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Background: The identification of compound-protein interactions (CPIs) is
crucial for drug discovery and understanding mechanisms of action. Accurate
CPI prediction can elucidate drug-target-disease interactions, aiding in the
discovery of candidate compounds and effective synergistic drugs, particularly
from traditional Chinese medicine (TCM). Existing in silico methods face
challenges in prediction accuracy and generalization due to compound and
target diversity and the lack of largescale interaction datasets and negative
datasets for model learning.

Methods: To address these issues, we developed a computational model for CPI
prediction by integrating the constructed large-scale bioactivity benchmark
dataset with a deep learning (DL) algorithm. To verify the accuracy of our CPI
model, we applied it to predict the targets of compounds in TCM. An herb pair of
Astragalus membranaceus and Hedyotis diffusaas was used as a model, and the
active compounds in this herb pair were collected from various public databases
and the literature. The complete targets of these active compounds were
predicted by the CPI model, resulting in an expanded target dataset. This
dataset was next used for the prediction of synergistic antitumor compound
combinations. The predicted multi-compound combinations were subsequently
examined through in vitro cellular experiments.

Results:Our CPI model demonstrated superior performance over other machine
learning models, achieving an area under the Receiver Operating Characteristic
curve (AUROC) of 0.98, an area under the precision-recall curve (AUPR) of 0.98,
and an accuracy (ACC) of 93.31% on the test set. The model’s generalization
capability and applicability were further confirmed using external databases.
Utilizing this model, we predicted the targets of compounds in the herb pair
of Astragalus membranaceus and Hedyotis diffusaas, yielding an expanded target
dataset. Then, we integrated this expanded target dataset to predict effective
drug combinations using our drug synergy prediction model DeepMDS.
Experimental assay on breast cancer cell line MDA-MB-231 proved the
efficacy of the best predicted multi-compound combinations: Combination I
(Epicatechin, Ursolic acid, Quercetin, Aesculetin and Astragaloside IV) exhibited a
half-maximal inhibitory concentration (IC50) value of 19.41 μM, and a
combination index (CI) value of 0.682; and Combination II (Epicatechin,
Ursolic acid, Quercetin, Vanillic acid and Astragaloside IV) displayed a IC50

value of 23.83 μM and a CI value of 0.805. These results validated the ability
of our model to make accurate predictions for novel CPI data outside the training

OPEN ACCESS

EDITED BY

Jie Hou,
Dalian Medical University, China

REVIEWED BY

Yunyun Dong,
Taiyuan University of Technology, China
Junhao Li,
Viva Biotech, China

*CORRESPONDENCE

Ximing Xu,
xmxu@ujs.edu.cn

Chunlai Feng,
feng@ujs.edu.cn

RECEIVED 17 July 2024
ACCEPTED 20 August 2024
PUBLISHED 04 September 2024

CITATION

Ji W, She S, Qiao C, Feng Q, Rui M, Xu X and
Feng C (2024) A general prediction model for
compound-protein interactions based on
deep learning.
Front. Pharmacol. 15:1465890.
doi: 10.3389/fphar.2024.1465890

COPYRIGHT

© 2024 Ji, She, Qiao, Feng, Rui, Xu and Feng.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 04 September 2024
DOI 10.3389/fphar.2024.1465890

https://www.frontiersin.org/articles/10.3389/fphar.2024.1465890/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1465890/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1465890/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2024.1465890&domain=pdf&date_stamp=2024-09-04
mailto:xmxu@ujs.edu.cn
mailto:xmxu@ujs.edu.cn
mailto:feng@ujs.edu.cn
mailto:feng@ujs.edu.cn
https://doi.org/10.3389/fphar.2024.1465890
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2024.1465890


dataset and evaluated the reliability of the predictions, showing good applicability
potential in drug discovery and in the elucidation of the bioactive compounds
in TCM.

Conclusion: Our CPI prediction model can serve as a useful tool for accurately
identifying potential CPI for a wide range of proteins, and is expected to facilitate
drug research, repurposing and support the understanding of TCM.

KEYWORDS

compound-protein interaction, deep learning-based prediction model, unbiased large-
scale negative dataset, generalization capability, traditional Chinese medicine

1 Introduction

Accurate identification of compound-protein interactions
(CPIs) is a crucial foundation of drug discovery as it can
accelerate the hit identification and is also helpful for
understanding the underlying mechanism of action of a drug
(Lounkine et al., 2012; Oprea and Mestres, 2012). Accurate and
comprehensive identification of CPIs enables the interpretation of
intricate interactions among drugs, targets, and diseases, thereby
facilitating a profound understanding of the therapeutic effects of
individual drugs as well as multi-drug regimens.

The identification of CPIs is typically confirmed through wet-
laboratory experimentation. However, such experimental validation,
including high-throughput screening and other bioassays, remains
time- and cost-consuming, hinging its success upon the vast expanse
of compound space (Hay et al., 2014; Mak and Pichika, 2019). In
contrast, computational methods have been harnessed for CPI
prediction. Traditional computational methods mainly include
approaches like ligand-based and structure-based virtual
screening, and 3D shape matching. Nevertheless, poor prediction
performance has been documented, attributed to a scarcity or
absence of known ligand information and protein structures.
Instead, regarding structure-free methods, machine learning-
based models have been developed to predict CPI. Common
machine learning algorithms include support vector machine
(SVM), K-nearest neighbor (KNN), random forest (RF) and
extreme gradient boosting (XGBoost) (Chen et al., 2016;
Bagherian et al., 2021; Yu et al., 2022). For example, with the
MACCS substructure fingerprints of compounds and
physicochemical properties of proteins, an SVM model achieved
good prediction performance for four datasets, including enzymes,
ion channels, G protein-coupled receptors (GPCRs) and nuclear
receptors (Cao et al., 2012). Additionally, regarding these four
datasets, another RF model named LRF-DTI obtained a good
prediction accuracy, which used the pseudo-position specific
scoring matrix (PsePSSM) and FP2 molecular fingerprint to
extract interaction features (Shi et al., 2019). However, most
traditional machine learning approaches require training models
for each protein separately, limiting the model’s applicability to
predicting interactions between specific classes of proteins and
compounds (Mervin et al., 2015). In other words, the robustness
and generalization ability of these models have been greatly reduced
when facing the prediction of novel interactions between
compounds and proteins not used in model training.

