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Carbapenem-resistant (CR) Gram-negative bacteria have become a significant
public health problem in the last decade. In recent years, the prevalence of CR
bacteria has increased. The resistance to carbapenems could result from different
mechanisms such as loss of porin, penicillin-binding protein alteration,
carbapenemase, efflux pump, and biofilm community. Additionally, genetic
variations like insertion, deletion, mutation, and post-transcriptional
modification of corresponding coding genes could decrease the susceptibility
of bacteria to carbapenems. In this regard, scientists are looking for new
approaches to inhibit CR bacteria. Using bacteriophages, natural products,
nanoparticles, disulfiram, N-acetylcysteine, and antimicrobial peptides showed
promising inhibitory effects against CR bacteria. Additionally, the mentioned
compounds could destroy the biofilm community of CR bacteria. Using them
in combination with conventional antibiotics increases the efficacy of antibiotics,
decreases their dosage and toxicity, and resensitizes CR bacteria to antibiotics.
Therefore, in the present review article, we have discussed different aspects of
non-antibiotic approaches for managing and inhibiting the CR bacteria and
various methods and procedures used as an alternative for carbapenems
against these bacteria.
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1 Introduction

The spread of multidrug-resistant (MDR) bacteria is one of the most severe
challenges to global health, raising questions about managing these pathogens
(Moghadam et al., 2020; Tompkins and van Duin, 2021). Carbapenem resistance in
Gram-negative pathogens provides a unique therapeutic problem, as carbapenems have
long been regarded as the most productive and strong medicines against MDR Gram-
negative pathogens (Doi, 2019). Carbapenems are considered the first line of treatment
for infections caused by resistant bacteria, such as Klebsiella pneumonia, Acinetobacter
baumannii, Escherichia coli, and Pseudomonas aeruginosa (Aurilio et al., 2022). Once
regarded as the “last resort” antibiotics in many hospitals, this family is a powerful class
of broad-spectrum antibiotics that inhibit penicillin-binding proteins, preventing the
formation of cell walls (Papp-Wallace et al., 2011). Carbapenem-resistant (CR) bacteria
are defined by the United States Centers for Disease Control and Prevention (CDC) as
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having in vitro resistance to at least one carbapenem (Tompkins
and van Duin, 2021). Compared to drug-susceptible infections,
the higher mortality, hospital stay duration, and CR bacteria
expense make them a specific health concern (Zilberberg et al.,
2017; Martin et al., 2018). Patients most susceptible to CR
bacterial infections include those with underlying conditions
and those with indwelling catheters or permanent devices
(Voor in ‘t holt et al., 2014; Igbinosa et al., 2020). The
carbapenem resistance can be mediated via increases in efflux
pump expression, alteration of antibiotic binding targets,
decreased membrane permeability and mutation or deletion of
pore proteins, and finally, carbapenemase enzymes (Ruppé et al.,
2015; Tompkins and van Duin, 2021). Carbapenemases are a
diverse family of β-lactamases that have the power to hydrolyze
and inactive several antibiotics, including carbapenems,
cephalosporins, penicillins, and monobactam. (Tompkins and
van Duin, 2021).

The conventional antibiotics that still have anti-CR activity,
novel β-lactam-β-lactamase inhibitor combinations that have
recently entered the market, and novel aminoglycosides,
tetracyclines, and cephalosporins are just a few of the treatment
classes that are currently available to treat CR infections (Tompkins
and van Duin, 2021). Additionally, combinations of CR-active
antibiotics with antibiotics with different mechanisms of action
or with “repurposed” medicines from other classes have also
shown some promise in treating CR infections (Peyclit et al.,
2019). For instance, in vitro research demonstrates the
effectiveness of mixing colistin with other antibiotics like
clarithromycin, rifamycin, or the HIV medication azidothymidine
to treat CR bacteria that are also colistin resistant (MacNair et al.,
2018). Azidothymidine with tigecycline, pentamidine combined
with tigecycline, rifampicin, amikacin, or tobramycin, and
polymyxin B combined with sertraline, citalopram, or
spironolactone are further combinations that have demonstrated
in vitro efficacy against CR bacteria (Cebrero-Cangueiro et al., 2018).
However, additional animal studies and clinical trials are required to
determine the exact efficacy of these combination treatments in
actual clinical infections; consequently, the utility of these
combination regimens is currently speculative.

Therefore, antibiotic-based approaches were used in recently
published studies to inhibit CR bacteria. However, antibiotics could
lead to fatal side effects in patients. For instance, an inherent
drawback of the extensive utilization of colistin is the elevated
prevalence of toxicity, including renal and neurotoxicity,
neuromuscular blockade, and occasionally fatal outcomes
(Bialvaei and Samadi Kafil, 2015). Additionally, studies reported
the quick spread of resistance to the newer CR-active antibiotics. For
instance, a recently published study reported that while the general
susceptibility to ceftazidime-avibactam is strong, there have been
seen mutations that lead to resistance, particularly in bacteria
carrying Klebsiella pneumoniae carbapenemase (KPC)-2 and
KPC-3 enzymes (Hernández-García et al., 2021). To this end,
researchers have considered non-antibiotic approaches, such as
bacteriophages, natural products and compounds, nanoparticles,
etc., for managing CR bacteria. In this regard, this review study aims
to examine and discuss the use of the mentioned alternative
solutions for inhibiting CR bacteria and destroying their
biofilm community.

2 Phage therapy

Bacteriophages, or phages, are viruses that can kill bacteria
without hurting eukaryotic cells. How bacteria become resistant
to phages differs from how they become resistant to antibiotics.
Because of this, phages have been used to treat MDR bacteria.
Additionally, phage-antibiotic combination therapy may make
antibiotic-resistant bacteria susceptible again to conventional
antibiotics (Hagens et al., 2006; Chan et al., 2016). Bacteria could
be killed more efficiently by a phage cocktail, mixing two or more
phages with different host ranges in a single culture (Gu et al., 2012;
Jaiswal et al., 2013). Phage cocktails may result in a more effective
reduction in bacterial density and an improvement in the activities
of the phages. From this perspective, earlier research has
demonstrated that phage cocktails significantly reduce bacterial
infections (Hall et al., 2012).

Recently published in vitro studies reported promising
inhibitory effects for phage against CR Gram-negative bacteria,
especially K. pneumoniae, A. baumannii, and P. aeruginosa
(Table 1). Notably, phages have unwanted traits, including
harboring drug resistance and virulence genes that limit their
therapeutic application. In this regard, whole-genome sequencing
is required to assess the phage genome for antibiotic resistance,
toxin, virulence-associated genes, or lysogen-forming gene clusters.
Furthermore, phage activity and stability are significantly influenced
by the temperature at which they are stored. As a result, different
pH and temperature ranges should be used to investigate the
inhibitory action of phages. Moreover, phages’ antibacterial
effectiveness in clinical situations is enhanced by their high
adsorption rate and huge burst size (Mahichi et al., 2009; Li
et al., 2020). Collectively, as mentioned, in addition to genome
analysis, different characteristics, such as strong lytic activity,
relatively broad host range, and high stability, should be
evaluated in vitro phage studies.

Because the biofilm community is one of the most significant
problems in treating CR bacterial infection, phage interactions with
biofilm are an essential topic in vitro investigation. Due to the
inability of antibiotics to penetrate the complex polysaccharide
matrix (glycocalyx) of biofilms, they are 10–1,000 times more
resistant to antibiotics than planktonic organisms. To that
purpose, recent research found that phages could limit biofilm
formation and remove the mature biofilm of CR bacteria (Wu
et al., 2019; Santiago et al., 2020; Mulani et al., 2022). Notably,
phages can enter the biofilm and obliterate its structure by triggering
the production of enzymes such as polysaccharide depolymerase.
Besides, this enzyme can specifically destroy the host bacterial
envelope’s macromolecule carbohydrates (Yan et al., 2014). The
findings of the experiments showed that natural lytic phage can
diminish the biofilm community of CR bacteria by phage-induced
lysis and exopolysaccharide degradation (Vukotic et al., 2020; Hao
et al., 2021; Li J. et al., 2021; Li M. et al., 2021).

