mice. Additionally, we used qRT-PCR to
evaluate the expression of C1qa, Tollip, and Itgb2 (Figures
7D–F). Our findings revealed that C1qa and Itgb2 expression
levels were significantly upregulated, while Tollip showed no
significant difference in the kidneys of 18-week-old MRL/lpr
mice compared to control mice.

FIGURE 7
Validation of IRF8 Expression and Its Related Genes. (A) qRT-PCR validation for Irf8 (n = 5). (B)Western blot validation for IRF8 expression (n = 4). (C)
The quantification of the Western blot bands of IRF8. (D) qRT-PCR validation for C1qa (n = 5). (E) qRT-PCR validation for Tollip (n = 5). (F) qRT-PCR
validation for Itgb2 (n = 5). Significance levels are denoted as follows: *p < 0.05, **p < 0.01, ****p < 0.0001, with ‘ns’ indicating no significant difference.
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3.7 Analysis of drug regulatory network in LN

The relationship between the biomarkers and drugs is presented
in Figure 8. We identified several drugs targeting multiple genes
integral to the disease pathway. Calcium ions (Ca2+),
carbenoxolone, flufenamic acid, and octanol interacted with
genes C2 and C3, suggesting a mechanism by which these drugs
may influence the complement system, essential for immune
responses. Similarly, clozapine targeted HLA-DPB1 and C3,
potentially indicating its role in modulating immune functions
and inflammatory responses. Furthermore, colchicine interacted
with ITGB2 and RORC, underscoring its potential to regulate
cellular adhesion processes and immune cell differentiation
pathways. These insights suggest that these drugs may play a
significant role in comprehensive strategies to treat conditions
involving these critical pathways.

4 Discussion

LN affects ≤40% of all adults and ≤80% of all children with SLE
and causes irreversible kidney damage. However, its pathogenesis is
unclear, and no specific or sensitive biomarkers exist for its diagnosis
or treatment. In clinical trials, only 30%–50% of patients enter

remission, and 10%–20% develop ESRD within 10 years of diagnosis
(Maria and Davidson, 2020). Therefore, it is vital to understand the
pathology andmolecular mechanisms underlying LN for its effective
diagnosis and treatment. Microarray and bioinformatics analyses
can clarify the molecular mechanisms underlying disease occurrence
and development. In our study, by intersecting the DEGs across the
datasets, we identified 20 co-DEGs. Further intersecting IRF8-
related genes with these co-DEGs led us to identify 11 key genes.
IRF8 was significantly upregulated in both GLOM and TUB groups.
As a key transcription factor, IRF8 is vital for innate and adaptive
immunity and contributes to cytokine production, particularly in
the type I interferon pathway. These cytokines may lead to aberrant
immune cell activation, resulting in the chronic inflammation
commonly observed in SLE (Salloum and Niewold, 2011).
Moreover, variations in the IRF8 gene increase susceptibility to
SLE by regulating immune responses to environmental triggers
(Cunninghame Graham et al., 2011; Lin et al., 2015; Sheng et al.,
2015; Cai et al., 2017). This gene association highlights the potential
of IRF8 as a biomarker for assessing SLE risk and disease
progression. However, despite substantial research into the role
of IRF8 in SLE, few studies have explored its involvement in LN,
and its function in LN remains unclear. The complement system
also plays a crucial role in SLE pathogenesis, particularly
components such as C1QA, C1QB, C2, and C3, which are

