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Renal cell carcinoma (RCC) is a common substantive tumor. According to
incomplete statistics, RCC incidence accounts for approximately 90% of renal
malignant tumors, and is the secondmost prevalentmajormalignant tumor in the
genitourinary system, following bladder cancer. Only 10%–15% of chemotherapy
regimens formetastatic renal cell carcinoma (mRCC) are effective, andmRCChas
a high mortality. Drug transporters are proteins located on the cell membrane
that are responsible for the absorption, distribution, and excretion of drugs. Lots
of drug transporters are expressed in the kidneys. Changes in carrier function
weaken balance, cause disease, or modify the effectiveness of drug treatment.
The changes in expression of these transporters during cancer pathology results
in multi-drug resistance to cancer chemotherapy. In the treatment of RCC, the
study of drug transporters helps to optimize treatment regimens, improve
therapeutic effects, and reduce drug side effects. In this review, we
summarize advances in the role of renal drug transporters in the genesis,
progression, and treatment of RCC.
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1 Introduction

Kidney cancer is a relatively common type of cancer, accounting for approximately 3%–
5% of all malignancies (Rose and Kim, 2024). Renal cell carcinoma (RCC) is a type of cancer
that originates from the tubular epithelial cells of the kidney, and it has three histological
subtypes: clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC)
(Hosseiniyan Khatibi et al., 2022). RCC represents over 90% of all kidney cancer (Hsieh
et al., 2017). Moreover, RCC incidence is increasing worldwide, with higher rates observed
in developed than in developing countries (Padala and Kallam, 2023). Although overall
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RCC incidence has increased over the last three decades, the death
rate of RCC has declined rapidly because of early diagnosis and
treatment (Medina-Rico et al., 2018). Even with progress in disease
control, some patients may still develop locally advanced diseases
and distant metastases (Vasudev et al., 2020; Ciarimboli et al., 2021).
The field of RCC treatment has significantly changed over the past
three decades. Indeed, the treatment landscape for RCC has
undergone significant transformation in recent years owing to
steady progress in the development of targeted therapeutics
(Pérez-Herrero and Fernández-Medarde, 2015) and
immunotherapy (Szeto and Finley, 2019). Immune checkpoint
inhibitors (ICI) in combination with vascular endothelial growth
factor tyrosine kinase inhibitors (TKI) have become the standard
primary therapy for many advanced RCC (Chen et al., 2023).

Drug transporters are responsible for the absorption,
distribution, metabolism, and excretion of drugs from the human
body. The relationship between RCC and various transporters
involves many aspects such as drug metabolism, nutrient
transport, and cell survival. Therefore, transporters play a crucial
role in sustaining the physiological balance of the body and in
administering drugs. Changes in the function of transporters can
impair homeostasis, cause disease, or modify the efficacy of the
drugs (Ciarimboli, 2023). Although many renal drug transporters
have been characterized in detail with respect to the significance for
proper kidney function, their role in kidney cancer progression is
less known. Drug transporter expression may reflect resistance to
systemic therapy in RCC, and can be used to predict prognosis. This
review summarizes progress in the significance of renal drug
transporters in the genesis, progression and treatment of RCC.

2 Types of drug transporters
predominantly expressed in the kidney

2.1 Classification of drug transporters

Drug transporters are typically classified into twomajor families:
the solute carrier (SLC) family and the adenosine triphosphate-
binding cassette (ABC) family (Liu, 2019a).

2.1.1 ABC family
The largest transporter family is the ABC family. The ABC

transporter family is one of the most diverse groups of
transmembrane proteins involved in active transport processes.
The ABC proteins have numerous functions to list in detail.
However, they mainly transport a diverse range of substrates,
from simple ions to polar, amphiphilic, and hydrophobic organic
molecules, peptides, complex lipids, and even small proteins
(Theodoulou and Kerr, 2015). Over 40 ABC transporters have
been discovered in humans and partitioned into seven
subfamilies (ABCA to ABCG) based on various criteria such as
gene structure and amino acid sequence. At least 11 ABC
transporters have been implicated in multi-drug resistance,
including P-glycoproteins (P-gp/ABCB1), multi-drug resistance
proteins (MRP/ABCC), and breast cancer resistance proteins
(BCRP/ABCG2). They actively remove anti-tumor drugs from
cancer cells, reduce their intracellular concentrations, thereby
conferring resistance to chemotherapy (Liu, 2019b). These ABC

transporters have significant effects on many cell types, including
renal tubular cells. The reabsorption and secretion functions of the
nephron are mediated by a variety of transporters located in the
basolateral and luminal membranes of the tubular cells. Many
studies indicated that transporters play important roles in drug
pharmacokinetics and demonstrated the impact of renal
transporters on the disposition of drugs, drug-drug interactions
(DDI), and nephron toxicities (Yang and Han, 2019).