Depolymerase pretreatment of the biofilm followed by other
antibacterial agents may be a viable alternative for managing
bacterial biofilm. In a study, the scientists managed the MDR K.
pneumonia biofilm using ciprofloxacin, recombinant phage-
encoded enzyme, and lytic phages (producing and non-producing
depolymerase). The results demonstrated that ciprofloxacin and
depolymerase-producing phage were the most effective antibiofilm
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combination against bacterial biofilm (Latka and Drulis-Kawa,
2020). Additionally, Wu et al. reported that depolymerase could
enhance the polymixin activity against K. pneumoniae biofilms
when combined with antibiotics (Wu et al., 2019). Besides,
another experiment showed that capsule depolymerase could

make CR K. pneumoniae fully susceptible to the killing effect of
serum complement (Liu Y. et al., 2020). Therefore, phage
depolymerase should be considered for managing CR K.
pneumoniae biofilm; however, more confirmatory studies
are required.

TABLE 1 The activities of phages against carbapenems-resistant bacteria.

Year of
publication

Phage CR-bacteria Outcome References

2015 BΦ-R3177 A. baumannii This phage showed high stability and lytic activity against
host bacteria

Jeon et al. (2015)

2016 BΦ-C62 A. baumannii This phage managed intranasal bacterial challenge in mice
and removed bacteria from the lung after 3 days

Jeon et al. (2016)

2017 ϕBO1E K. pneumoniae clade II
lineage of CG258

This phage showed strict specificity for targeted bacteria and
protected larvae from death following bacterial infection

D’Andrea et al. (2017)

2018 WCHABP1 and
WCHABP12

A. baumannii Phage therapy was effective in treating infections in the G.
mellonella larvae model

Zhou et al. (2018)

2018 vB_Kpn_F48 K. pneumoniae Sequence
Type 101

This phage showed a short latent period, a narrow host range,
and a low burst size

Ciacci et al. (2018)

2019 vB_EaeM_0Eap-3 Enterobacter aerogenes This phage showed an inhibitory effect against 18 of the
28 tested bacteria

Zhao et al. (2019)

2019 Henu1 K. pneumoniae This phage-infected bacteria strains with the capsular types
K-1, K-2, and K-57

Teng et al. (2019)

2019 Phage 117 and phage 31 K. pneumoniae sequence
type 11

The phage cocktail indicated higher antibacterial function
than phage 117 alone in LB culture

Tan et al. (2019)

2020 P509 K. pneumoniae This phage at different MOIs decreased the number of
bacteria

Li et al. (2020)

2020 vB_KpnP_IME337 K. pneumoniae This phage exhibited an infection lifetime of approximately
90 min, with a latent period of 10 min. Additionally, it
showed a high degree of specificity towards the host strain

Gao et al. (2020)

2020 kpssk3 K. pneumoniae This phage was able to lyse 92.59% of clinically isolated
bacteria

Shi et al. (2020)

2020 vB_KpnS_Kp13 K. pneumoniae
K24 capsular type

This phage was effective against all VIM-producing bacteria Horváth et al. (2020)

2021 BUCT556A K. pneumoniae This phage showed lytic activity against bacteria Feng et al. (2021)

2021 TUN1 K. pneumoniae This phage indicated a narrow host range, as it could only lyse
K64 K. pneumoniae strains

Eckstein et al. (2021)

2022 vB-AbaI-TMU2 A. baumannii
P. aeruginosa
K. pneumoniae

CRA. baumanniiwas inhibited by phage therapy, while other
bacterial strains were resistant to phages

Esmaeili-Fard-Barzegar et al.
(2022)

2022 P13 K. pneumoniae This phage indicated a large lytic plaque after overnight
coculture with its host bacteria

Fang and Zong (2022)

2022 Eight different phages K. pneumoniae All of the phages significantly decreased the number of
bacteria

Baqer et al. (2022)

2023 Abp95 A. baumannii The phage showed a beneficial effect on wound healing in a
diabetic mouse wound infection model by effectively
eliminating local infections

Huang et al. (2023a)

2023 vB_PseuP-SA22 P. aeruginosa This phage decreased the number of live bacteria (five logs) in
the biofilm community

Teklemariam et al. (2023)

2023 vB_KpnS_SXFY507 K. pneumoniae This phage showed antibacterial activity and increased
Galleria mellonella larvae survival rate after infection

Feng et al. (2023)

2023 vB_KshKPC-M K. pneumoniae This phage showed high killing activity against planktonic
and biofilm forms of bacteria

Mohammadi et al. (2023)

CR: carbapenems-resistant. MOI: Multiplicity of infection. VIM: Verona integron-encoded metallo-β-lactamase. LB: luria broth.
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The combination of phages with antibiotics was also used to
manage CR bacteria. For instance, in 2022, a study’s findings
demonstrated that combining a two-phage cocktail and
imipenem effectively delayed carbapenemase growth-producing
K. pneumoniae (Michodigni et al., 2022). Another study reported
that combined usage of gentamycin and phage treated the mice with
acute pneumonia caused by MDR K. pneumoniae (Wang et al.,
2021). Consistent with these findings, using phage in conjunction
with colistin was more effective at preventing the growth of CR A.
baumannii than either treatment alone (Wintachai et al., 2022).

Although the precise mechanism of the interaction between
phages and antibiotics has not yet been determined, recent
investigations have indicated various potential pathways. The
sensitivity of the chosen antibiotic to the particular bacterial
strains following phage activity may cause the synergistic activity
between antibiotics and phage cocktails. Phage-resistant bacterial
strains are more vulnerable to antibiotics and develop more slowly
than wild ones. Phages particularly alter the bacterial surface
structures (outer membrane proteins, polysaccharides, etc.),
removing obstacles to the entry of various antibiotics,
demonstrating that phages have the impact of increasing bacterial
antibiotic sensitivity (Wang et al., 2021; Michodigni et al., 2022;
Wintachai et al., 2022). Notably, during the last stages of the
replication cycle, phages produce endolysins to breach the
bacterial cell wall and produce offspring virion. Endolysins
demonstrated effective inhibition of Gram-positive bacteria, but
their ability to inhibit Gram-negative bacteria was constrained by
the existence of the outer membrane (Schmelcher et al., 2012; Baliga
et al., 2022). Colistin can enhance endolysins’ capacity to overcome
the outer membrane’s impermeability (Baliga et al., 2022).

Phage-encoded depolymerases play a role in the degradation of
the host bacterium’s EPS, LPS, and capsular polysaccharides during
phage invasion. Hence, phages can dismantle the biofilm
architecture and enhance the infiltration of antibiotics into the
inner layers of the biofilm by stimulating the production of
enzymes like polysaccharide depolymerase. Therefore, antibiotic-
phage combination therapy shows potential as a treatment strategy
for controlling CR bacteria, including their biofilm population
(Hanlon, 2007).

As mentioned in the previous paragraphs, in vitro studies
reported different phages for managing CR bacteria. Moreover,
other studies evaluated the function of phages against CR
bacteria in animal studies and clinical seating. In this regard,
intraperitoneally injection of phages, controlled K. pneumoniae
infection in mice. Another study also showed that phages
distributed more rapidly into the systemic circulation via the
intraperitoneal route than the oral route (Dhungana et al., 2021;
Shi et al., 2021; Bai et al., 2022; Li et al., 2022b). Liang et al. reported
phage therapy leads to a better survival rate in mice with CR K.
pneumoniae bacteremia than ceftazidime/avibactam and tigecycline
(Liang et al., 2023). Another investigation used intra-rectal and oral
therapy with a custom-made phage to treat patients with multi-site
colonization of CR K. pneumoniae (Corbellino et al., 2020). In
addition to K. pneumoniae, phage therapy was used to manage
CR A. baumannii and P. aeruginosa infection in animal models and
clinical settings. To this end, phage therapy successfully manages CR
A. baumannii acute pneumonia and lung infection in mice (Hua
et al., 2017; Jeon et al., 2019).