FIGURE 8
Drugs influencing hub gene expression or function.
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essential for clearing apoptotic debris and immune complexes,
thereby reducing autoimmunity and systemic inflammation
(Mitchell et al., 2002; Sun-Tan et al., 2010; Carlucci et al., 2016).
Genetic polymorphisms in C1QA and C1QB have been associated
with increased SLE susceptibility, affecting serum C1q levels and
disease severity. The rs631090 SNP in the C1QB gene is linked to
SLE, leading to lower C1q levels, which may result in inefficient
clearance of immune complexes and apoptotic cells (Martens et al.,
2009). C2 and C3 are key complement system components and are
integral to the classical and alternative pathways. C2 deficiency
impairs immune complex clearance and increases SLE risk
(Lundtoft et al., 2022). Serum C3 levels are significantly heritable
and identifies specific genetic variants within the C3 gene associated
with both serum levels and SLE susceptibility (Rhodes et al., 2009).
In our analysis, the enrichment of the complement and coagulation
cascade pathways further supports the critical role of the
complement system in SLE. Complement factor H (CFH)
primarily regulates the alternative complement pathway and
prevents uncontrolled complement activation and tissue damage.
Studies have demonstrated that CFH deficiency models exhibit
severe disease progression, with increased proteinuria, elevated
BUN levels, and significant kidney damage due to uncontrolled
complement activity and immune complex deposition. Despite their
crucial role, cross-population genetic studies suggest that individual
genetic variations may not significantly affect disease susceptibility
or progression (Bao et al., 2011; Li Q.-Y. et al., 2023; Ma et al., 2023).
Retinoic acid-related orphan receptor C (RORC) primarily
functions in Th17 cell differentiation and may contribute to SLE
pathogenesis by regulating interleukin (IL)-17 production. RORC
expression is lower in patients with SLE compared to healthy
individuals, suggesting an imbalance in immune regulation,
particularly in the interaction between IL-23 and STAT3, which
may influence clinical symptoms and treatment outcomes in SLE
(El-Karaksy et al., 2016; Kluger et al., 2017). The ITGB2 gene
encodes the β2 integrin subunit, a key component of the
β2 integrin family that promotes cell adhesion and immune
responses (Li H. et al., 2023). Membrane metalloendopeptidase,
also known as neprilysin, is involved in various physiological and
pathological processes, including cancer and autoimmune diseases
(Ding et al., 2023). HLA-DPB1 alleles are associated with SLE and
specific autoantibodies. Some studies have found that certain HLA-
DPB1 alleles are related to anticardiolipin and anti-β2 glycoprotein I
antibodies, suggesting their involvement in autoimmune responses.
Additionally, these alleles are associated with specific clinical
features of SLE, such as livedo reticularis and Raynaud’s
phenomenon, further contributing to the clinical diversity of the
disease (Korioth et al., 1992; Sebastiani et al., 2003). To date, no
studies have investigated the relationship between BST1 and
TOLLIP genes and SLE.

By integrating IRF8-related genes with the co-DEGs, we
identified 11 key genes and assessed their potential as diagnostic
markers for LN using the random forest algorithm in WEKA, based
on the GSE32591-GLOM dataset. We tested the diagnostic classifier
on three independent datasets with AUC values of 0.738, 0.929, and
0.914 for GSE32591-TUB, GSE113342-GLOM, and GSE113342-
TUB, respectively. These results indicate that this method can
effectively distinguish the disease. Additionally, the diagnostic

significance of IRF8 was confirmed, with AUC values ranging
from 0.744 to 0.877 across the different datasets.

We further explored the effect of co-DEGs on immune
infiltration in LN. The analysis of immune cell variations
between the LN and control groups revealed significant
differences. B cells are integral to the pathogenesis of SLE,
primarily through autoantibody production, antigen presentation,
and immune response modulation. Abnormalities in B-cell
tolerance, signaling, and cytokine production contribute to
atypical B-cell activation and differentiation, advancing disease
progression (Yap and Chan, 2019). Macrophages and dendritic
cells are essential for SLE, specifically in the LN. Macrophages
originate from monocytes and are crucial for phagocytosis, tissue
remodeling, and cytokine production. In LN, renal macrophages,
particularly the resident F4/80hi population, proliferate and assume
an inflammatory phenotype that causes tissue damage and fibrosis.
Efficient antigen-presenting dendritic cells infiltrate the kidneys and
form tertiary lymphoid structures, exacerbating the local
inflammation. The disrupted functions of these cell types in SLE
heighten immune responses and impede resolution; therefore, they
are identified as primary targets for therapeutic strategies to preserve
renal function and mitigate disease progression (Maria and
Davidson, 2017).

This study, primarily focused on validating the differential
expression of the IRF8 gene in lupus mouse models, encounters
several limitations. It does not include validation in human tissues
nor does it explore the specific roles of the IRF8 gene in LN.
Additionally, the tissue sample size is insufficient, requiring
enlargement to more robustly confirm and generalize the
findings. Lastly, the conclusions of the study are based exclusively
on a single type of omics analysis, which might overlook essential
biological interactions and pathways that could be uncovered
through a comprehensive multi-omics approach.