2.1.2 SLC family
The SLC transporters include the SLC-21A gene subfamily

(organic anion transporter polypeptide, OATP), SLC-22A gene
subfamily (organic anion transporter, OAT; organic cation
transporter, OCT; organic cation/carnitine transporter, OCTN),
SLC-15A gene subfamily (peptide transporter, PEPT), and SLC-
47A gene subfamily (multi-drug and toxin excretion, MATE) (Liu,
2019c). OCTs and OCTNs are responsible for transporting organic
cations, and are involved in the transport of several drugs in the
body. OATP-4C1 is the major OATP transporter in kidney, mainly
located on the basolateral membrane of proximal renal tubular cells
(Sato et al., 2017).

2.2 Drug transporters predominantly
expressed in the kidneys

The kidney performs the critical task of maintaining
homeostasis through the coordinated action of multiple transport
systems specifically expressed in different parts of the kidney’s
functional unit, the nephrons (Lee et al., 2015). Exogenous
substances secreted by the kidney mainly occur in the proximal
renal tubules, which have specific transport mechanisms that
facilitate the passage of foreign substances from the blood into

FIGURE 1
Renal transporter distribution map. OAT, organic anion
transporter; OCT, organic cation transporter; OATP, organic anion
transporter polypeptide; MRP, multi-drug resistance protein; OCTN,
organic cation/carnitine transporter; PEPT, peptide transporter;
MATE, multi-drug and toxin excretion; URAT, urate transporter.
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the tubular cells (uptake) and from these cells into the tubular
fluid (excretion).

Transporters in renal proximal tubule epithelial cells
(RPTEC) contribute to drug disposition. In the proximal renal
tubules, epithelial cells have two distinct membrane domains, the
basal-lateral membrane and the apical (or lumen) membrane,
both of which have transporters. Basolateral transporters are
responsible for absorbing solutes from the blood into the
epithelium, whereas apical transporters are responsible for
excreting solutes from the cell into tubular fluid (Ivanyuk
et al., 2017). Drug transporters are divided into uptake and
efflux transporters, according to the direction of
transmembrane transport of the substrates (Figure 1).

2.2.1 Uptake transporters
The basolateral uptake of drugs by transporters OAT1, OAT3,

OATP-4C1, OCT2, and OCT3 is critical for the kidneys to process a
variety of drugs and exogenous substances and, ingested substrates
at target sites for efficacy. OATs are instrumental in the tubular
secretion of numerous drugs, specifically antibiotics, antiviral
therapeutics, diuretics, and non-steroidal anti-inflammatory drugs
(Momper et al., 2019). OAT1 and OAT3 are the most studied SLC
families (Nigam, 2018). OAT1 is located mainly in the basolateral
membrane of proximal tubular cells (Nigam, 2015). OAT2 binds
specifically to antiviral medications (Nigam, 2015), and OAT3 is the
most abundantly expressed transporter in the proximal tubules of
the human kidney (Bunprajun et al., 2019). OAT1 and
OAT3 transport penicillin and non-steroidal anti-inflammatory
drugs (Koepsell et al., 2007; Dudley et al., 2000; Bourdet et al.,
2005; Jung et al., 2008; Sato et al., 2008; Tahara et al., 2005). OAT
substrates include anti-tumor drugs methotrexate and ubenimex
(Zhu et al., 2014). In addition, OAT4 and urate transporter (URAT)
1, both of which belong to the solute vector family, are expressed in
the apical membranes of proximal renal tubular cells. OAT4 and
URAT1 facilitate the reabsorption of uric acid from proximal
tubular cells into the blood (Xu et al., 2017). Probenecid and
benzbromarone are commonly used to treat hyperuricemia. They
block the reabsorption of uric acid by inhibiting URAT1, and
promote urate excretion, thereby reducing blood uric acid levels
(Shin et al., 2011). Moreover, the angiotensin II receptor blocker
losartan also binds to URAT1, increases uric acid excretion, and
reduces blood uric acid levels (Vanwert et al., 2010).

OCTs are members of the SLC22 family (Döring and Petzinger,
2014), and OCT1, OCT2 and OCT3 are expressed in humans. The
main substrates of OCTs are fampridine, cisplatin, oxaliplatin,
metformin, lamivudine and adolol (Cheung et al., 2017).
Metformin reabsorption is influenced by OCT1, which is located
on the apical membrane of both the proximal and distal tubules in
the kidney (Ivanyuk et al., 2017). OCT2 mainly transports
metformin, cisplatin, lamivudine and atenolol (George et al.,
2017; Jung et al., 2013). OCT3 is also expressed in the kidney
(George et al., 2017). OATP-4C1 is the primary carrier for the
transport of digoxin, methotrexate and sitagliptin (Sato et al., 2017;
Ivanyuk et al., 2017; Klaassen and Lu, 2008). OCTNs includes
OCTN1 and OCTN2 (Pochini et al., 2019). OCTN1 can
transport some important drugs such as verapamil, quinidine and
gabapentin (Ivanyuk et al., 2017; Nigam, 2015). OCTN2 transports
cefepime (Ivanyuk et al., 2017).