Furthermore, phage therapy indicated promising results in
treating patients with CR A. baumannii lung infection (Tan
et al., 2021; Wu et al., 2021). Finally, two-phage cocktails
formulated as hydrogels inhibited CR P. aeruginosa wound
infection in animal models. Combined phages and conventional
antibiotics successfully managed patients with empyema caused by
this bacterium (Chen et al., 2022).

Therefore, in addition to in vitro studies, animal models and
preclinical studies also reported promising effects for phage therapy
against CR bacteria. Nevertheless, phages still possess constraints in
their actual implementation in clinical settings. Phage formulations
exhibit varying in vivo pharmacokinetics and pharmacodynamics
compared to antibiotic therapy. Since the preparations of different
phages have distinct biological characteristics, there are significant
variations in actual clinical applications. There is a lack of
established guidelines regarding the optimal dosage, duration,
and method of administering phage therapy, and there are no
conventional treatment protocols for phage therapy.
Furthermore, when phage preparations are made, specific
endotoxins are created that could be cytotoxic and immunogenic.
In the end, certain bacteria have acquired resistance to phage
infection through various mechanisms, including adsorption
resistance, spontaneous mutations, receptor and penetration
blocking systems, and adaptive immunity linked to CRISPR/Cas
systems (Hibstu et al., 2022). Hence, although phage therapy showed
promising effects for managing CR bacteria, the mentioned issues
should be evaluated in future studies.

3 Natural products

Research has demonstrated that plant-derived substances, such
as essential oils (EOs), extracts, and pure chemicals, substantially
impact bacteria and their biofilm community. The bioactive
constituents derived from various plant components, including
roots, leaves, and fruits, possess therapeutic characteristics and
exhibit distinct medicinal effects upon modification (Ahmad
et al., 2015; Rangel et al., 2018). To this end, recently published
studies used different natural products to inhibit CR bacteria and
their biofilm community. The exact interaction of natural products
and CR bacteria is not elucidated yet, but in this section, we will
discuss some of the most important antibacterial mechanisms of
natural products.

According to research, eugenol, a phenolic aromatic compound
primarily derived from cinnamomum and clove essential oils,
destroys the membrane integrity of CR K. pneumoniae by
producing reactive oxygen species (ROS), and glutathione
depletion, causes the leakage of bacterial cytoplasmic components
like protein, β-galactosidase, and DNA. Moreover, when eugenol
comes into contact with bacterial biofilm, the entire matrix’s
thickness diminishes, and its integrity is lost (Liu et al., 2023).
Another investigation also reported that the cell membrane of CR K.
pneumoniae was harmed by eugenol, as indicated by a drop in
intracellular ATP concentration, a reduction in intracellular pH, cell
membrane hyperpolarization, and an increase in membrane
permeability. In addition, eugenol disrupted the cellular structure
and caused the loss of internal components in CR K. pneumoniae
(Qian et al., 2020).
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Thymol and carvacrol, the main ingredients of different EOs of
various aromatic plants, also showed promising inhibitory effects
against CR bacteria. In this regard, the findings of the studies showed
that the lipophilic nature of these compounds and their
accumulation in cell membranes are related to their antibacterial
properties. This interaction inhibits electron transport for energy
production and disrupts the proton motive force, synthesis of
cellular components, and protein translocation. Cell lysis and
death may occur as a result of these physiological changes.
Lipopolysaccharide (LPS), a powerful barrier for hydrophobic
compounds, including hydrophobic antibiotics, is found in the
outer membrane of Gram-negative bacteria. Thymol and
carvacrol, lipid-based compounds made from γ-terpinene, can
assist in transporting hydrophobic antibiotics inside cells
(Nazzaro et al., 2013; Kwiatkowski et al., 2022). In line with
these results, De Souza et al., after observation of carvacrol
inhibitory effect against carbapenemase (KPC)-producing K.
pneumoniae, supposed that the inhibitory effects of carvacrol can
be attributed to its interactions with the structural and functional
properties of the cytoplasmic membrane. Carvacrol interacts with
the lipid bilayer and positions itself between fatty acid chains,
causing the expansion and destabilization of the cytoplasmic
membrane (de Souza et al., 2021). Additionally, carvacrol and
other hydrophobic substances may enter the bacterial cell’s outer
membrane pores and the periplasmic region. Carvacrol fits between
fatty acid chains because it can bind to hydrogen, letting ions leave
the cytoplasm. Cell membrane destabilization makes membranes
more fluid and cells more permeable (Amaral et al., 2020).

Phytol, a diterpenes alcohol from chlorophyll widely used as a
food additive and in medicinal fields, is also reported as the
antibiofilm agent, inhibiting exopolysaccharide production as well
as initial cell attachment, hypermucoviscosity, and curli expression
in CR K. pneumoniae (Adeosun et al., 2022b). In another
experiment, the authors used linalool to inhibit this bacterium.
The results demonstrated a notable decrease in the quantity of
cytoplasmic and membrane proteins, suggesting that the cells of
KPC- K. pneumoniae treated with linalool had damage to their
membranes. The presence of oxidative stress was confirmed by the
downregulation of proteins sensitive to oxidative stress and the
overexpression of proteins that regulate oxidative stress. The zeta
potential measurement and outer membrane permeability assay
demonstrated that linalool enhances the bacterial surface charge
and the membrane’s permeability. Linalool therapy detected
intracellular leakage of nucleic acid and proteins (Yang et al., 2021).

Finally, Yang et al. reported that cinnamomum has
antimicrobial effects on KPC- K. pneumoniae cells by disrupting
their cell membranes. Proteomic profiling reveals that the
membrane damage is caused by oxidative stress. Cinnamomum
treatment disrupted the production process of the plasma
membrane, cell wall, and outer membrane, impairing the
structural repair system. The oxidation due to this process
damages the bacterial membrane, eventually allowing ROS to
enter the cells. Simultaneously, it also causes the leakage of
intracellular contents. ROS causes genetic damage and hinders
the functioning of DNA and membrane repair mechanisms
(Yang S. K. et al., 2019). Recent investigations have collectively
demonstrated that natural products induce oxidative stress, damage
bacterial membranes, cause cellular leakage, and result in cell death.

It is noteworthy to mention that new antimicrobial agents are
required to reduce the toxicity of conventional antibiotics.
Moreover, combination therapy could enhance the efficacy of
different antibiotics (Pinto et al., 2009; Ahmad et al., 2010). In
this concept, the combined use of natural products and other
antibiotics was considered to inhibit CR bacteria and their
biofilm community. To this end, Yadav et al. reported that a
water-soluble curcumin derivative inhibited the AcrAB-TolC
efflux system in MDR K. pneumoniae by disrupting the
membrane potential and causing depolarization. Combining this
compound and meropenem was highly synergistic, reducing drug
dose regimes and toxicity (Yadav et al., 2021). In line with these
results, a study published in 2020 also reported that a combination of
colistin + curcumin showed a remarkable reversal in colistin
minimum inhibitory concentration (MIC) in Enterobacteriaceae.
Noteworthy, the authors proposed that efflux inhibition is the
primary mechanism responsible for curcumin’s synergistic and
modulation ability (Sundaramoorthy et al., 2020). It can be
concluded that curcumin can shut down the efflux system
because almost all efflux pump systems need energy (ATP) for
their functions, and the curcumin that inhibits the proton motive
force will inhibit ATP generation. Therefore, this natural compound
could improve the activity of antibiotics by targeting efflux pumps.

In another investigation, the researchers reinstate the efficacy of
carbapenem against CR K. pneumoniae by employing celastrol and
thymol. The results of this study indicate that celastrol alone did not
have an impact on meropenem-MIC, and when combined with
thymol, it only caused a 2-fold drop. However, both celastrol and
thymol resulted in a significant decrease of 4–64 folds in
meropenem-MIC. Celastrol effectively inhibited carbapenemase
activity, but its access to the target was hindered by the outer
membranes of Gram-negative bacteria, which act as a barrier to
its penetration. However, thymol exerts its effects by disrupting the
outer membranes and porins through its lipophilic action. It does
this by integrating into the polar head groups of the lipid bilayer,
which leads to changes in the permeability of the cell membrane. In
summary, thymol enhances the capacity of celastrol andmeropenem
to pass through the CR K. pneumoniae. Additionally, celastrol
suppresses carbapenemase-hydrolytic activity. Hence, thymol-
meropenem-celastrol combination therapy can efficiently kill CR
bacteria (Abdel-Halim et al., 2022).