5 Conclusion

In conclusion, this study has successfully identified IRF8 and
IRF8-related genes that possess significant diagnostic value for LN.
This research provides novel insights into the diagnosis and
treatment of LN and lays a solid foundation for future empirical
investigations.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

The animal study was approved by Institutional Animal Care
and Use Committee of Fudan University. The study was conducted
in accordance with the local legislation and institutional
requirements.

Frontiers in Pharmacology frontiersin.org12

Yu et al. 10.3389/fphar.2024.1468323

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1468323


Author contributions

ZY: Writing–original draft, Writing–review and editing. CZ:
Writing–review and editing. YW: Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of
the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher, the
editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by
the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2024.1468323/
full#supplementary-material

References

Alduraibi, F. K., and Tsokos, G. C. (2024). Lupus nephritis biomarkers: a critical
review. IJMS 25, 805. doi:10.3390/ijms25020805

Almaani, S., Meara, A., and Rovin, B. H. (2017). Update on lupus nephritis. Clin.
J. Am. Soc. Nephrol. 12, 825–835. doi:10.2215/CJN.05780616

Bao, L., Haas, M., and Quigg, R. J. (2011). Complement factor H deficiency accelerates
development of lupus nephritis. J. Am. Soc. Nephrol. 22, 285–295. doi:10.1681/ASN.
2010060647

Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., et al.
(2007). NCBI GEO: mining tens of millions of expression profiles--database and tools
update. Nucleic Acids Res. 35, D760–D765. doi:10.1093/nar/gkl887

Bethunaickan, R., Berthier, C. C., Ramanujam, M., Sahu, R., Zhang, W., Sun, Y., et al.
(2011). A unique hybrid renal mononuclear phagocyte activation phenotype in murine
systemic lupus erythematosus nephritis. J. Immunol. 186, 4994–5003. doi:10.4049/
jimmunol.1003010

Brieuc, M. S. O., Waters, C. D., Drinan, D. P., and Naish, K. A. (2018). A practical
introduction to Random Forest for genetic association studies in ecology and evolution.
Mol. Ecol. Resour. 18, 755–766. doi:10.1111/1755-0998.12773

Cai, X., Huang, W., Liu, X., Wang, L., and Jiang, Y. (2017). Association of novel
polymorphisms in TMEM39A gene with systemic lupus erythematosus in a
Chinese Han population. BMC Med. Genet. 18, 43. doi:10.1186/s12881-017-
0405-8

Carlucci, F., Ishaque, A., Ling, G. S., Szajna, M., Sandison, A., Donatien, P., et al.
(2016). C1q modulates the response to TLR7 stimulation by pristane-primed
macrophages: implications for pristane-induced lupus. J. Immunol. 196, 1488–1494.
doi:10.4049/jimmunol.1401009

Chen, H., and Boutros, P. C. (2011). VennDiagram: a package for the generation of
highly-customizable Venn and Euler diagrams in R. BMC Bioinforma. 12, 35. doi:10.
1186/1471-2105-12-35

Chen, Q., Xiang, M., Gao, Z., Lvu, F., Sun, Z., Wang, Y., et al. (2023). The role of B-cell
ferroptosis in the pathogenesis of systemic lupus erythematosus. Clin. Immunol. 256,
109778. doi:10.1016/j.clim.2023.109778

Cotto, K. C., Wagner, A. H., Feng, Y.-Y., Kiwala, S., Coffman, A. C., Spies, G., et al.
(2018). DGIdb 3.0: a redesign and expansion of the drug–gene interaction database.
Nucleic Acids Res. 46, D1068–D1073. doi:10.1093/nar/gkx1143

Cunninghame Graham, D. S., Morris, D. L., Bhangale, T. R., Criswell, L. A., Syvänen,
A.-C., Rönnblom, L., et al. (2011). Association of NCF2, IKZF1, IRF8, IFIH1, and
TYK2 with systemic lupus erythematosus. PLoS Genet. 7, e1002341. doi:10.1371/
journal.pgen.1002341

Davis, S., and Meltzer, P. S. (2007). GEOquery: a bridge between the gene expression
Omnibus (GEO) and BioConductor. Bioinformatics 23, 1846–1847. doi:10.1093/
bioinformatics/btm254