With the accumulation of massive biomedical data, deep
learning’s automated feature learning capacity and powerful

processing ability have recently shown considerable performance
benefits in the fields of image recognition, speech recognition,
clinical diagnosis, and drug discovery (Leung et al., 2014; LeCun
et al., 2015; Ma et al., 2015). More specifically, protein structure
prediction, drug properties (ADMET) prediction, and prediction of
synergistic drug combinations are only a few of the areas where deep
learning has been employed in drug research due to its benefits in
multi-tasking learning (Mayr et al., 2018; Feng et al., 2019; Sturm
et al., 2020; Jumper et al., 2021). In terms of CPI prediction, a variety
of deep learning frameworks have been utilized, such as a
multimodal neural network in DeepCPI (Wan et al., 2019), a
graph neural network in CPI-GNN (Tsubaki et al., 2019), and a
transformer architecture in TransformerCPI (Chen et al., 2020).

While various deep learning-based models have shown great
potential in identifying novel CPIs, there are still several limitations
in the previous studies. The first problem is that the interpretability
of these models was restricted because of their small CPI training
datasets, and they were not comprehensively evaluated by the large-
scale bioactivity data that are publicly available. To train the
prediction models, many studies also used negative CPI data.
Still, it is challenging to collect highly reliable negative samples
due to the limited size of inactive CPI data. Second, the issue of
hidden ligand bias has been identified in several datasets, such as
DUD-E and MUV. Due to this, the predictions end up focusing on
compound features rather than interaction features, leading to an
overestimation of the prediction performance (Chen et al., 2019;
Sieg et al., 2019). Furthermore, a variety of studies lack an evaluation
of model generalization ability and applicability, and have not
revealed a great generalization ability to external datasets or
practical applications, especially for novel CPIs in which
compounds and targets are outside the training dataset.

Inspired by these limitations, we, herein, developed a deep
learning-based model for predicting CPI with high accuracy,
generality, and applicability that can be extended to novel
proteins or compounds. We first generated an unbiased large-
scale benchmark dataset that integrated multi-source bioactivity
data containing a large amount of inactive data. Next, we compared
the prediction performance of our deep learning approach with
several machine learning algorithms, including K nearest neighbor
(KNN), random forest (RF) and extreme gradient boosting
(XGBoost). To further assess the generalization ability of our CPI
prediction model, we measured the similarity between the tested
protein and the training protein using several metrics, identifying
the most suitable similarity evaluation metric for evaluating model
performance. We then constructed multiple external datasets with
novel CPI pairs and applied these external datasets to analyze the
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model’s performance in terms of similarity evaluation metrics.
Finally, the applicability of our model was evaluated by
examining its effectiveness in discovering synergistic multi-
compound combinations from traditional Chinese medicine
(TCM) that possessing a variety of active compounds.

2 Materials and methods

2.1 Data collection and collation

Large-scale bioactivity data were collected from publicly
available databases, such as BindingDB (Gilson et al., 2016),
ChEMBL (Mendez et al., 2019), DrugBank (Wishart et al.,
2018) and PubChem (Kim et al., 2019). In high-throughput
screening, the cut-off for hit detection is typically 10 μM,
which was applied to identify active compounds, including
highly active and marginally active compounds (Koutsoukas
et al., 2013). Therefore, CPIs with half maximal inhibitory
concentrations (IC50) or inhibition constants (Ki) ≤ 10 μM in
the BindingDB and ChEMBL databases were labeled as positive
samples, whereas those pairs with IC50 or Ki > 10 μM were
selected as negative samples. In addition, known interacting
drug-target pairs in the DrugBank database were used as
positive samples. To ensure accuracy and consistency across
different datasets, we employed specific rules during the data
collection process. For determining compound activity, a
compound was classified as active if it was labeled as active in
at least one database. Conversely, if a compound was labeled as
inactive across all databases, it was considered inactive. This
approach helped minimize the risk of misclassification, especially
in cases of variability or uncertainty in experimental results.
Next, for compounds with IC50 or EC50 data available from
multiple sources, the smallest value was chosen as the
representative IC50 or EC50 value for that compound. This
selection was based on the rationale that a lower IC50 or EC50

value indicated higher potency, making it the most biologically
relevant choice for predicting compound-protein interactions.

The selection of highly reliable negative samples is a
challenging task in CPI prediction. The prediction
performance of most previous models is negatively impacted
by the fact that they have used experimentally unvalidated CPI
pairs as negative samples, which can lead to the generation of
false negative data. From the BioAssay subdatabase of the
PubChem database, more than 294 million bioactivity data
with a large number of inactive compound annotations were
downloaded and used as negative samples in this study.
Subsequently, the collected CPI data were uniformly converted
into PubChem CID and UniProt ID identifiers through database
mapping files, and duplicate CPI pairs were removed.
Compounds with molecular weights less than 100 Da or
greater than 1,000 Da were removed to focus on small
molecule compounds. Similar compounds acting on the same
protein would lead to over-optimistic performance resulting
from simple prediction of the model. To reduce hidden ligand
bias, Morgan fingerprints of compounds were generated by the
RDKit tool. Then, in the compound group with Tanimoto
similarity (calculated based on Morgan fingerprints) greater

than 0.8 for the same protein, only the compound with the
largest number of interactions was retained, while the rest
were discarded. Due to the large variation in the number of
inactive compounds for different proteins in the PubChem
database, only the top 1,000 compounds with a high number
of interactions and a Tanimoto similarity of less than 0.8 to other
compounds within their compound group were retained as
negative samples for the protein.