Furthermore, a recently published study reported synergistic
effects of polymyxin B in combination with Cinnamomum cassia L.
EO (CEO) against carbapenemase-producing Serratia marcescens
and K. pneumoniae. Notably, the CEO successfully suppressed the
germs stated and achieved this suppression by combining with
polymyxin B at a lower dosage of antibiotics. It is possible to
assume that CEO caused damage to cell membranes, and this
damage destabilized the outer membrane of the carbapenemase-
producing bacteria, which then allowed polymyxin B to enter the
periplasm of the cell. As a result, the outer membrane loses its
integrity, leading to the leakage of cellular contents and ultimately
causing cell death (Vasconcelos et al., 2020).

In the end, fisetin (1; 3,7,3′,4′-tetrahydroxyflavone) is a type of
flavonoid that has been shown to have anticancer, antiangiogenic,
antiviral, anti-invasive, and anti-aging effects. These features are due
to its property of creating free radicals (Jash and Mondal, 2014).
Until now, various experiments have been conducted to measure the
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effectiveness of fisetin in treating diseases caused by bacterial
pathogens. The studies showed that fisetin has activities against
the lipopolysaccharide of Gram-negative bacteria and can reduce the
activity of pathogens in human cells. In addition, fisetin significantly
suppressed the expression of nitric oxide (NO), prostaglandin E2
(PGE2), and cytokines, such as interleukin-6 (IL-6) and tumor
necrosis factor-alpha (TNF-), which are pro-inflammatory
factors. Fisetin can also inhibit the biofilm formation of bacterial
cells such as MDR A. baumannii; however, the exact interaction of
fisetin and the biofilm community of this bacterium was not
reported (Raorane et al., 2019).

Studies reported that fisetin inhibits CR K. pneumoniae
(Adeosun et al., 2022a; Zhang et al., 2022c). One of the main

classes of beta-lactamases is OXA-48, which was identified in
Turkey in 2001 and spread worldwide. This enzyme makes the
organism resistant to carbapenems and penicillins but cannot
hydrolyze cephalosporins (Poirel et al., 2004). A study showed
that fisetin effectively restored the antibacterial efficacy of
piperacillin or imipenem against E. coli producing OXA-48,
resulting in a 2–8-fold reduction in minimum inhibitory
concentration (MIC) (Zhang et al., 2022b). In line with these
findings, Adeosun et al. introduced fisetin as the best anti-CR K.
pneumoniae, demonstrating a MIC value of 0.0625 mg/mL. This
compound inhibited curli expression, a type of fimbriae
composed of proteins called curlins and functional amyloid
surface fiber, and reduced hypermucoviscosity (Adeosun et al.,

FIGURE 1
Non-antibiotic approaches for managing carbapenem-resistant bacteria.
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2022a). Finally, a recently published study evaluated fisetin’s
effect on NDM-producing E. coli. Molecular dynamics
simulations revealed that fisetin successfully inhibits the
hydrolytic activity of NDM-1. Notably, the mutation of NDM-
1 resulted in a decreased inhibition of NDM-1 activity by fisetin
compared with the wild-type protein. To this end, the authors
proposed that fisetin is an effective NDM-1 inhibitor, which
suggests the combination of this compound with meropenem is a
promising strategy for CR bacterial infection (Guo et al., 2022).
Therefore, fisetin can be employed as a model in the search for
new medications or as an alternative in regulating the
pathogenicity of CR K. pneumoniae.

Therefore, as mentioned, natural compounds could inhibit CR
bacteria and enhance the performance of antibiotics against these
bacteria (Figure 1). Nevertheless, the effectiveness of natural
compounds is frequently impeded by their low solubility in
water, tendency to evaporate, and vulnerability to degradation by
light and oxidative substances. The use of different drug platforms
may resolve these limitations. For instance, Tayeb et al. found that
the developed nanoemulsion significantly improved the
antibacterial effectiveness of meropenem and clove EO. This
nanoemulsion showed promise as a carrier for antimicrobial
substances (Tayeb et al., 2022). Besides, chitosan-coated
nanoemulsion showed potential and effective intranasal
formulation against CR A. baumannii and K. pneumoniae
(Rinaldi et al., 2020). Therefore, due to their strong physical and
chemical properties and ability to kill bacteria, drug delivery systems
have the potential to enhance treatment choices for human
infections and serve as more effective carriers for drugs with
limited bioavailability. Implementing this approach might
mitigate drug toxicity and prolong the efficacy of antibacterial
treatments that are already on the market. Due to their high
cellular absorption and controlled release distribution,
nanostructured devices have been devised to encapsulate EO to
increase their bioavailability and bioefficacy. However, data about
nano-platform usage for enhancing the efficacy of natural products
against CR bacteria is limited, and more confirmatory studies are
needed in this field.

4 Disulfiram

Disulfiram (Tetraethylthiuram disulfide), primarily known as
“Antabuse,” was first introduced in 1981 as a drug for the treatment
of chronic alcoholism patients by inhibiting the function of
erythrocyte aldehyde-dehydrogenase enzyme by producing acute
sensitivity to alcohol (Kleczkowska et al., 2021). Later, it was
introduced to have toxic activity against lower forms of life
utilizing copper-containing respiratory enzymes and have
inhibitory function against copper-chelating enzymes, especially
in fungal and bacterial cells (Tisato et al., 2010; Dubey et al.,
2022). The antibacterial activity of disulfiram and its derivatives
has been proven in recent years. For example, Thakare et al. reported
the antibacterial activity of disulfiram, which could successfully
cause the disappearance of Staphylococcus aureus biofilm and its
intracellular population (Thakare et al., 2019).

In addition, disulfiram prevents the evolution and
transmission of CR bacteria by inhibiting horizontal transfer

genes of donor cells through plasmid to another cell and
minimizing the spread of meropenem-resistant cells.
Moreover, disulfiram and its metabolites have synergetic
activity with the carbapenem family, such as meropenem, and
have a destructive effect on the biofilm formation of CR bacteria.
In one study conducted on CR bacteria, it was shown that not
only disulfiram could enhance the antibacterial activity of
meropenem and colistin against bacteria but also increase the
potent ability of colistin by damaging bacterial cell membranes
(Chen et al., 2023). A study by Dubey et al. aimed to investigate
the effect of meropenem in combination with disulfiram against
CR A. baumannii infections. The results reported that disulfiram
has a successful synergetic effect on New-Delhi metallo beta-
lactamase (NDM) and IMP-type metallo-β-lactamases. The
mechanism is assumed that disulfiram binds to NDM and
chelates the Zink active site. It also makes a disulfide bond
through its Cys208 residue, which has an inhibition function
in the meropenem hydrolysis process (Dubey et al., 2022). Other
similar studies were also done to determine the activity of
disulfiram on the inhibition of CR bacteria. The results
showed that using disulfiram as an adjuvant increases the
drug’s efficacy (Chen et al., 2023). Therefore, as mentioned,
disulfiram can inhibit the function of metallo-β-lactamases in
CR bacteria and improve the function of carbapenems against
these bacteria. However, there is limited data about the
interactions of disulfiram and CR bacteria; therefore, this
compound should be considered for future studies on
managing CR bacteria.

5 Metal nanoparticles

Recent advances in nanotechnology have provided the ability
to prepare nanoparticles of specific size and shape, which can
help develop new antibacterial agents. The advantage of
nanomaterials over traditional antibiotics is due to their
surface area and chemical reactivity compared to bulk
materials (Shariati et al., 2022; Hosseini et al., 2023b; a).
Therefore, nanoparticles have attracted a lot of attention in
biomedicine. Metal nanoparticles became the main focus of
many biomedical applications, including antibacterial agents,
due to their tunable shape- and size-dependent properties.
Due to the antimicrobial nature of metal nanoparticles such as
copper (Cu), silver (Ag), zinc (Zn), iron (Fe), and titanium (Ti),
they can be used against MDR bacteria (Huh and Kwon, 2011).
The critical point is that biogenic nanoparticles have long-term
stability and are biocompatible; therefore, they are used primarily
for antimicrobial applications. The mechanisms of antimicrobial
action of biogenic nanoparticles include metal ion release,
oxidative stress, and non-oxidative stress that can occur
simultaneously (Huh and Kwon, 2011; Fernandez-Moure
et al., 2017).