Ding, J., Li, C., Shu, K., Chen, W., Cai, C., Zhang, X., et al. (2023). Membrane
metalloendopeptidase (MME) is positively correlated with systemic lupus
erythematosus and may inhibit the occurrence of breast cancer. PLoS ONE 18,
e0289960. doi:10.1371/journal.pone.0289960

El-Karaksy, S. M., Raafat, H. A., Abadir, M. N. Y., and Hanna, M. O. F. (2016). Down-
regulation of expression of retinoid acid-related orphan receptor C (RORC) in systemic
lupus erythematosus. J. Recept. Signal Transduct. 36, 207–212. doi:10.3109/10799893.
2015.1075042

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 28, 27–30. doi:10.1093/nar/28.1.27

Kluger, M. A., Nosko, A., Ramcke, T., Goerke, B., Meyer, M. C., Wegscheid, C., et al.
(2017). RORγt expression in Tregs promotes systemic lupus erythematosus via IL-17
secretion, alteration of Treg phenotype and suppression of Th2 responses. Clin.
Exp. Immunol. 188, 63–78. doi:10.1111/cei.12905

Kong, J., Li, L., Zhimin, L., Yan, J., Ji, D., Chen, Y., et al. (2019). Potential protein
biomarkers for systemic lupus erythematosus determined by bioinformatics analysis.
Comput. Biol. Chem. 83, 107135. doi:10.1016/j.compbiolchem.2019.107135

Korioth, F., Hartung, K., Deicher, H., and Frey, J. (1992). A new HLA-DPB1 allele
from a patient with systemic lupus erythematosus. Tissue Antigens 39, 216–219. doi:10.
1111/j.1399-0039.1992.tb01938.x

Li, H., Zhang, X., Shang, J., Feng, X., Yu, L., Fan, J., et al. (2023a). Identification of
NETs-related biomarkers and molecular clusters in systemic lupus erythematosus.
Front. Immunol. 14, 1150828. doi:10.3389/fimmu.2023.1150828

Li, Q.-Y., Lv, J.-M., Liu, X.-L., Li, H.-Y., and Yu, F. (2023b). Association of C-reactive
protein and complement factor H gene polymorphisms with risk of lupus nephritis in
Chinese population.World J. Clin. Cases 11, 2934–2944. doi:10.12998/wjcc.v11.i13.2934

Lin, J., Wang, Y., Liu, C., Lin, Y., Lin, J., Lin, Y., et al. (2015). Association of IRF 8 gene
polymorphisms with autoimmune thyroid disease. Eur. J. Clin. Investig. 45, 711–719.
doi:10.1111/eci.12463

Lundtoft, C., Sjöwall, C., Rantapää-Dahlqvist, S., Bengtsson, A. A., Jönsen, A.,
Pucholt, P., et al. (2022). Strong association of combined genetic deficiencies in the
classical complement pathway with risk of systemic lupus erythematosus and primary
sjögren’s syndrome. Arthritis and Rheumatology 74, 1842–1850. doi:10.1002/art.42270

Ma, Z., Mao, C., Jia, Y., Yu, F., Xu, P., Tan, Y., et al. (2023). ADAMTS7-Mediated
complement factor H degradation potentiates complement activation to contributing to
renal injuries. Clin. J. Am. Soc. Nephrol. 34, 291–308. doi:10.1681/ASN.
0000000000000004

Maag, J. L. V. (2018). gganatogram: an R package for modular visualisation of
anatograms and tissues based on ggplot2. F1000Res 7, 1576. doi:10.12688/
f1000research.16409.2

Maria, N. I., and Davidson, A. (2017). Renal macrophages and dendritic cells in SLE
nephritis. Curr. Rheumatol. Rep. 19, 81. doi:10.1007/s11926-017-0708-y

Maria, N. I., and Davidson, A. (2020). Protecting the kidney in systemic lupus
erythematosus: from diagnosis to therapy. Nat. Rev. Rheumatol. 16, 255–267. doi:10.
1038/s41584-020-0401-9

Martens, H. A., Zuurman,M.W., De Lange, A. H. M., Nolte, I. M., Van Der Steege, G.,
Navis, G. J., et al. (2009). Analysis of C1q polymorphisms suggests association with
systemic lupus erythematosus, serum C1q and CH50 levels and disease severity. Ann.
Rheum. Dis. 68, 715–720. doi:10.1136/ard.2007.085688