Furthermore, the collected negative samples were further
screened using the compound-target correlation space based
interaction prediction model (CTCS-IPM) previously developed
by our group (Koutsoukas et al., 2013). Briefly, for the
compounds in the negative samples collected above, their known
positive targets were gathered. Then, compound descriptors were
calculated using Molecular Operating Environment (MOE), and
descriptors based on protein amino acid sequences were calculated
using PROFEAT. Principal component analysis (PCA) was
performed to select feature descriptors. These descriptors were
used to construct a compound-target correlation space based on
canonical correlation analysis (CCA). Subsequently, for each
compound, targets acting on the same compound were defined
into a specific target space, and the Euclidean distance between
target pairs within the space of compound was calculated. A distance
threshold was determined at the upper limit of the 95% confidence
interval of average distances among all target pairs within the target
space. Then, the Euclidean distance between each protein in the
negative sample and the targets within the target space of each
compound was calculated. If this distance was greater than the
threshold of the target space, it was determined that the given
compound does not interact with the protein. The selected negative
samples by the CTCS-IPM were then used to construct the
prediction model.

2.2 Feature representations

2.2.1 Compound feature representations
To extract compound feature representations, SMILES

strings of compounds were downloaded from the PubChem
database and their 2048 bit Morgan fingerprints with a radius
of two were generated via the RDKit tool. In order to avoid the
curse of dimensionality caused by excessive features, principal
component analysis (PCA) was employed to generate the low-
dimensional representations of compound features. The main
idea behind PCA is to convert a set of multidimensional variables
with certain correlation into some new independent principal
components based on linear transformation. This
dimensionality reduction method takes into full consideration
the correlation between variables while still retaining the
majority of the information in the original variable space.
According to the cumulative contribution rate, the top
200 principal components were retained as compound feature
representations.

2.2.2 Protein feature representations
To extract protein feature representations, Word2vec, a word-

embedding technique in Natural Language Processing (NLP) tasks,
was used to convert protein sequences into low-dimensional real-

Frontiers in Pharmacology frontiersin.org03

Ji et al. 10.3389/fphar.2024.1465890

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1465890


valued vectors. Word2vec is a neural network model that learns
semantic knowledge from a large number of text corpora in an
unsupervised manner and represents the semantic information of
words by word vectors after learning the text corpora. To be more
specific, a protein sequence was regarded as a document, in which
every three non-overlapping amino acid residues was regarded as a
word. Following this, low-dimensional embeddings of all possible
words were learned by a Continue Bag-of-Words (CBOW) model.
For the hyperparameters of the CBOW model, the embedding
dimension was set to 100, the number of negative examples was
set to 5, the size of context window was set to 5, and the number of
training parallelisms was set to 8. Subsequently, the embeddings of
all words were fixed, and the representation of protein features was
obtained by summing and averaging all word embeddings for
the protein.

2.3 Model construction

2.3.1 Model architecture
Using Python 3.6 as the platform, deep learning prediction

model was constructed using Keras, a TensorFlow-based deep
learning framework. The model was developed in sequential
mode and used fully connected layers, which consisted of an
input layer, hidden layers and an output layer as the basic
framework. First, the features of compounds and proteins were
combined to create a representation of the features of
compound-protein interactions, which were then loaded into the
neurons of the input layer. Subsequently, the hidden layers were
used to adjust the weights and thresholds to linearly partition the
interaction features. The Rectified Linear Unit (ReLU) activation
function (Equation 1) in the hidden layers was used to increase the
nonlinear relationship between the layers of the neural network and
to achieve more efficient gradient descent and back-propagation,
which would improve the gradient explosion and vanishing
problems. In addition, Batch Normalization layer and Dropout
layer were used to accelerate network convergence and control
overfitting. Finally, the Sigmoid activation function (Equation 2)
in the output layer was applied to generate binary predictions by
mapping the predicted values into the range (0, 1).

y � Relu Wx + b( ) (1)
where y is the output value of the hidden layer, x is the output value
of the input layer or the upper hidden layer, W is the weight matrix
and b is the bias vector.

ŷ � Sigmoid W′y + b′( ) (2)
where ŷ is the predicted value of the model, y is the activation value
of the second hidden layer, W′ is the weight matrix and b′ is the
bias vector.

The model’s training involved using the compile module to
configure the learning process of the model. Specifically, Adam
(adaptive moment estimation) was set as the optimizer algorithm,
and binary cross-entropy (Equation 3) was set as the loss function.

Loss yi, ŷi( ) � −1
n
∑
n

i�1
yi log ŷi( ) + 1-yi( )log 1-ŷi( )[ ] (3)

where n is the number of samples, yi is the true value of the ith

sample, and ŷi is the predicted value of the ith sample.
Hyper parameters are important characteristic data that are

usually set artificially for the model. They have a significant impact
on model performance. In order to improve the prediction
performance of the model, grid search algorithm was applied to
seek the optimal hyper parameter combination from the specified
hyper parameter spaces, including the number of neurons in the
hidden layer, learning rate, dropout rate and epoch number. In
particular, the optimization range of the number of neurons in the
first hidden layer was {256, 512, 1,024, 2048}, the optimization range
of number of neurons in the second hidden layer was {128, 256, 512,
1,024}, the optimization range of learning rate was {0.01, 0.001,
0.0001}, the optimization range of dropout rate was {0, 0.2, 0.5}, and
the optimization range of epoch number was {100, 200, 500}. With
accuracy as the evaluation metric, 432 models (4*4*3*3*3)
constructed with all hyper parameter combinations were
evaluated to determine the optimal CPI prediction model.