PEPT1 is mainly expressed in the small intestine, and its role in
intestinal inflammation and inflammatory bowel disease has been
previously elucidated (Ingersoll et al., 2012). PEPT2, as an apically
expressed transporter, mediates the reabsorption of small anionic
peptides (dipeptides and tripeptides) coupled with H+ uptake, and
may thus influence the pharmacokinetics of various peptide-like
compounds (Ivanyuk et al., 2017; Sala-Rabanal et al., 2008). It has
been shown to recognize some ß-lactam antibiotics (ampicillin,
amoxicillin, cephalexin, cefaclor, cefadroxil), valacyclovir, and
bestatin, and is likely to mediate their reabsorption from the
primitive urine, thus potentially slowing down their elimination
(El-Sheikh et al., 2008; Li et al., 2006; Ganapathy et al., 1998; Tomita
et al., 1990).

2.2.2 Efflux transporters
Efflux transporters pump the substrate out of the cell to reduce

the cellular substrate concentration. They are ABC transporters such
as MPR2, MPR4, P-gp and BCRP. Although MATE proteins belong
to the SLC superfamily, they also function as efflux transporters.
MATE proteins include MATE 1 andMATE 2K (Veiga-Matos et al.,
2020). The MATE proteins facilitate the translocation of
norfloxacin, ciprofloxacin, levofloxacin, cephalexin, cefradine,
dofetilide, cisplatin, oxiliplatin, nadolol, emtricitabine, metformin
and cimetidine (Ivanyuk et al., 2017; Nies et al., 2016; Misaka et al.,
2016; Uddin et al., 2022; Waissbluth et al., 2023; Miyamae et al.,
2001; Reznicek et al., 2017; He et al., 2011). MRPs transport various
substrates, including anions formed when drugs (such as
methotrexate and cisplatin) conjugated with sulfate, gluconate, or
glutathione (Borst et al., 2000). Urine removal is regulated by
OCTN1, OCTN2, MATE1, MATE 2K, P-gp, MPR2, MPR4, and
BCRP (Morrissey et al., 2013). P-gp has been extensively studied.
P-gp transports a variety of anti-tumor drugs, such as paclitaxel and
vincristine (Hlavata et al., 2012; Waghray and Zhang, 2018). P-gp
also transports various anti-infective drugs, such as macrolides
(azithromycin, erythromycin, clarithromycin) and tetracycline
(Akamine et al., 2019). BCRP can actively remove anti-tumor
drugs such as imatinib, methotrexate (Fletcher et al., 2010).
MRP4 also affects uric acid secretion in proximal tubules (Yang
et al., 2010). Methotrexate is a MRP4 substrate, which is secreted
into the tubule lumen by MRP4 (Hoque et al., 2009). Multi-drug
efflux pumps from different families expel antimicrobial agents from
the bacteria, thereby leading to drug resistance (Chitsaz and Brown,
2017). When RCC patients require the concurrent use of
antimicrobial agents, attention should be paid to transporter-
mediated DDI, with a focus on the efficacy and adverse reactions
of both anti-tumor drugs and antimicrobial agents. The main
substrates of some drug transporters are listed in Table 1.

3 Changes in expression of transporters
influence the occurrence,
development, and treatment of RCC

Under normal physiological conditions, the expression and
regulation of drug transporters can help maintain kidney
homeostasis (Caetano-pinto et al., 2022). The activity and the
expression of drug transporters plays a key role in renal secretion
and reabsorption function in RPTEC. Moreover, the expression of
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drug transporters in RCC cells often differ from those in normal
renal cells (Table 2). In RCC, changes in transporter expression
affect uptake and efflux processes of anti-tumor drugs, thus affect
the therapeutic effects of anti-tumor drugs. The expression and
function of drug transporters are influenced bymany factors, such as
microbiota influence, post-translational modification,
transcriptional regulation, enriched epigenetic regulations and
exogenous modulations (Yin et al., 2024). Two cellular regulatory
processes contribute to the pathophysiology of RCC: DNA
methylation (Herman et al., 1994) and epidermal growth factor
receptor (EGFR) signaling (Minner et al., 2012; Muroni et al., 2021).
A hypermethylated state is associated with the loss of the Von
Hippel-Lindau tumor suppressor protein (Clifford et al., 1998) and
deregulation of enzymes and carrier proteins responsible for drug
metabolism and disposition, including drug transporters (Winter
et al., 2016). Epigenetic changes in drug transporter genes are

associated with drug response in cancer (Ivanov et al., 2012), and
multiple types of epithelial cancers are associated with defective,
overexpressed, or constitutive activation of EGFR (Uribe
et al., 2021).