The findings showed that combining antibiotics with biogenic
metal nanoparticles can be useful for increasing their antimicrobial
activity. Additionally, by examining nanoparticles synthesized by
biological and chemical methods, it was found that biological
nanoparticles have a better antimicrobial effect than
nanoparticles synthesized by chemical methods (Singh et al., 2018).
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5.1 Effect of silver nanoparticles on
carbapenem-resistant bacteria

One of the causes of death due to A. baumannii is resistance to
most of the antibiotics used for treatment. Resistance to
carbapenem, the most effective beta-lactam antibiotic for
Acinetobacter, is a significant challenge and concern. Lung
inflammation is one of the important symptoms of pneumonia
caused by A. baumannii, which leads to the destruction of the
epithelial barrier. The interaction between this bacterium and
human lung cells (alveolar epithelial) due to its adhesion and
invasion of these cells leads to infection and causes cell death
(Lee et al., 2001; Choi et al., 2008). One of the reasons for the
pathogenicity of A. baumannii is its ability to survive in human lung
cells. Therefore, investigating this bacterium’s interaction with the
host cell can be helpful. Silver nanoparticles (AgNPs) have
antibacterial properties against different organisms due to their
different mechanisms of antimicrobial action. Polyvinylpyrrolidone
(PVP) is a stabilizer with minor sensitivity to pH changes and
surface charge changes. Recent reports have shown that AgNPs
conjugated with PVP are more stable than other AgNPs; it has also
been found that PVP-conjugated AgNPs are less toxic to
mammalian cells (Tiwari et al., 2017). Studies have reported that
AgNPs conjugated with PVP have better antimicrobial activity in
vivo than other AgNPs. Hence, they can be used as alternatives to
carbapenems (Gnanadhas et al., 2013).

The study of A. baumannii infection in the human lung host cell
(A-549) is a good model for surface interaction with bacteria. In a
study, AgNPs conjugated with PVP were synthesized using chemical
methods, and their effectiveness against CR A. baumannii was
investigated (Tiwari et al., 2012). The survey of this cell type
showed that during bacterial infection, about 40% of the bacteria
adhered to the A-549 cell line, while 20% entered the cell, causing a
threefold increase in the production of ROS. In this regard, 30 μM
PVP-AgNPs showed antibacterial activity against CR A. baumannii
strain, and this concentration had no cytotoxic effect on the human
lung cell line. Noteworthy, the results of this study showed that
during A. baumannii infection, ROS concentrations increased up to
threefold. PVP-AgNP treatment causes a decrease of about 80% in
the viability of intracellular bacteria (Tiwari et al., 2012). Therefore,
it can be concluded that AgNPs conjugated with PVP can be a
suitable alternative to the current antibiotics used against CR
A. baumannii.

Metals and their alloys, synthetic and natural polymers, have
clear characteristics that make them candidates for biomedical
applications. Among these metal nanoparticles, metal oxides,
such as zinc oxide (ZnO), have attracted much attention today
because they can be stable at low temperatures and in various
conditions (Tiwari et al., 2018). One of the remarkable points of
ZnO particles is that they have antibacterial activity against Gram-
negative and Gram-positive bacteria and also activity against
bacterial spores (Hoseinzadeh et al., 2014). It has been pointed
out that ZnONPs are low toxicity, biocompatible, and bio-safe.
Considering that the mechanism of antimicrobial activity of
ZnONPs has not been well explained, several studies have
suggested that the production of hydrogen peroxide can be one
of the main factors of its antimicrobial activity, and also, the binding
of ZnONPs on the surface of bacteria can have an inhibitory effect

(Hoseinzadeh et al., 2014). To this end, Vishvanath et al. have
investigated the antimicrobial activity of ZnONPs against CR A.
baumannii (Tiwari et al., 2018).

ZnONPs can be used as an alternative to carbapenem antibiotics
that inhibit the growth of CR A. baumannii by producing oxygen
radicals that cause membrane damage. Therefore, ZnONPs can be
considered an alternative carbapenem antibiotic drug against CR A.
baumannii. The virulence ofA. baumannii is influenced by its ability
to survive in human lung cells; therefore, it is crucial to study the
effect of zinc oxide in the interaction of A. baumannii with human
lung host cells. Targeted delivery of nanoparticles to lung cells in an
animal model requires further studies to make it a suitable drug
against A. baumannii. Also, to identify proteins involved in the
mechanism of action of this nanoparticle, an accurate proteomic
analysis of A. baumannii in the presence of ZnO is needed (Tiwari
et al., 2018).

Drug resistance traits are rapidly spread among bacteria by
horizontal gene transfer, especially through plasmids. Pectin-coated
platinum nanoparticles (ptNps) at a concentration of less than
20 μM are effective in removing the plasmid containing
extended-spectrum beta-lactamase (ESBL) in E. coli (Bharathan
et al., 2019). Plasmid curing means plasmid loss from bacterial
strain due to treatment with different compounds. Plasmid removal
from the host mainly occurs by two mechanisms: 1) inhibition of
plasmid replication and 2) interfering with plasmid segregation. So
far, many plasmid curing agents are known, including ethidium
bromide surfactants such as SDS, glycine, organic heterocyclic
compounds, acridine orange, and specific plant metabolites, such
as plumbagin. Most of these factors were only in the environment.
Either they were toxic in vivo, or their efficacy as in vivo plasmid
curing agents has not been investigated previously (Molnar et al.,
1977; Crameri et al., 1986; Spengler et al., 2006).

Bharathan et al. developed pectin-capped platinum
nanoparticles (PtNPs) to treat fish infected with CR bacteria and
rescue fish from infection without additional toxicity (Bharathan
et al., 2019). PtNPs controlled the infection in fish and enhanced the
adaptive immune response against pathogen re-entry; thus, the fish
survived repeated infections. PtNPs can act as a plasmid removal
agent in the clinical isolate of MDR E. coli in a fish infection model.
Investigations by PCR method showed that the plasmid contains
bla-OXA23, blaNDM-5, and bla OXA-48 genes that can encode
carbapenem resistance. Various techniques are used to investigate
the plasmid curing mechanism, such as membrane permeability,
TEM imaging, ROS production, and membrane potential integrity
(Buckner et al., 2018). It shows that sub-MIC levels of PtNPs interact
with the cell surface and compromise the integrity of the inner
membrane. Gyrase inhibition assay showed that treatment of
bacteria with PtNP in the presence and absence of gyrase caused
DNA cleavage even at concentrations lower than the MIC, which
may account for the ability of PtNPs to eliminate plasmid
(Bharathan et al., 2019).

PtNPs at a concentration of less than 20 µM caused the
formation of colonies with small morphology and decreased the
growth of CR in laboratory conditions and the body. The treated
strain (lacking plasmid) had less resistance to meropenem and
ceftriaxone than the wild type. Also, the treated strain showed a
50% reduction in biofilm formation compared to the wild type. This
study demonstrated for the first time that Biogen’s PtNPs induced
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selective plasmid loss from E. coli strain U3790, leading to a
significant decrease in MICs for meropenem and ceftriaxone. The
absence of the plasmid leads to the formation of small colony
variants, which have slower growth. Importantly, this study
showed that nanoparticles are non-toxic and can cause plasmid
loss in vivo. Its combined administration with meropenem causes a
significant reduction in bacterial load compared to treatment with
meropenem alone (Bharathan et al., 2019).