2.3.2 Model performance metrics
To evaluate the prediction performance of the model, the

sensitivity (SEN, Equation 4), specificity (SPE, Equation 5),
accuracy (ACC, Equation 6), the area under the Receiver
Operating Characteristic curve (AUROC), and the area under the
precision-recall curve (AUPR) were used as evaluation metrics.
Among them, AUROC and AUPR are widely used to evaluate
the performance of binary classifiers against imbalanced datasets.
The abscissa of the ROC curve is the false positive rate (FPR,
Equation 7) and the ordinate is the true positive rate (TPR,
Equation 4). The abscissa of the PR curve is the recall (Equation
4) and the ordinate is the precision (Equation 8).

ACC � TP + TN

TP + FP + TN + FN
(4)

SEN / TPR / Recall � TP

TP + FN
(5)

SPE � TN

FP + TN
(6)

FPR � FP

FP + TN
(7)

Precision � TP

TP + FP
(8)

where TP is the number of true positive samples, TN is the number
of true negative samples, FP is the number of false positive samples,
and FN is the number of false negative samples.

2.4 Model performance evaluation

2.4.1 Model performance comparison
In the CPI prediction task, we compared our model with three

baseline machine learning algorithms, including K nearest
neighbor (KNN) model, random forest (RF) model and
extreme gradient boosting (XGBoost) model. These prediction
methods were all constructed based on scikit-learn library, and
trained and evaluated using the same datasets that our deep
learning model used. Moreover, the hyper parameters of the
other models were also optimized using a grid search algorithm
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and cross validation. For the KNN model, the hyper parameters
of n_neighbors and weights were optimized. For the RF model,
the hyper parameters of n_estimators, min_samples_leaf and
min_samples_split were optimized. For the XGBoost model,
the hyper parameters of max_depth, n_estimators and
learning_rate were optimized.

2.4.2 Model generalization ability evaluation by the
external validation dataset

The reliability of the prediction results is closely tied to the
model’s potential for practical application; however, this has not
been done in the case of CPI prediction models, which is a major
obstacle to their practical use. Therefore, it is necessary to investigate
the prediction performance of our model on novel data (Kaneko and
Funatsu, 2014; Kanai et al., 2021). Since the Word2vec model can
map semantically similar words to similar word vector spaces (Yang
et al., 2018), based on protein feature vectors and amino acid
sequences, we measured the similarity between the tested protein
and the training protein using Euclidean distance, Cosine similarity
and protein sequence identity, and then combined the prediction
performance of the model for the tested protein to determine the
model’s applicability.

2.4.2.1 Protein similarity evaluation
To clarify the applicability of our model, the influence of

protein similarity on its predictive performance was examined.
Here, common vector similarity evaluation metrics such as
Euclidean distance and Cosine similarity, as well as protein
sequence identity, were employed to determine the similarity
between modelled proteins. The concept of Similarity Ensemble
Approach (SEA) inspired us to develop an efficient method for
assessing the similarity between proteins. SEA suggests that two
proteins are similar if their active compound sets are similar. To
examine whether these metrics could be used to effectively
evaluate the protein similarity, we correlated the similarity of
protein-protein pair measured by these three metrics with the
number of active compounds their shared. Eventually, the most
effective vector similarity evaluation metrics was selected for
evaluating model performance through an external
validation dataset.

2.4.2.2 Model performance evaluation on the external
validation dataset

To assess the generalization ability of our model, external CPI
data were collected from the BindingDB and ChEMBL databases. As
described before, CPI pairs with an IC50 or Ki ≤ 10 μMwere used as
positive samples, while CPI pairs with an IC50 or Ki > 10 μM were
used as negative samples. The novel known interacting drug-target
pairs in the DrugBank database were used as positive samples. In
addition, the KIBA kinase inhibitor bioactivity dataset (Tang et al.,
2014) was used as another validation dataset, in which CPI data has
been experimentally validated. Then, the binding affinity values
were converted to binary values with reference to the recommended
KIBA threshold of 12.1 (He et al., 2017). Finally, the analysis of
model performance was conducted according to the protein
similarity measured by the common vector similarity
evaluation metrics.

2.5 Experimental validation of our model for
discovering synergistic anti-tumor
components in TCM

Traditional Chinese medicine (TCM) has attracted considerable
attention due to its unique effect on treating diseases. Possessing a
variety of active components, TCM function synergistically as a
whole to combat diseases. Given the distinctive “multi-compound,”
“multi-target,” and “multi-pathway,” characteristics of TCM,
unraveling the mechanisms of action of its active compounds
remains a challenge. Numerous studies and clinical experiments
demonstrated the efficacy of TCM in cancer therapy, which is
mainly attributed to the synergistic effects of its multiple
ingredients on the complex target networks.

However, incomplete understanding of compound-target
interactions has slowed the identification of synergistic
combinations derived from TCM. With the use of big data and
artificial intelligence technology, we developed a deep learning-
based model (DeepMDS), which utilizes the target information of
drug combinations and gene expression profiles of cancer cell lines
to predict pseudo-IC50 values for a chosen cancer cell line (She et al.,
2022). To validate our CPI prediction model, the targets of TCM
compounds predicted by the CPI model were integrated with known
targets and inputted into the DeepMDS to predict synergistic anti-
tumor compounds, followed by experimental verification.