3.1 SLC family

The urea transporter encoded by SLC14A1 (UT-B) plays a key
role in the kidney, where it transports urea and maintains normal
kidney function. Mutations or abnormal expression of SLC14A1
may be associated with the occurrence and development of kidney
cancer. SLC14A1 is expressed at lower levels in kidney cancer tissues
than in normal kidney tissues (Wan et al., 2023). Moreover, the
higher the SLC14A1 expression levels, the lower the kidney cancer
differentiation grade and the higher the overall patient survival rate.

TABLE 1 Main drug transporters in the kidney and their substrates or inhibitors.

Location Transporter Substrate Inhibitor Reference

Basolateral
membrane

OAT1/3 Methotrexate, Ubenimex, Tetracycline,
Acyclovir

NSAIDs, Leflunomide, Cytarabine,
Vincristine, Hydrocortisone, Mitoxantrone

Zhu et al. (2014), Babu et al. (2002),
Liao et al. (2020), El-sheikh et al.
(2013)

OCT2/3 Fampridine, Cisplatin, Oxaliplatin,
Metformin, Lamivudine, Nadolol

Fampridine, NSAIDs, Dolutegravir,
Isavuconazole, Duloxetine, Cetirizine

Jung et al. (2013), Misaka et al. (2016),
Koepsell (2013), Mulgaonkar et al.
(2013), Khamdang et al. (2002), Xiao
et al. (2018), Nepal et al. (2022),
Noguchi et al. (2017)

OATP-4C1 Remdesivir, Digoxin, Methotrexate Digoxin, Ouabain Yamaguchi et al. (2010), Sato et al.
(2021), Mikkaichi et al. (2004)

Apical
membrane

P-gp/MDR1
(ABCB1)

Erythromycin, Clarithromycin,
Azithromycin Tetracycline, Digoxin,
Methotrexate, Pazopanib, Sorafenib,
Everolimus, Tisirolimus, Paclitaxel,
Gefitinib, Vincristine, Nadolol, Elacridar

Isavuconazole, Axitinib, Cabozantinib,
Everolimus, Verapamil, Cyclosporine,
Erythromycin, Ritonavir, Ketoconazole,
Quinidine, Diltiazem

Misaka et al. (2016), Akamine et al.
(2019), Rengelshausen et al. (2003),
Banerjee et al. (2000), Milane et al.
(2007), Perez-Tomas (2006),
EL-Mahdy et al. (2020), Dash et al.
(2017)

BCRP (ABCG2) Methotrexate, Sorafenib, Doxorubicin,
Mitoxantrone, Docetaxel, Gefitinib,5-
Fluorouracil, Imatinib

Isavuconazole
TKI (e.g., Gefitinib, sunitinib), Elacridar

Reustle et al. (2018), Safar et al.
(2019), Yanase et al. (2004), Alves
et al. (2022), Sun et al. (2022)

MRP2/4 Cisplatin, Methotrexate, Anthracyclines,
Vinca alkaloids, Epipodophyllotoxins,
Paclitaxel, Acyclovir, Fosinopril

Leflunomide, Cyclophosphamide,
Mydrocortisone, Tacrolimus, Cyclosporine,
Vincristine, Vincristine, 6-mercaptopurine

Liao et al. (2020), El-Sheikh et al.
(2013), Pedersen et al. (2017), Green
and Bain (2013)

MATE1/2K Dofetilide, Cisplatin, Oxiliplatin,
Cimetidine, Metformin, Norfloxacin,
Ciprofloxacin, Levofloxacin, Nadolol,
Emtricitabine

Dolutegravir, Famotidine, Cimetidine,
Pyrimethamine

Misaka et al. (2016), Uddin et al.
(2022), Waissbluth et al. (2023),
Miyamae et al. (2001), Reznicek et al.
(2017), He et al. (2011)

OAT4 Estrone sulfate, Urate, Ibuprofen,
Indomethacin, Ketoprofen, Salicylate,
Olmesartan, Levocetirizine

Candesartan, Siladiate, Losartan, Valsartan,
Tranilast

Nigam (2015), Khamdang et al.
(2002), Noguchi et al. (2017),
Burckhardt and Burckhardt (2011),
Noguchi et al. (2021), Yamashita et al.
(2006), Mandal et al. (2017)

OCTN1/2 Etoposide, Oxaliplatin, Imatinib Cetirizine, Quinidine,Tetracycline,
Minocycline

Hu et al. (2012), Jong et al. (2011), Hu
et al. (2008)

PEPT2 β-lactam antibiotics, Enalapril; valacyclovir;
bestatin

Döring and Petzinger (2014),
El-Sheikh et al. (2008), Li et al. (2006),
Ganapathy et al. (1998), Tomita et al.
(1990), Inui et al. (2000), Smeets et al.
(2020)