6 N-acetyl cysteine

N-acetyl cysteine (NAC) is the N-acetyl form of the amino acid
L-cysteine. While it is not classified as an antibiotic, it does have
antibacterial capabilities and the ability to destroy biofilms.
Additionally, it has shown promise in removing bacteria already
attached to stainless steel surfaces (Olofsson et al., 2003; Zhao and
Liu, 2010; Wendorf et al., 2015). Different studies have
demonstrated the in vitro efficacy of NAC in inhibiting the
growth of bacteria and preventing the formation of biofilms.
These effects have been observed in Gram-positive and Gram-
negative microorganisms, including Burkholderia cepacia
complex, Stenotrophomonas maltophilia, and P. aeruginosa (Parry
and Neu, 1977; Roberts and Cole, 1981; Alfredsson et al., 1987; Blasi
et al., 2016; Pollini et al., 2018b; Aiyer et al., 2021; Alarfaj et al., 2022).

NAC possesses antioxidant and anti-inflammatory
characteristics by enhancing glutathione production, which helps
neutralize harmful oxygen radicals and counteract the effects of
proinflammatory cytokines (Zafarullah et al., 2003; Tenório et al.,
2021). The NAC counteracts the harmful effects of free radicals,
diminishes oxidative stress and inflammation, and enhances the
functioning of the immune system. In addition, NAC exhibits
vasodilatory effects on microcirculation, leading to an
improvement in locoregional blood flow (Forman et al., 2009;
Chertoff, 2018). The events mentioned above can have significant
ramifications in an unregulated host response to infection,
characterized by a high release of pro-inflammatory cytokines,
ROS, and profound disruption of microcirculation, as observed
in septic shock (Ince, 2005; Ait-Oufella et al., 2010; Angus and
Poll, 2013; Ince et al., 2016). In this regard, animal studies have
shown that NAC improves organ damage caused by endotoxin
shock by reducing the formation of free radicals and inflammatory
cytokines (Hsu et al., 2006). Therefore, NAC can serve as a valuable
adjunctive therapy in infectious disorders, mitigating organ damage
and protecting against septic shock. Given that septic shock is
distinguished by excessive and unbalanced production of pro-
inflammatory cytokines, ROS, and significant disruption of
circulation, the use of substances that can counteract these effects
is justified in treating this illness (Oliva et al., 2021).

As mentioned, NAC is a substance that has antioxidant and anti-
inflammatory properties. It can be utilized alongside antimicrobial
therapy to treat severe infections caused by MDR organisms, such as
CR K. pneumoniae and CR A. baumannii. To this end, significant
changes in the bacterial structure were observed when the K.
pneumoniae strain, which is highly resistant to carbapenem and
colistin, was exposed to NAC alone or in combination with low
concentrations of meropenem. These changes included elongation
of the bacteria, disruption of cell integrity, breakdown of the outer

cell wall or inner membrane, and forming outer membrane vesicles
(OMVs) (De Angelis et al., 2022). Another study also indicated that
NAC showed strong antibacterial effects against CR K. pneumoniae
and CR A. baumannii in a way that depended on the concentration.
Additionally, NAC showed excellent synergy with both meropenem
and ampicillin/sulbactam by restoring their susceptibility (Oliva
et al., 2023).

De Angelis et al. discovered a strong synergy between NAC and
meropenemwhen used against clinical strains of CR bacteria. Similarly,
Pollini et al. observed a significant synergistic effect when combining
colistin with NAC against CR A. baumannii (Pollini et al., 2018a; De
Angelis et al., 2022). Additionally, the Ceftazidime/avibactam + NAC
combination significantly deteriorated the integrity of bacterial cell
membranes (Huang Z. et al., 2023). Therefore, as mentioned, NAC
can effectively control CR bacteria and enhance the efficacy of
traditional antibiotics against these bacteria. The presence of a NAC
thiol group can change the redox state of bacterial periplasm. This
change deactivates a controlled mechanism and causes proteins to
misfold. These misfolded proteins then build up in the cytoplasm and
are released through the creation of OMV (Volgers et al., 2017).
Periplasmic bacterial enzymes, including carbapenemase and other
beta-lactamases, undergo regulation through a sophisticated
regulatory system. In the presence of NAC, these enzymes are
deactivated due to protein misfolding, resulting in the loss of their
function (De Angelis et al., 2022).

The biofilm community of CR bacteria is also a critical factor for
antibiotic resistance in clinical settings. The mucolytic effects of
NAC are attributed to its free sulfhydryl group. This group is
responsible for breaking the disulfide bonds present in mucus,
decreasing its viscosity (Olofsson et al., 2003; Zhao and Liu,
2010; Wendorf et al., 2015). The functional group -SH can
disrupt the disulfide bridges of proteins found in the bacteria,
causing a loss of their three-dimensional structure and ultimately
rendering them inactive. According to these results, it may be
inferred that NAC acts by chemically altering the structure of the
biofilm and could potentially be a significant agent for combating
bacterial biofilms (Samuni et al., 2013; Temel and Erac, 2022). In this
regard, Feng et al. conducted a study to examine the impact of NAC,
both alone and in combination with tigecycline, on A. baumannii
biofilms. They found that the presence of NAC alone and NAC +
tigecycline combinations at low concentrations dramatically
reduced the creation of biofilms by the isolates (Feng et al.,
2018). In line with these results, another study also reported that
NAC + tigecycline combinations could significantly reduce the
biofilm formation of CR A. baumannii strains (Temel and Erac,
2022). The study also examined the impact of combining NAC and
tigecycline on the expression of A. baumannii biofilm-related genes,
including bap (Biofilm associated cell surface protein) and csuE
(Pilus formation). Following exposure to drug combinations,
notable decreases were found in the expressions of the bap and
csuE genes in the strains. The decrease in expression levels may be
attributed to the direct impact of the drugs on transcription factors
associated with the relevant genes, or it could result from overall
inhibition in the quorum-sensing process (January 2017). Therefore,
NAC can inhibit the growth of CR bacteria, improve the activity of
conventional antibiotics, and destroy the biofilm community of
these bacteria. However, data about NAC interaction with CR
bacteria are limited, and more confirmatory studies are needed.
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7 Antimicrobial peptides

Antimicrobial peptides (AMPs) are a group of basic
polypeptides consisting of 12–50 amino acid residues. They have
significant functions in both innate and adaptive immunity
(Takahashi and Yamasaki, 2020; Moghadam et al., 2022). Natural
AMPs are found in vertebrates, plants, and small organisms such as
bacteria and fungi (Wang et al., 2016). Hence, AMPs are a group of
molecules found in the innate immune system that can kill
microorganisms and regulate the immune response. They are the
initial defense mechanism against invading pathogens (Falanga and
Galdiero, 2017).

Studies have shown that AMPs can successfully kill drug-
resistant bacteria (Magiorakos et al., 2012; Choi et al., 2021).
Noteworthy, AMPs can penetrate or interact with the biofilms
created by drug-resistant bacteria, or they can enhance the
effectiveness of conventional antibiotics through a synergistic
effect (Martinez et al., 2019a). A study showed that combining
PapMA-3 (a new PapMA analog) with vancomycin, rifampin, and
erythromycin effectively produced synergistic effects against CR A.
baumannii. Furthermore, PapMA-3 has the potential to enhance the
permeability of the bacterium membrane to imipenem and
meropenem. PapMA-3 exhibited the ability to inhibit biofilm
development at its MIC. Furthermore, it demonstrated the ability
to effectively suppress biofilm formation at lower doses when used
with antibiotics. PapMA3 disrupted the structure of the bacterial
membrane, even at concentrations lower than the MIC (Choi et al.,
2021). Besides, the findings of a study on the impact of WAM-1,
derived from the mammary gland of the Tammar wallaby, indicate
that WAM-1 exhibits potential as a therapeutic agent for treating
infections caused by CR K. pneumoniae. Furthermore, this AMP
also exhibited anti-inflammatory properties (Zhang X. et al., 2022).