Here, we focused on Astragalus membranaceus and Hedyotis
diffusaas, two herbs commonly used in breast cancer treatment.
This herb pair was supported by previous clinical research and
TCM theory (Liu et al., 2019; Han et al., 2020; Sheik et al., 2021;
Zhang et al., 2021). Subsequently, we collected the active compounds of
these herbs from the literature and retrieved the targets of these
compounds from public databases such as DrugBank Wishart et al.
(2018) and PubChem (Kim et al., 2019). Due to the incomplete target
data on TCM compounds, we utilized our CPI prediction model to
predict additional targets for these compounds, thereby expanding the
target dataset. In order to validate the credibility of our model, we first
employed the model to predict interactions between the compounds
and target proteins. The predicted results were compared with actual
interaction relationships to verify their accuracy. Subsequently, this
expanded target dataset was used for synergistic anti-tumor compounds
prediction. We then generated a variety of multi-compound
combinations (ranging from 2 to 5 drugs per combination) using
the collected compounds and integrated the target information of
the combinations as features inputs into DeepMDS. Additionally,
gene expression profiles of the breast cancer cell line MDA-MB-231,
which was downloaded from the Gene Expression Omnibus [GEO
(Barrett et al., 2013)], were inputted into DeepMDS model.

The DeepMDS model outputted the top-ranked compound
combinations, which we then experimentally validated for cell
viability in the MDA-MB-231 cell line. We compared the anti-
tumor effects of both single and multiple compound combinations
at varying concentrations. For multi-compound combinations, the
concentration of each compound was equal. The cellular results
were compared with the prediction outcome of DeepMDS, and the
synergistic effect of each combination was quantified using the
Combination Index (CI) calculated via CompuSyn (Chou and
Martin, 2007).
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3 Results

3.1 Modeling dataset

The number of CPI data collected from multiple databases as
well as the overlap between those databases was shown in Table 1.
Following the data preprocessing, a total of 1,014,627 CPI pairs were
obtained. This included 346,943 compounds, 1,957 proteins,
485,954 positive samples and 528,673 negative samples. The low-
dimensional representations of compound and protein features were
matched and integrated to represent the interaction features of CPI

pairs. Then, the modelling dataset was randomly split into a training
set (80%) and a test set (20%).

3.2 Overview of our model

The CPI prediction model mainly comprised two steps: 1)
extracting the features of compounds and proteins; and 2)
predicting the interactions between compounds and proteins. As
illustrated in Figure 1, PCA and Word2vec were applied to
automatically extract the low-dimensional representations of

TABLE 1 The number and overlap of CPI data from multiple databases.

BindingDB ChEMBL DrugBank PubChem

BindingDB 825,533 558,453 3,158 17,800

(658,031 + 167,502)

ChEMBL 67.65% 905,350 3,169 21,478

(688,649 + 216,701)

DrugBank 24.40% 24.49% 12,941 0

PubChem 2.16% 2.37% 0 68,259,224

Note: The numbers along the diagonal of the table represented the total number of CPI, pairs collected from each database, the numbers above the diagonal represented the number of

overlapping CPI, pairs between databases, and the percentages below the diagonal represented the percentage of overlapping CPI, pairs between databases relative to the smaller database.

FIGURE 1
The architecture of the CPI prediction model.
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compound and protein features, respectively. Subsequently, the
representations of compound and protein features were
combined to represent the interaction features of CPI pairs. Each
CPI pair was represented as an input vector, which consisted of a
200-dimensional representation of compound features and a 100-
dimensional representation of protein features. After that, the
representation of the interaction features of CPI pairs was fed
into a fully connected deep neural network (DNN) to make the
predictions.

3.3 Model performance

The results from the hyperparameter optimization showed
that the best deep learning model had superior prediction
performance with an accuracy of 92.74%. The optimal

settings for this model were as follows: the number of
neurons in the first hidden layer was 2048, the number of
neurons in the second hidden layer was 1,024, learning rate
was 0.0001, dropout rate was 0.5, and epoch number was 500
(Supplementary Table S1).

We compared the prediction performance of our deep
learning model with that of three baseline machine learning
models, including KNN, RF and XGBoost. The
hyperparameter optimization ranges and the performance
evaluation results of these three models were also summarized
in Supplementary Table S2, and the five-fold cross-validation
accuracies of their optimal models were 90.70%, 89.55% and
91.12%, respectively. Subsequently, we evaluated the prediction
performance of our deep learning model and the baseline
methods on the same test dataset in terms of five evaluation
metrics, including AUROC, AUPR, ACC, SEN and SPE (Table 2).
The results showed that our deep learning model outperformed
three baseline methods, with an AUROC of 0.98, an AUPR of
0.98, an ACC of 93.31%, an SEN of 93.95%, and an SPE of 92.72%,
respectively.

3.4 Model generalization ability evaluation
by the external validation dataset

To further evaluate the accuracy and generalization ability
and applicability of the CPI prediction model, external CPI

TABLE 2Model performance comparison based on deep learning and three
machine learning methods.

AUROC AUPR ACC (%) SEN (%) SPE (%)

DNN 0.98 0.98 93.31 93.95 92.72

KNN 0.97 0.96 91.27 91.51 91.04

RF 0.96 0.96 90.08 92.19 88.15

XGBoost 0.97 0.97 91.40 93.50 89.46

FIGURE 2
The similarity betweenmodeled proteins was measured by three similarity evaluationmetrics, and the relationship with the number of shared active
compounds. The similarity and percentage of protein-protein pair measured by Euclidean distance (A), Cosine similarity (B) and protein sequence identity
(C). The relationship between the similarity of protein-protein pair measured by Euclidean distance (A’), Cosine similarity (B’), protein sequence identity
(C’) and the number of their shared active compounds. Boxplot represented the interquartile range, with median value as the horizontal
orange segment.
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datasets were collected from public databases and the literature.
As a result, a BindingDB&ChEMBL dataset of 648,477 novel CPI
pairs was constructed from the BindingDB and ChEMBL
databases, including 405,385 compounds, 2,601 proteins,
490,243 positive samples and 158,234 negative samples. A
Kinase dataset of 240,986 CPI pairs was constructed based on
the KIBA kinase inhibitor database, which comprised
51,550 compounds, 467 proteins, 79,018 positive samples and
161,968 negative samples. Another DrugBank dataset
containing 2,408 novel CPI pairs was constructed from the
DrugBank database, including 1,123 compounds and
1,132 proteins. Subsequently, the similarity between the
tested protein and the training protein was determined. This
result was combined with the prediction performance of the
model for the tested proteins to explore the applicability of the
CPI prediction model.