Mejia-Vilet, J. M., Parikh, S. V., Song, H., Fadda, P., Shapiro, J. P., Ayoub, I., et al.
(2019). Immune gene expression in kidney biopsies of lupus nephritis patients at
diagnosis and at renal flare. Nephrol. Dial. Transplant. 34, 1197–1206. doi:10.1093/ndt/
gfy125

Mitchell, D. A., Pickering, M. C., Warren, J., Fossati-Jimack, L., Cortes-Hernandez, J.,
Cook, H. T., et al. (2002). C1q deficiency and autoimmunity: the effects of genetic
background on disease expression. J. Immunol. 168, 2538–2543. doi:10.4049/jimmunol.
168.5.2538

Frontiers in Pharmacology frontiersin.org13

Yu et al. 10.3389/fphar.2024.1468323

https://www.frontiersin.org/articles/10.3389/fphar.2024.1468323/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2024.1468323/full#supplementary-material
https://doi.org/10.3390/ijms25020805
https://doi.org/10.2215/CJN.05780616
https://doi.org/10.1681/ASN.2010060647
https://doi.org/10.1681/ASN.2010060647
https://doi.org/10.1093/nar/gkl887
https://doi.org/10.4049/jimmunol.1003010
https://doi.org/10.4049/jimmunol.1003010
https://doi.org/10.1111/1755-0998.12773
https://doi.org/10.1186/s12881-017-0405-8
https://doi.org/10.1186/s12881-017-0405-8
https://doi.org/10.4049/jimmunol.1401009
https://doi.org/10.1186/1471-2105-12-35
https://doi.org/10.1186/1471-2105-12-35
https://doi.org/10.1016/j.clim.2023.109778
https://doi.org/10.1093/nar/gkx1143
https://doi.org/10.1371/journal.pgen.1002341
https://doi.org/10.1371/journal.pgen.1002341
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1371/journal.pone.0289960
https://doi.org/10.3109/10799893.2015.1075042
https://doi.org/10.3109/10799893.2015.1075042
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1111/cei.12905
https://doi.org/10.1016/j.compbiolchem.2019.107135
https://doi.org/10.1111/j.1399-0039.1992.tb01938.x
https://doi.org/10.1111/j.1399-0039.1992.tb01938.x
https://doi.org/10.3389/fimmu.2023.1150828
https://doi.org/10.12998/wjcc.v11.i13.2934
https://doi.org/10.1111/eci.12463
https://doi.org/10.1002/art.42270
https://doi.org/10.1681/ASN.0000000000000004
https://doi.org/10.1681/ASN.0000000000000004
https://doi.org/10.12688/f1000research.16409.2
https://doi.org/10.12688/f1000research.16409.2
https://doi.org/10.1007/s11926-017-0708-y
https://doi.org/10.1038/s41584-020-0401-9
https://doi.org/10.1038/s41584-020-0401-9
https://doi.org/10.1136/ard.2007.085688
https://doi.org/10.1093/ndt/gfy125
https://doi.org/10.1093/ndt/gfy125
https://doi.org/10.4049/jimmunol.168.5.2538
https://doi.org/10.4049/jimmunol.168.5.2538
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1468323


Newman, A. M., Steen, C. B., Liu, C. L., Gentles, A. J., Chaudhuri, A. A., Scherer,
F., et al. (2019). Determining cell-type abundance and expression from bulk tissues
with digital cytometry. Nat. Biotechnol. 37 (7), 773–782. doi:10.1038/s41587-019-
0114-2

Rhodes, B., Hunnangkul, S., Morris, D. L., Hsaio, L.-C., Cunninghame Graham,
D. S., Nitsch, D., et al. (2009). The heritability and genetics of complement
C3 expression in UK SLE families. Genes Immun. 10, 525–530. doi:10.1038/
gene.2009.23

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 43, e47. doi:10.1093/nar/gkv007

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., et al. (2011).
pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC
Bioinforma. 12, 77. doi:10.1186/1471-2105-12-77

Salloum, R., and Niewold, T. B. (2011). Interferon regulatory factors in human lupus
pathogenesis. Transl. Res. 157, 326–331. doi:10.1016/j.trsl.2011.01.006

Sebastiani, G. D., Galeazzi, M., Tincani, A., Scorza, R., Mathieu, A., Passiu, G., et al.
(2003). HLA-DPB1 alleles association of anticardiolipin and anti-beta2GPI antibodies
in a large series of European patients with systemic lupus erythematosus. Lupus 12,
560–563. doi:10.1191/0961203303lu402oa