Furthermore, P5, a newly created AMP, showed notable
synergistic effects when combined with meropenem. It also
demonstrated the ability to dissolve biofilms and effectively kill
bacteria associated with biofilms, specifically against a CR P.
aeruginosa (Martinez et al., 2019a). Cec4 was another AMP with
an inhibitory effect against CR bacteria. Cec4 is an AMP consisting
of 41 amino acids. It has demonstrated inhibitory action against CR
A. baumannii. Furthermore, Cec4 can remarkably eliminate biofilm
formation by this particular bacterium. Significantly, following the
administration of Cec4, there were distinct variations in the
expression of membrane proteins, bacterial resistance, and pilus-
related genes. Cec4 significantly influences the expression of genes
that play a role in developing A. baumannii biofilms, including
CsuE, BfmR, BfmS, AbaI, and Bap (Liu W. et al., 2020). In the end,
WLBU2, a cationic synthetic peptide, indicated good activity against
Gram-positive and Gram-negative bacteria (Lin et al., 2018). A study
was conducted to explore the antibiofilm impact of WLBU2 against
CR P. aeruginosa. The results indicated that the WLBU2 peptide
exhibits potent inhibitory and eradication effects on the P.
aeruginosa biofilm. The WLBU2 peptide decreased gene
expression levels associated with biofilm growth and maturation
(Masihzadeh et al., 2023). Noteworthy, other AMPs with inhibitory
effects against CR bacteria are presented in Table 2.

As mentioned, AMPs can decrease the expression of genes
related to biofilms, hinder the initial attachment of bacteria to a
surface, target bacteria before they can form a biofilm, eliminate

bacteria already embedded in biofilms, or eradicate developed
biofilms. These actions effectively inhibit or eliminate biofilms
(Liu W. et al., 2020). Additionally, they demonstrated promise
when combined with conventional antibiotics in combination
therapy. AMPs can be readily modified by substituting their
amino acid residues to combat drug resistance, thereby creating
new and highly effective AMPs (Choi et al., 2021).

AMPs can be categorized into two primary groups based on
their mechanisms: (1) direct eradication by altering the integrity of
the cell membrane or affecting the production of internal
components such as nucleic acids and proteins, and (2)
regulating the immune response to eliminate harmful infections
(Beaumont et al., 2014; Yang M. et al., 2019). In addition, AMPs
exhibit several additional activities, such as inducing membrane
depolarization and destabilization (Irazazabal et al., 2019; Hitt et al.,
2020). AMPs can also induce cell apoptosis by regulating the
production of ROS (Hwang et al., 2011). Besides, AMPs work as
immunomodulators by attracting and stimulating immune cells
such as neutrophils, mast cells, macrophages, and T cells.
Consequently, this affects the roles of neutrophils in generating
chemokines (Di Nardo et al., 2008; Pundir et al., 2014).

Therefore, unlike empirical antibiotics that target single or
specific bacterial processes, AMPs exhibit multifunctional
bacterial killing effects (Hurdle et al., 2011; Gee et al., 2013). To
this end, the likelihood of antimicrobial peptides developing
resistance is low, as microorganisms would need to undergo
substantial changes to their gene sequences, membrane structure,
and lipid composition to evade the peptides (Zasloff, 2002; Hein-
Kristensen et al., 2013; Ravensdale et al., 2016). For this reason, due
to their wide-ranging effectiveness and minimal harm to the host,
antimicrobial peptides have garnered increased interest as potential
therapeutic agents against drug-resistant bacteria (Ho et al., 2019).

Collectively, AMPs show promise in controlling MDR bacteria
and associated biofilm communities. However, these
biomacromolecules have some limitations, including their
susceptibility to degradation, limited absorption, distribution,
metabolism, and excretion (ADME) capabilities, transport
mechanism, target delivery, and potential toxicity (Di, 2015;
Khara et al., 2015; Wagner et al., 2018; Wang et al., 2019). To
this end, recently published studies have been conducted to enhance
the therapeutic effectiveness of these biomolecules and mitigate their
negative side effects. There are two methods for this objective. One
approach involves modifying peptides that have already been altered
to enhance their effectiveness against pathogens. This modified
peptide can be achieved by changing, removing, adding, or
substituting amino acids in the original sequence. Additionally,
modifications can be made to the N or C terminal parts of the
peptides, such as cyclizing or conjugating them with antibiotics or
other molecules (Radzishevsky et al., 2007; Costa et al., 2015; Liu
et al., 2017). Another method entails utilizing nanotechnology via
nanoparticles to inhibit peptide breakdown, enhance antimicrobial
effectiveness and bioavailability, amplify selectivity, and regulate the
administered dosage according to physicochemical factors such as
time, temperature, and pH (Roque-Borda et al., 2022). Therefore,
AMPs showed potential for managing CR bacteria; however, some
drawbacks limited their clinical usage. In this regard, scientists
should consider using the abovementioned approaches to
improve AMPs’ performance against CR bacteria.
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TABLE 2 Antibacterial and antibiofilm activity of AMPs against CR bacteria.

Year of
publication

AMPs AMP’s description Bacteria Outcome References

2020 DRGN-6,-7,-8 These peptides are artificially
created from the cathelicidin
found in Komodo dragons

CR K. pneumoniae These AMPs caused significant
increases in the permeability of
the cells and considerable
depolarization

Hitt et al. (2020)

2019 Cathelicidin-BF15-
a4 (ZY4)

The peptide was synthesized by
amino acid substitutions based on
cathelicidin-BF15

MDR P. aeruginosa and A.
baumannii

ZY4 killed bacteria and persister
cells and inhibited the biofilm
community. The AMP decreased
susceptibility to P. aeruginosa
lung infection and suppressed
dissemination of bacteria to
target organs in a mouse
septicemia infection model

Mwangi et al.
(2019)

2019 CM15 and its ATCUN
variants (GGH-

CM15 and VIH-CM15)

CM15 is a chimeric peptide from
melittin and cecropin-A. ATCUN
motifs were designed by adding
the tripeptide motifs Gly-GlyHis
(GGH) or Val-Ile-His (VIH) to
CM15

CR K. pneumoniae and
Escherichia coli

AMPs, when combined with
meropenem, streptomycin, or
chloramphenicol, showed
synergistic effects against
biofilms

Agbale et al.
(2019)

2017 NN2_0050 and NN2_
0018

AMPs are designed by LSTM
algorithms

MDR E. coli, A. baumannii,
K. pneumoniae, P.

aeruginosa, Staphylococcus
aureus, and coagulase-
negative staphylococci

These designed peptides
selectively interacted with and
disrupted bacterial cell
membranes and caused
secondary gene regulatory effects

Nagarajan et al.
(2018)

2023 GAN-pep 3 and GAN-
pep 8

New AMPs generated based on
WGAN-GP.

MR S. aureus and CR P.
aeruginosa

Inhibitory effects against both
bacteria

Lin et al. (2023)

2022 Epi-1 and hBD-3 Human beta-defensin-3 (hBD-3)
is produced by epithelial cells, and
Epinecidin-1 (Epi-1) is an AMP
derived from the orange-spotted
grouper (Epinephelus coioides)

CR K. pneumoniae, Klebsiella
aerogenes, P. aeruginosa and

A. baumannii

Antibacterial activity against all
studied clinical isolates. In
experimental mouse sepsis
models with K. pneumoniae and
P. aeruginosa, increased survival
rates were observed with hBD-3
monotherapy, hBD-3 +
meropenem, and hBD-3 + Epi-1

Bolatchiev (2022)

2021 LL-37 LL-37 is a synthetic peptide
derived from the C-terminal
region of the human cationic
antimicrobial protein (hCAP)

MDR E. coli Inhibited mcr-1 carrying,
carbapenemase, and ESBL-
producing E. coli

Morroni et al.
(2021)

2022 DGL13K The D-enantiomers of
antimicrobial peptide GL13K,
which derived from the salivary
protein BPIFA2

CR K. pneumoniae, MDR
and XDR P. aeruginosa and

XDR A. baumannii

Inhibitory effect against all
bacteria

Gorr et al. (2022)

2022 PEP-38 and PEP-137 The new peptides are designed by
LSTM RNN.

CR K. pneumoniae and K.
aerogenes

Inhibitory effect against bacteria.
PEP-137 showed a survival rate
of 50%, while PEP-38 was
ineffective in the experimental
murine model of K.
pneumoniae-induced sepsis

Bolatchiev et al.
(2022)

2021 MSI-78 The MSI-78, also named
pexiganan, is a synthetic analog of
maganin-2

CR K. pneumoniae It showed an inhibitory effect,
and this antibacterial effect is
thought to result from
irreversible membrane-
disruptive damage

Denardi et al.
(2022)

2023 11pep and D −11pep Two novel antibiotic peptides
were designed and synthesized
that polymerized the β1, β9, β15,
and β16 chains of BamA (BamA, a
major component of the outer
membrane protein family)

CR E. coli, P. aeruginosa and
MDR A. baumannii

Both peptides disrupted the
bacterial outer membrane and
showed broad-spectrum
antibacterial activity. D-11pep
effectively inhibited the initial
attachment of CR E. coli for
biofilm formation

Yang et al. (2023)

(Continued on following page)
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TABLE 2 (Continued) Antibacterial and antibiofilm activity of AMPs against CR bacteria.