3.4.1 Protein similarity evaluation
Although most protein-protein pairs did not share any active

compounds, the evaluation results showed a certain correlation
between the number of shared active compounds and the
similarity of protein-protein pairs across all similarity evaluation
metrics. In details, the more shared active compounds there were,
the higher similarity protein-protein pair has (the Euclidean
distance approached 0, the Cosine similarity approached 1, and
the protein sequence identity approached 100%) (Figure 2).

Compared with the other two metrics, the Euclidean distance
might more effectively distinguish between protein-protein pairs
with more and fewer shared active compounds. More specifically,
the number of shared active compounds was the highest for protein-
protein pairs with a Euclidean distance in the interval [0, 1.5]. This
number decreased gradually as the Euclidean distance increased,
until there were no shared active compounds for protein-protein

FIGURE 3
The performance evaluation results of the CPI prediction model on three validation datasets. The percentage of the tested proteins with different
Euclidean distance from the training proteins in the BindingDB&ChEMBL dataset (A), the Kinase dataset (B) and the DrugBank dataset (C). The relationship
between the Euclidean distance of the tested protein from the training protein and the performance of the CPI prediction model on the
BindingDB&ChEMBL datasets (D), the Kinase datasets (E) and the DrugBank datasets (F). The proportion of CPI pairs with true predictions and false
predictions in different Euclidean distance intervals on the BindingDB&ChEMBL datasets (G), the Kinase datasets (H) and the DrugBank datasets (I).
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pairs with the Euclidean distance in the interval [4, 10]. These results
suggested that Euclidean distance was a reliable measure of the
similarity between proteins. As a result, we used Euclidean distance
as the primary metric to measure the similarity between the tested
protein and the training protein.

3.4.2 Model performance evaluation on the
external validation dataset

The prediction results of the external validation dataset were
shown in Figure 3. For the BindingDB&ChEMBL dataset, the CPI
prediction model achieved an accuracy of 85.29% and an AUROC of
0.91 for protein whose Euclidean distance from the training protein
was in the interval [0, 0.4]. Moreover, the accuracy and AUC for
proteins within the intervals of [0.40, 0.67] were (50.45%–62.11%)
and (0.60–0.67), respectively (Figure 4).

In addition, the CPI prediction model achieved an accuracy of
92.64% for proteins with Euclidean distances from the modeling
protein in the interval [0, 0.4] in the DrugBank dataset. This
performance was higher than the accuracy (59.24%–73.13%) of
proteins in the interval [0.40, 3.0] (Figure 5).

For the KIBA dataset, due to its different mechanism of action
from other proteins, the accuracy and the AUC of the CPI prediction
model were 64.02% and 0.75, respectively, for proteins with
Euclidean distance in [0, 0.40]. Moreover, for the protein with
Euclidean distance in [0.40, 2.0], the model reached the accuracy
of (26.44%–68.24%) and AUC of (0.45–0.64) (Figure 6).

Taken together, the Euclidean distance between the proteins of
most novel CPI pairs and the training proteins was within the

interval [0, 0.4], thereby enabling the CPI prediction model to make
accurate prediction for these proteins. This finding is evidence of the
exceptional generalization capability and applicability of our CPI
prediction model. Furthermore, these evaluation results revealed
that the sequence similarity between the tested protein and the
training protein was correlated with the prediction performance of
the CPI prediction model. Specifically, as the sequence similarity
increased, the model exhibited an enhanced performance overall,
thereby suggesting that the similarity value can serve as a reliable
metric for evaluating the prediction results of the model.

3.5 Identification of anti-tumor compound
combinations from Astragalus
membranaceus and Hedyotis diffusaas
herb pair

To demonstrate the application of our CPI model, we attempted
to identify potential compound combinations for treating breast
cancer from an herb pair of A. membranaceus and H. diffusaas by
combining the CPI model with our DeepMDS model.

We first collected 46 compounds that were identified within A.
membranaceus and H. diffusaas herbs. Then, 558 targets were
initially retrieved for 46 compounds from the literature and
public databases (Supplementary Table S3). By comparing the
predicted compound-protein interaction relationships with the
actual ones, our model prediction achieved a recall rate of 87.2%.
Using our developed CPI model, we expanded the number of targets

FIGURE 4
The model performance on the BindingDB and ChEMBL dataset.
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FIGURE 6
The model performance on the KIBA dataset.

FIGURE 5
The model performance on the Drugbank dataset.
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in this dataset to 698, generating a more sophisticated compound-
target interaction network (Supplementary Table S4). These
compounds were then randomly mixed into a library of
compound combinations, ranging from 2 to 5 compounds for
each combination. Then, the DeepMDS model predicted the
candidates from the generated combination library. The predicted
pseudo-IC50 values of these combinations were summarized in
Supplementary Table S5. Among them, two combinations were
ranked highest, which exhibited remarkably low pseudo-IC50

values (Table 3). The two identified combinations were denoted
as Combination I (Comb I) and Combination II (Comb II).