ABC, adenosine triphosphate-binding cassette; P-gp, P-glycoproteins; MRP, multi-drug resistance protein; OATP, organic anion transporter polypeptide; OAT, organic anion transporter;

OCT, organic cation transporter; OCTN, organic cation/carnitine transporter; PEPT, peptide transporter; MATE, multi-drug and toxin excretion; BCRP, breast cancer resistance protein;

NSAID, non-steroidal anti-inflammatory drugs; TKI, tyrosine kinase inhibitor.
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This indicates that SLC14A1 inhibits the occurrence and
development of kidney cancer (Wan et al., 2023). Therefore,
SLC14A1 is a potential target for the treatment of kidney cancer.
However, these hypotheses are still preliminary and further research
is needed to confirm the exact relationship between SLC14A1 and
kidney cancer. In addition, the occurrence and development of
kidney cancer is complex processes involving the interaction of
multiple genes and factors; therefore, SLC14A1 cannot be regarded
as the sole cause of kidney cancer.

Sodium-coupled dicarboxylate transporter (NaDC1) encoded
by SLC13A2 plays an important role in regulating the acid-base
balance, preventing calcium kidney stones, regulating sodium-
chloride transport in the collecting duct, and regulating blood
pressure (Osis et al., 2019). Apical NaDC1 immunomarker is
present throughout the proximal convoluted tubule but is not
detected in kidney tumors, including ccRCC and pRCC, that
presumably originate in the proximal convoluted tubule, as well
as in tumors of non-proximal convoluted tubule origin (Lee et al.,
2017). This suggests that NaDC1 expression may is
downregulated in RCC.

The relationship between the expression of SLC22 genes and
survival in patients with kidney cancer was assessed. In the Cancer
Genome Analysis (TCGA) project, two RCC RNA-seq datasets,
namely ccRCC and pRCC, were found to have multiple differentially
expressed (DE) SLC22 transporter genes compared with those in
normal kidney tissue. These included SLC22A6, SLC22A7, SLC22A8,
SLC22A12, and SLC22A13. The patients with disease had an
association between overall survival and expression of most of
these DE genes. Many important SLC22 genes, including those of
the OAT and OAT-related groups, had decreased expression over
the continuum of stages of RCC from well-functioning, healthy

kidneys to advanced metastatic disease. Alternatively, analysis of
patients with different classifications of tumor size/progression,
lymph node involvement, and presence of metastasis identified
multiple SLC22 transporters as significantly changed, often
decreasing with severity. A number of the identified transporters
(e.g., URAT1/SLC22A12, OAT1/SLC22A6, OAT3/SLC22A8, BCRP/
ABCG2) are well-established uric acid transporters. This may be
clinically important since, a number of studies indicate that altered
uric acid levels and kidney cancer are associated (Whisenant and
Nigam, 2022).

According to the Oncomine cancer transcriptome database,
most uptake transporters except OCTN2 and PEPT1 are
transcriptionally repressed in RCC (Rhodes et al., 2004), and the
kidneys contain various SLC22 transporters (Rosenthal et al., 2019;
Nigam et al., 2015). In RCC, most of the genes for SLC22 are
downregulated, which affects the uptake of some anti-tumor drugs
in the kidneys, thereby impacting the therapeutic efficacy of these
drugs and potentially leading to the progression of the cancer.
Winter et al. (2016) found that, OCT2 expression in RCC cells
was below the limit of quantification. Western blot analysis revealed
no OCT2 protein expression and OCT expression was restored by
inhibiting its methylation. Oxaliplatin, a platinum-based anticancer
drug, covalently binds to DNA to form DNA adducts, which trigger
various signal transduction pathways. Platinum resistance is caused
by insufficient DNA-binding; thus, cellular accumulation of the drug
is an important determinant of oxaliplatin’s cytotoxicity (Kelland,
2007). Early clinical trials have shown that oxaliplatin is ineffective
against advanced RCC (Chaouche et al., 2000; Porta et al., 2004).
Furthermore, OCT2 is a major transporter that enhances cellular
uptake and cytotoxicity of oxaliplatin in vitro (Tatsumi et al., 2014).
Most proteins showing reduced expression have not yet been

TABLE 2 Changes in renal transporters during RCC.