Year of
publication

AMPs AMP’s description Bacteria Outcome References

2024 Osmin Osmin comprises 17 amino acids
and is isolated from solitary bee
(Osmia rufa) venom

drug-resistant K.
pneumoniae

Reduced bacterial growth and
the expression of pro-
inflammatory cytokines and
fibrosis-related genes in mice
with CR K. pneumoniae sepsis

Jeon et al. (2024)

2012 LLKKLLKKC
((LLKK)2C) and
CLLKKLLKKC
(C(LLKK)2C)

The cationic amphiphilic alpha-
helical peptides

CR A. baumannii These peptides showed excellent
potency in mouse models of
peritonitis and pneumonia
infections caused by CR A.
baumannii

Huang et al.
(2012)

2021 LyeTx I-b and
PEGylated LyeTx I-b

(LyeTx I-bPEG)

LyeTx I-b is a synthetic peptide
derived from native LyeTx I,
originally isolated from Lycosa
erythrognatha spider venom

CR A. baumannii LyeTx I-b was active against A.
baumannii. LyeTx I-bPEG, was
slightly less active than its
analogue. PEGylation improved
the anti-biofilm activity of
LyeTx I-b

César Moreira
Brito et al. (2021)

2021 1B and C Two derivatives of the Temporin L
from Rana temporaria

CR K. pneumoniae Both peptides were able to
inhibit the growth of
carbapenemase-producing
strains effectively

Roscetto et al.
(2021)

2018 PaDBS1R1 It is a novel cationic antimicrobial
peptide engineered by ribosomal
protein L39E from the
hyperthermophilic archaeon
Pyrobaculum aerophilum

CR K. pneumoniae Induced permeabilization and
depolarization of the
cytoplasmic bacterial membrane,
leading to leakage of the
intracellular content and finally
cell death

Irazazabal et al.
(2019)

2020 sDq-3162 It’s a 28-residue ponericin G-like
dinoponeratoxin from the giant
ant Dinoponera quadriceps venom

CR bacteria (i.e., A.
baumannii, K. pneumoniae,
P. aeruginosa and E. coli)

Displayed a significant
bacteriostatic and bactericidal
effect

Dodou Lima et al.
(2020)

2024 AS-12W Cathelicidin AS-12W Derived
from the Alligator sinensis

CR P. aeruginosa Demonstrated broad-spectrum
antibacterial activity and
removed CR P. aeruginosa from
blood and organs. This peptide
could neutralize the negative
charge on the surface of the
bacteria and disrupt the integrity
of the bacterial cell membrane.
The peptide can bind to the
genomic DNA of bacteria and
stimulate the production of ROS
within bacteria

Zhang et al. (2024)

2017 AM-CATH36, AM-
CATH28, AM-

CATH21

These peptides are cathelcidin and
two shorter fragments from
Alligator mississippiensis
(American alligator)

MDR A. baumannii and CR
K. pneumoniae

Strong activity against bacteria.
These peptides permeabilize the
bacterial membrane

Barksdale et al.
(2017)

2024 Gy-CATH A novel anionic antimicrobial
peptide identified from the skin of
the frog Glyphoglossus
yunnanensis

CR E. coli Preventive and therapeutic
capacities in mice that are
infected with bacteria

He et al. (2024)

2021 Octopromycin A novel peptide derived from
Octopus minor

MDR A. baumannii Increased ROS production
inhibited the biofilm formation
and showed biofilm eradication
activity. In vivo study results
revealed that the A. baumannii-
infected fish treated with this
peptide exhibited a significantly
higher relative percent survival
(37.5%) than the infected mock-
treated fish with PBS (16.6%)

Rajapaksha et al.
(2021)

(Continued on following page)
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8 Conclusion

Antibiotic resistance and MDR bacteria are challenging and
threatening to the global community. One of the main reasons is
the indiscriminate use of antibiotics, which causes the creation of
new antibiotic-resistant strains at a high rate. One of the most
important causes of death in the world is infections caused by
antibiotic-resistant bacteria. Therefore, the synthesis of new and
effective antimicrobial agents is critical. Evidence from scientific
investigations indicates that the progress in creating antibiotics is
not keeping pace with the rise of antibacterial resistance patterns,
particularly for significant bacterial infections. Multiple
antibacterial resistance profiles, such as the CR bacterium,
have been recently identified. Recent studies have documented
the potential of phages, nanoparticles (drug platforms), and
natural substances for managing these bacteria. Moreover,
various management approaches have been employed to
address the issue of resistant pathogens. These include (a)
gaining a thorough understanding of resistance at the
molecular level, as well as its evolution and spread; (b)
discovering novel chemical agents with antibiotic properties;
and (c) improving the effectiveness of antibiotics through
innovative methods like combination therapy. It is noteworthy
to mention that there is a growing prevalence of bacteria that are
becoming increasingly resistant. Hence, it is imperative to
employ other strategies to manage resistant infections, given
that antibiotic resistance poses a significant challenge in
clinical environments. However, there is a lack of extensive
clinical data and in vitro studies in this area. Therefore,
further research is needed to determine the most effective
non-antibiotic approaches that cause minimal harm to
humans, enhance their impact on bacterial pathogens, identify
the optimal timing for treatment, and establish the appropriate

route and administration dosage. However, non-antibiotic
methods could soon be implemented as a viable antibiotic
substitute.
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TABLE 2 (Continued) Antibacterial and antibiofilm activity of AMPs against CR bacteria.

Year of
publication

AMPs AMP’s description Bacteria Outcome References

2015 Tilapia piscidin 3 (TP3)
and tilapia piscidin

4 (TP4)

Synthetic antimicrobial peptides
from an aquatic organism
Oreochromis niloticus

MDR A. baumannii and CR
K. pneumoniae

Showed antibacterial effects and
administration of these peptides
30 min after infection with
bacteria significantly increased
survival in mice

Pan et al. (2015)

2022 RaCa-1, RaCa-2, RaCa-
3 and RaCa-7

Novel AMPs were identified using
amplify derived from the Rana
[Lithobates] catesbeiana genome

CR E. coli These peptides were active
against CR strain with MIC =
2–44 μM

Li et al. (2022b)

2018 IARR-Anal10 The analog derived from the
antimicrobial peptide
mBjAMP1 isolated from
Branchiostoma japonicum

MDR K. pneumoniae Suppressed the virulence of K.
pneumoniae to a degree similar
to tigecycline and did not induce
development of resistance by this
bacterium

Park et al. (2018)

2019 Pen-BR, Pen-RRR and
Cecropin P1 (CECP1),

Cap11-1–18 m2

(CapM2)

Pen-BR, Pen-RRR were generated
by fusing HEXIM1 BR and BR-
RRR12 peptides with a cell-
penetrating peptide, Pen.
CECP1 is an AMP from Ascaris
suum. CapM2 is a derivative of
guinea pig cathelicidin CAP11

CR E. coli and P. aeruginosa Showed improved and potent
bacterial inhibitory and killing
activities

Ho et al. (2019)

AMPs: antimicrobial peptides. ATCUN: amino terminal Cu(II) and Ni(II). CR: carbapenem-resistant. LSTM: long short-term memory. MR: Methicillin-resistant. MDR: multidrug-resistant.

PBS: phosphate-buffered saline. ROS: reactive oxygen species. RNN: recurrent neural network. XDR: extensively drug-resistant. WGAN-GP: Wasserstein generative adversarial network with

gradient penalty.
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