To investigate the anti-tumor efficacy of Comb I and Comb II,
in vitro cellular experiments were carried out using the CCK-8 assay.
Both combinations significantly inhibited the proliferation of the
human breast cancer cell line MDA-MB-231, showing the low IC50

values (Table 4). The results were consistent with the predictions of
DeepMDS model. To examine their synergy, we then calculated the
CI values of these two combinations. The CI values for Comb I and
Comb II were 0.682 and 0.805, respectively, indicating that these two
combinations exhibited synergistic anti-tumor effects against MDA-
MB-231. Taken together, these results proved that our CPI model
could successfully predict the potential interactions between
compounds and targets, facilitating the identification of potential
inhibitors for a specific therapeutic target.

4 Discussion

The construction of reliable training datasets is a critical step in
CPI prediction; however, the integration of large-scale bioactivity
data and the acquisition of reliable negative samples still pose
challenges. In this regard, a large number of bioactivity data
from various databases, including BindingDB, ChEMBL,

DrugBank and PubChem, were integrated to construct a large-
scale benchmark dataset that contained selected massive negative
samples for CPI prediction. In addition, most CPI prediction models
suffer from the issue of the hidden ligand bias, which leads to over-
optimistic performance and the prediction performance of the
model will be significantly impaired in external validation and
practical application scenarios.

To decrease the risk of hidden ligand bias, we removed similar
compounds that act on the same protein target to prevent model
predictions that rely mainly on compound features rather than
interaction features. At the same time, the accuracy and
generalization ability of the model were evaluated using multiple
novel CPI datasets, and the results demonstrated that our CPI
prediction model could effectively learn the interaction features
of CPI pairs, rather than the hidden ligand bias in the datasets.

Since a prediction model has a certain scope of application and is
not a panacea, it is of great significance to define the applicability
potential of the model to maximize its practical utility. In general,
since the applicability of the model is closely related to the training
dataset, we used the Euclidean distance to evaluate the similarity
between the tested protein and the training protein, and we
combined this with the prediction performance of the model on
the tested protein to explore the prediction space. We found that this
model performed best with higher AUROC or ACC for proteins
whose Euclidean distance from the training protein was in the
interval [0, 0.4]. On the other hand, this model had lower
AUROC or ACC for proteins whose Euclidean distance from the
training protein was greater than 0.4. Overall, the results suggested
that a Euclidean distance of 0.4 could be employed as the critical
value for the model applicability potential to measure the reliability
of the prediction results.

Our CPI prediction model achieved good prediction
performance and generalization ability, even for novel CPI data

TABLE 3 Top 5 predicted drug combinations ranked by Log (pseudo-IC50).

No. Compound-1 Compound-2 Compound-3 Compound-4 Compound-5 Log (pseudo-IC50)

1 Epicatechin Ursolic acid Quercetin Aesculetin Astragaloside IV −2.313

2 Epicatechin Ursolic acid Quercetin Vanillic acid Astragaloside IV −2.200

3 Caffeic acid Quercetin Isoquercetin Glycitein Astragaloside IV −1.996

4 Ononin Quercetin Aesculetin Glycitein Astragaloside IV −1.974

6 Epicatechin Asperulosidic acid Caffeic acid Quercetin Rutin −1.970

TABLE 4 IC50 values of two combinations and individual compound on MDA-MB-231 cells.

Compounds/Multi-compound combinations IC50 (μM) Compounds/Multi-compound combinations IC50 (μM)

Comb I 19.41 Comb II 23.89

Epicatechin >1,000 Epicatechin >1,000

Ursolic acid 6.99 Ursolic acid 6.99

Quercetin 104.60 Quercetin 104.60

Aesculetin 97.11 Vanillic acid >1,000

Astragaloside IV >1,000 Astragaloside IV >1,000
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beyond the prediction space defined by training datasets.
Importantly, this capability is not limited by unknown ligand
information or protein three-dimensional structures.

Furthermore, our CPI prediction model offer significant
advantages over traditional machine learning methods such as
KNN, Random Forest, and XGBoost, particularly in handling
complex, high-dimensional data and non-linear relationships.
These advantages enable our model to predict more accurate
CPIs and perform better on unidentified data, making it
particularly well-suited for integration into modern drug
discovery pipeline.

As an application of our CPI model in TCM, we identified
potential synergistic anti-tumor multi-compound combinations
from A. membranaceus and H. diffusaas pair, by using the targets
of compounds in the herb pair expanded by the CPI model and
subsequently predicted them by DeepMDS. The cellular experimental
validation achieved valuable results. The CPI model played a crucial
role in this investigation, providing a relatively complete compound-
targets interactions. Although there are a number of databases and
research reports on drug-target interactions, these resources focused
on known drug-target interactions, often neglecting equally important
off-target information of compounds. The reason is that off-target
information is necessary for understanding the mechanisms of action
of compounds and potential side effects. Therefore, we aimed to
ensure the completeness and accuracy of compound-target
information using the CPI model. These comprehensive data could
enable us to precisely identify compound’s mechanism of action. In
this study, our CPI prediction model was applied to TCM; as a result,
we identified the potential multi-compound combinations that could
effectively account for the synergistic therapeutic efficacy of A.
membranaceus and H. diffusaas herb pair. Additionally, efforts will
bemade to enhance the interpretability of themodel by optimizing the
model architecture, thus continuously providing new solutions for
drug discovery and screening of active compounds in traditional
Chinese medicine. To future enhance the applicability and robustness
of our CPI prediction model, we will expand our validation efforts
beyond breast cancer to include other cancer types such as lung cancer
and colorectal cancer. These additional validations will not only
confirm the generalization capabilities of our CPI model but also
potentially provide novel therapeutic strategies for various cancers.