Tissue or cell Transporter Change Reference

Kidney tissue in patients with RCC P-gp Upregulation Walsh et al. (2009)

786-O cells P-gp Upregulation Sato et al. (2015)

Kidney tumor cell lines 786-O, RCCNG1, A498, LN78, and ACHN OAT1 Downregulation Shnitsar et al. (2009)

Kidney tumor cell lines A498 and 786-O OCT3 Upregulation Shnitsar et al. (2009)

RCC cell lines CAKI-1 OCT2 Downregulation Lee et al. (2017)

Kidney tissue in patients with primary pRCC, primary ccRCC OCT2 Downregulation Visentin et al. (2018)

ccRCC metastasis tissue OCT2 Upregulation Visentin et al. (2018)

786-O, 769-P, HEK-293 cell lines OCT2 Downregulation Chen et al. (2019a)

five RCC cell lines (Caki-1, Caki-2, A-498, ACHN, and 786-O) OCT2 Downregulation Winter et al. (2016)

RCC tissues OCT2 Downregulation Liu et al. (2016)

Kidney tissue in patients with ccRCC BCRP Upregulation Lee et al. (2017), Reustle et al. (2018)

Japanese RCC patients with the rs2231142 C421A genetic variant BCRP Downregulation Low et al. (2016)

Kidney tissue in patients with RCC MRP1/3/4 Upregulation Rhodes et al. (2004)

Kidney tissue in patients with ccRCC MRP2 Upregulation Lee et al. (2017)

Tumor tissue and normal kidney tissue from patients with ccRCC MRP2 Upregulation Schaub et al. (1999)

RCC, renal cell carcinoma; pRCC, papillary RCC; ccRCC, clear cell RCC; P-gp, P-glycoproteins; MRP, multi-drug resistance protein; OAT, organic anion transporter; OCT, organic cation

transporter; BCRP, breast cancer resistance protein.
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characterized; however, studies strongly suggest that reduction in
uptake transporters contributes to multidrug resistance in RCC
(Puris et al., 2023).

The expression of OCT2 in RCC is has been relatively well
studied. Caetano-pinto et al. (2022) (Lee et al., 2017) characterized
the activity, expression, and potential regulatory mechanisms of
renal drug transporters in RCC in vitro using different cell lines and
a non-malignant RPTEC. They found that the expression of
OCT2 was absent in the RCC cell line, CAKI-1. Moreover, a
limited amount of OCT2 expression was recovered by the
inhibition of methylation in CAKI-1 cells. Hence, both
OCT2 and MATE 2K are repressed in RCC cells, resulting in
insufficient accumulation of oxaliplatin and subsequent therapy
failure. In RCC cell lines, decitabine (DAC) was used to inhibit
DNA methylation by blocking DNA methyltransferases. OCT2 but
not MATE-2K expression was restored in RCC cells after DAC
treatment, resulting in high oxaliplatin uptake and low oxaliplatin
efflux, high oxaliplatin accumulation, and increased oxaliplatin
cytotoxicity (Liu et al., 2016). Therefore, sequential combination
of DAC and oxaliplatin is a promising treatment option to sensitize
RCC cells to oxaliplatin by activating OCT2-mediated transport.

The effect of microRNAs on transporters has also been studied in
RCC. MicroRNAs (miRNA) are a set of endogenous single-stranded
small RNAs with a length of approximately 21–23 nt, they modify gene
expression post-transcriptionally, participate in the mediation of over
60% of protein-coding gene expression, and participate in almost all
intracellular biological processes. Hence, miRNAs not only affect
normal cell growth, differentiation, and other aspects, but also play a
role in cancer, heart disease, inflammation, and more (Shen et al., 2012;
Lu et al., 2017). With the growth of miRNA research and the
development of molecular biology technology, an increasing number
of studies have shown that abnormal expression of miRNAs can affect
the tumor formation and growth. The miRNA expression profiles in
RCC tissue samples have been screened and have revealed that the
formation and metastasis of renal cancer are strongly correlated with
some miRNAs (Miranda-Poma et al., 2022; Petillo et al., 2009).
Moreover, miRNAs belonging to the Let-7 family are significantly
downregulated in patients with nephroblastoma (Huo et al., 2010).
Most miRNAs in RCC tissues exhibited a downward trend. These
abnormally expressed miRNAs can be used as targets or targeted drug
components to inhibit their downstream regulation to curb tumor
proliferation and progression. They can also be used as biomarkers for
the diagnosis of RCC before radioactive examination. High miR-630
levels inhibit the expression of OCT2 mRNA, thereby inhibiting its
protein expression levels andweakening its uptake of classical substrates
and the anticancer drug oxaliplatin (Chen et al., 2019a). This suggests
that the inhibition of OCT2 as a result of high miR-630 expression is
one of the mechanisms of oxaliplatin resistance in RCC.

OCT2 was also differentially expressed in primary and
metastatic tissues of kidney cancer. Interestingly, a significant
decrease in OCT2 mRNA expression was found in primary RCC
but not in metastatic RCC (Visentin et al., 2018). Moreover, the
main choline transporter in the kidney, OCT2, recognizes
fluorocholine as a substrate (Visentin et al., 2017). Furthermore,
a high likelihood exists for the dominant role of OCT2 in [18F]
fluorocholine renal uptake, and changes in OCT2 expression levels
during renal carcinogenesis may affect [18F] fluorocholine
accumulation. Compared with that in surrounding normal

tissues, metastatic RCCs may accumulate abnormal amounts of
[18F] fluorocholine due to OCT2 modulation. The use of [18F]
fluorocholine positron emission tomography/computed
tomography may improve sensitivity for the detection of early-
stage metastatic disease, which is a major clinical challenge during
the initial staging of RCC (Chaouche et al., 2000).