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al.
(2003). Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res. 13, 2498–2504. doi:10.1101/gr.1239303

Sheng, Y., Xu, J., Wu, Y., Zuo, X., Gao, J., Lin, Y., et al. (2015). Association
analyses confirm five susceptibility loci for systemic lupus erythematosus in the
Han Chinese population. Arthritis Res. Ther. 17, 85. doi:10.1186/s13075-015-
0602-9

Sun-Tan, Ç., Özgür, T. T., Kılınç, G., Topaloğlu, R., Gököz, Ö., Ersoy-Evans, S., et al.
(2010). Hereditary C1q deficiency: a new family with C1qA deficiency. Turkish
J. Pediatr. 52, 184–186.

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and Feuston, B. P.
(2003). Random forest: a classification and regression tool for compound classification
and qsar modeling. J. Chem. Inf. Comput. Sci. 43, 1947–1958. doi:10.1021/ci034160g

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al.
(2019). STRING v11: protein–protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic Acids
Res. 47, D607–D613. doi:10.1093/nar/gky1131

Udhaya Kumar, S., Thirumal Kumar, D., Siva, R., George Priya Doss, C., Younes, S.,
Younes, N., et al. (2020). Dysregulation of signaling pathways due to differentially
expressed genes from the B-cell transcriptomes of systemic lupus erythematosus
patients – a bioinformatics approach. Front. Bioeng. Biotechnol. 8, 276. doi:10.3389/
fbioe.2020.00276

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler 4.0: a
universal enrichment tool for interpreting omics data. Innovation 2, 100141. doi:10.
1016/j.xinn.2021.100141

Wu, W.-J., Tan, Y., Liu, X.-L., Yu, F., and Zhao, M.-H. (2020). C1q A08 is a half-
cryptic epitope of anti-C1q A08 antibodies in lupus nephritis and important for the
activation of complement classical pathway. Front. Immunol. 11, 848. doi:10.3389/
fimmu.2020.00848

Yang, H., and Li, H. (2019). CD36 identified by weighted gene co-expression network
analysis as a hub candidate gene in lupus nephritis. PeerJ 7, e7722. doi:10.7717/peerj.7722

Yap, D. Y. H., and Chan, T. M. (2019). B cell abnormalities in systemic lupus
erythematosus and lupus nephritis—role in pathogenesis and effect of
immunosuppressive treatments. IJMS 20, 6231. doi:10.3390/ijms20246231

Frontiers in Pharmacology frontiersin.org14

Yu et al. 10.3389/fphar.2024.1468323

https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/gene.2009.23
https://doi.org/10.1038/gene.2009.23
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1016/j.trsl.2011.01.006
https://doi.org/10.1191/0961203303lu402oa
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/s13075-015-0602-9
https://doi.org/10.1186/s13075-015-0602-9
https://doi.org/10.1021/ci034160g
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.3389/fbioe.2020.00276
https://doi.org/10.3389/fbioe.2020.00276
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.3389/fimmu.2020.00848
https://doi.org/10.3389/fimmu.2020.00848
https://doi.org/10.7717/peerj.7722
https://doi.org/10.3390/ijms20246231
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1468323

	Comprehensive analysis of IRF8-related genes and immune characteristics in lupus nephritis
	1 Introduction
	2 Materials and method
	2.1 Data download
	2.2 Co-differentially expressed genes (DEGs)
	2.3 co-DEG function and pathway enrichment analysis
	2.4 Protein-protein interaction (PPI) network construction
	2.5 Diagnostic prediction, model construction, and verification
	2.6 Immune infiltration analysis
	2.7 Mice
	2.8 Quantitative real-time polymerase chain reaction (qRT-PCR)
	2.9 Western blot
	2.10 Regulatory networks and target drugs of hub genes
	2.11 Statistical analysis

	3 Results
	3.1 Co-DEGs
	3.2 Functional enrichment analysis of co-DEGs
	3.3 Construction of PPI network and module extraction
	3.4 Characteristic gene screening and diagnostic value assessment
	3.5 CIBERSORT immune infiltration analysis
	3.6 Validation of IRF8 and levels of its related genes
	3.7 Analysis of drug regulatory network in LN

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