SLC22A3 (human OCT3) is highly expressed in two of the five
RCC cell lines (A498 and 786-O) (Walsh et al., 2009). In A498 cells,
[3H]MPP (the model substrate of OCT3) accumulation was >10 fold
higher than in ACHN cells. Irinotecan, vincristine, and melphalan
inhibited uptake of [3H]MPP into these cells and also into
hOCT3 stably transfected Chinese hamster ovary (CHO) cells. The
growth of CHO-hOCT3 was inhibited by 20% more with irinotecan
and by 50% more with vincristine compared with non-transfected
CHOcells.Melphalan produced 20%–30%more inhibition in hOCT3-
expressing cells compared with non-expressing control cells.
Expression of hOCT3 in kidney carcinoma cell lines increases
chemosensitivity to melphalan, irinotecan, and vincristine. That
supports the hypothesis that the sensitivity of tumor cells to
chemotherapeutic treatment depends on the expression of
transporter proteins mediating specific drug accumulation into
target cells. This fact renders OCT3 an appropriate candidate for
individualized kidney tumor therapy (Shnitsar et al., 2009). Along
these lines, it is worthwhile considering to test for OCT3 expression
and to tailor the cytostatic therapy.

Little was known about the expression of OATs in kidney
tumors and their interactions with cytostatics. The expression of
SLC transporters in the kidney tumor cell lines 786-O, RCCNG1,
A498, LN78, and ACHN, and their interactions with
chemotherapeutics have been investigated (Walsh et al., 2009).
An mRNA level analysis in kidney cancer cell lines revealed the
presence of OAT1. However, the uptake of PAH was relatively low,
and it was not inhibited by 500 μmol/L probenecid (a standard
blocker of OATs). OATs are, therefore, unsuitable as targets for
anionic cytostatic chemotherapy for RCC.

3.2 ABC family

Overexpression of ABC transporters in cancer cells is a well-
documented multi-drug resistance mechanism. The transport of
drugs from the intracellular to the extracellular is facilitated by
various transporters, which the expression and function of those
transporters are highly regulated (König et al., 2013). In addition,
hyperexpression of these transporters has been reported in
untreated solid tumors and various types of leukemia (Nakanishi
and Ross, 2012). However, the development of such inhibitors has
been challenging owing to the specificity and complexity of the
function of ABC transporters. Therefore, the evolution of resistance
to multiple drugs in cancer cells is a significant barrier for the
successful treatment of the disease (Wu et al., 2023).

Several diseases, including cancer, are affected by the inter-
individual variability in BCRP/ABCG2. BCRP expression may be
reduced by the minor alleles of two ABCG2 variants,
rs2231137 G34A (V12M) and rs2231142 C421A (Q141K). Gene
variants rs2231137 G34A and rs2231142 C421A have been reported
to be associated with disease risk, reduced efficacy of drug
treatments, and increased adverse reactions in different human
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diseases (Chen et al., 2019b). Relationship between carcinogenesis
and common ABCG2 variants is controversial in population-based
association studies in various types of cancer. Association of
ABCG2 rs2231142 C421A with the development of breast cancer
was examined in 100 Kurdish patients and 200 healthy controls
(Ghafouri et al., 2016). Patients with AA genotype of rs2231142 were
at a higher risk of breast cancer. A meta-analysis found that the
rs2231142 A allele is associated with a lower risk for the
development of multiple cancer types, including leukemia and
colorectal cancer. The relationship between the common
ABCG2 variants and cancer risk is complex and may be different
in divergent human populations and variable across cancer types.
Further studies are needed to clarify the impacts of BCRP
transporter genotypes upon carcinogenesis. However, the
common ABCG2 variants may also be related to severe drug-
induced adverse reactions to chemotherapy. In a study of
219 Japanese patients with RCC, the rs2231142 C421A genetic
variant was associated with severe thrombocytopenia following
sunitinib therapy (Low et al., 2016). Therefore, sunitinib doses
must be adjusted in patients with the rs2231142 A variant.

ABCC2 belongs to the ABC transporter family and induced
chemotherapy resistance; hence, it was named MRP2 (Jeong et al.,
2015). Reportedly, theMRP 2 and other ABC transporters influence the
anti-tumor therapeutic effects of TKIs (Kathawala et al., 2015;
Shibayama et al., 2011). As a TKI, sunitinib disrupts signaling
pathways that lead to tumor proliferation and angiogenesis in cancer
cells and is often considered the frontline treatment for pRCC.
Moreover, as a drug transporter, MRP2 may influence the effect of
sunitinib on cancer cells (Warta et al., 2014; Zhang et al., 2014). The
development of drug resistance is a common obstacle for TKI
treatment. One hypothesized resistance mechanism is the active
expulsion of intracellular substances by ABC transporter proteins
(He and Wei, 2012). Therefore, a combination of sunitinib and
MRP2 blockers for the treatment of pRCC2 may enhance anticancer
efficacy of Sunitinib. Saleeb et al. conducted experiments using AKI-2
cells in vitro and mouse models in vivo. Five groups were tested: anti-
vascular endothelial growth factor (sunitinib),MRP2 blocker (MK 571),
mammalian target of rapamycin inhibitor (everolimus), and sunitinib +
MK 571. Compared with that of the other treatment groups, the
sunitinib + MRP2 blocker group produced a marked therapeutic
reaction in vitro and in vivo. The MRP2 blocking results of both
in vitro and in vivo experiments showed elevated sunitinib uptake levels.
This suggests that the combination of sunitinib and MRP2 blockers
targeting pRCC has a therapeutic potential (Saleeb et al., 2018).

Many clinical studies have evaluated the role of P-gp in the
development of RCC. P-gp is an important membrane transporter
that effluxes drugs from cells, and affects cellular drug
concentrations, and exerts antitumor effects (Pilotto Heming
et al., 2022). Lee and Thevenod (2019) found that oncogenic
pituitary homeobox 2, a de facto master regulator of
developmental organ asymmetry, upregulates the expression of
P-gp in A498 RCC cells. Many anticancer drugs are the substrate
of P-gp (Dei et al., 2019). Therefore, exploring the role of P-gp in
RCC progression is important for improving RCC treatment
outcomes. Elevated P-gp expression in RCC cells expels
anticancer medications from cells, thereby resulting in decreased
intracellular drug levels and subsequent diminished efficacy against
tumors (Walsh et al., 2009). ABCB1 methylation is associated with

P-gp expression in RCC (especially ccRCC) (Yan et al., 2019), and
the P-gp mRNA expression levels in ccRCC is higher than that in
healthy kidney tissues (Yamaguchi et al., 2010). P-gp inhibition
increases the anti-tumor effects of sunitinib in RCC treated with
elacridar (Sato et al., 2015). In addition, both P-gp and BCRP
expression were increased in patients with ccRCC compared with
that in patients with normal kidney tissue or function (Reustle et al.,
2018). Higher BCRP inhibition was associated with better results
when sunitinib was used for cancer treatment (Reustle et al., 2018).

4 Future trends and research directions

Studies on the effects of drug transporters on RCC are relatively
scarce, yet hold significant importance. As mentioned above,
transporters are closely related to the occurrence, development, and
drug efficacy of RCC. Timely RCC diagnosis and inhibition of disease
progression can be achieved by exploring the expression of relevant
transporters. However, RCC sometimes developmultidrug resistance to
drugs, and transporters may have a vital impact on this process. Drug
resistance and metastasis of malignant tumors are a key cause of death
in patients with cancer and are a major challenge for cancer treatment
(Jolly et al., 2019). The vast majority of cancer deaths can be attributed
to the development of drug resistance (Bukowski et al., 2020); hence,
drug resistance remains a major barrier to achieving a successful cure
for cancer (Vasan et al., 2019). By leveraging the DDI mechanisms
mediated by drug transporters and combining the use of efflux
transporter inhibitors such as P-gp, BCRP, and MRP2 inhibitors.
The multi-drug resistance in RCC can be reversed in some
situations, because of that higher expression of efflux transporters is
one of the multi-drug resistance mechanisms, there are also other
mechanisms causing multi-drug resistance. Therefore, more studies on
the genetic polymorphisms of drug transporters should be investigated
to reveal the impact of these differences on kidney cancer treatments.
However, insufficient research on the genetic polymorphism of drug
transporters has been conducted. Overall, research on drug transport
and kidney cancer aims to improve drug efficacy, reduce side effects,
and promote personalized therapy.

5 Conclusion

Transporters may directly and indirectly affect the development
and progression of RCC. The expression and function of these drug
transporters has an important effect on drug concentrations, and the
alteration of drug exposure. That may affect the efficacy and toxicity
of anti-tumor drugs. Thus, current information indicates that the
changes of transporters have indirect affected disease occurrence or
progression. Understanding the role of these drug transporters in
RCC will provide more information about specific treatments.
Researchers and clinicians can consider these factors in order to
choose a suitable therapeutic drug or a combination drug strategy to
maximize the concentration of the drug in the tumor, improve the
efficiency of treatment and possibly increase drug resistance through
combination drugs and other measures. The directly relationship
between RCC and drug transporters is known less and is still worth
being studied further. Hence, this review summarizes the existing
literature, aims to provide support for clinical work and basic
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scientific research, and encourages the scientific community to focus
on changes in drug transport expression to ensure the effectiveness
and safety of patient medications.
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