Interpreting the decision-making process of deep learning
models is also an important aspect of their application, especially
in fields like drug discovery. Although the primary aim of this study
was to develop an accurate model for predicting CPIs, we
acknowledge the importance of incorporating interpretability
features into deep learning models. Currently, methods such as
SHapley Additive exPlanations (SHAP) values, saliency maps, and
other visualization techniques are powerful tools that could help
explain the underlyingmechanisms by which ourmodel arrives at its
predictions. These methods can provide valuable insights into which
features most affect the outcome of our model, thereby increasing
the transparency and trustworthiness of the predictions.

However, the conduct of these interpretability techniques
requires additional computational resources and time, which
were beyond the scope of the current study. Moreover, the
complexity of integrating these methods without compromising
the model’s performance requires careful consideration and
further study. Therefore, we will explore these interpretability

methods in future works to enhance the transparency and utility
of our model, making it a more valuable tool in drug discovery.

In conclusion, we constructed a new unbiased large-scale
benchmark dataset that contained a large amount of inactive data
specific to CPI prediction.With regard to the time- and cost-consuming
experimental screening of candidate compounds, we have successfully
developed an accurate CPI prediction model that is significantly more
effective than other CPI prediction models based on various machine
learning algorithms. Furthermore, our model still showed good
generalization ability for several external datasets we constructed.
Importantly, we defined the applicability potential of our model and
enabled the accurate evaluation of the prediction results’ reliability. Our
model achieved the best prediction performance for novel CPI data
within its prediction space, maximizing its utility in practical
applications. Overall, our model has superior prediction accuracy
and generalization ability, and is expected to provide technical
support for drug discovery, repurposing and the understanding of TCM.
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optimization for KNN, RF and XGBoost, respectively.

SUPPLEMENTARY TABLE S3
Compounds and Targets collected. This file includes compound and their
target derived from database and literature. Compounds and targets are
represented by PubChem_CID and Uniprot_ID respectively.

SUPPLEMENTARY TABLE S4
Extended compounds and Targets by the CPI model. This file includes
compound and their targets derived from database, literature and CPI
prediction. Compounds and targets are represented by PubChem_CID and
Uniprot_ID respectively.

SUPPLEMENTARY TABLE S5
Predict outcomes of DeepMDS. This file includes the Top 10000 drug
combinations predicted by the DeepMDS.

References

Bagherian, M., Sabeti, E., Wang, K., Sartor, M. A., Nikolovska-Coleska, Z., and
Najarian, K. (2021). Machine learning approaches and databases for prediction of
drug–target interaction: a survey paper. Briefings Bioinforma. 22 (1), 247–269. doi:10.
1093/bib/bbz157

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M.,
et al. (2013). NCBI GEO: archive for functional genomics data sets--update. Nucleic
Acids Res. 41 (Database issue), D991–D995. doi:10.1093/nar/gks1193

Cao, D.-S., Liu, S., Xu, Q.-S., Lu, H.-M., Huang, J.-H., Hu, Q.-N., et al. (2012). Large-
scale prediction of drug–target interactions using protein sequences and drug
topological structures. Anal. Chim. acta 752, 1–10. doi:10.1016/j.aca.2012.09.021

Chen, L., Cruz, A., Ramsey, S., Dickson, C. J., Duca, J. S., Hornak, V., et al. (2019). Hidden
bias in the DUD-E dataset leads to misleading performance of deep learning in structure-
based virtual screening. PloS one 14 (8), e0220113. doi:10.1371/journal.pone.0220113

Chen, L., Tan, X., Wang, D., Zhong, F., Liu, X., Yang, T., et al. (2020).
TransformerCPI: improving compound–protein interaction prediction by sequence-
based deep learning with self-attention mechanism and label reversal experiments.
Bioinformatics 36 (16), 4406–4414. doi:10.1093/bioinformatics/btaa524

Chen, X., Yan, C. C., Zhang, X., Zhang, X., Dai, F., Yin, J., et al. (2016). Drug–target
interaction prediction: databases, web servers and computational models. Briefings
Bioinforma. 17 (4), 696–712. doi:10.1093/bib/bbv066

Chou, T.-C., and Martin, N. (2007). The mass-action law-based new computer
software, CompuSyn, for automated simulation of synergism and antagonism in
drug combination studies. Cancer Res. 67 (9_Suppl. ment), 637.

Feng, C., Chen, H., Yuan, X., Sun, M., Chu, K., Liu, H., et al. (2019). Gene expression
data based deep learning model for accurate prediction of drug-induced liver injury in
advance. J. Chem. Inf. Model. 59 (7), 3240–3250. doi:10.1021/acs.jcim.9b00143

Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., and Chong, J. (2016).
BindingDB in 2015: a public database for medicinal chemistry, computational
chemistry and systems pharmacology. Nucleic acids Res. 44 (D1), D1045–D1053.
doi:10.1093/nar/gkv1072

Han, X., Zhang, X., Wang, Q., Wang, L., and Yu, S. (2020). Antitumor potential of
Hedyotis diffusa Willd: a systematic review of bioactive constituents and underlying
molecular mechanisms. Biomed. Pharmacother. 130, 110735. doi:10.1016/j.biopha.
2020.110735

Hay, M., Thomas, D. W., Craighead, J. L., Economides, C., and Rosenthal, J. (2014).
Clinical development success rates for investigational drugs. Nat. Biotechnol. 32 (1),
40–51. doi:10.1038/nbt.2786

He, T., Heidemeyer, M., Ban, F., Cherkasov, A., and Ester, M. (2017). SimBoost: a
read-across approach for predicting drug–target binding affinities using gradient
boosting machines. J. cheminformatics 9 (1), 24–14. doi:10.1186/s13321-017-0209-z

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al.
(2021). Highly accurate protein structure prediction with AlphaFold. Nature 596
(7873), 583–589. doi:10.1038/s41586-021-03819-2

Kanai, C., Kawasaki, E., Murakami, R., Morita, Y., and Yoshimori, A. (2021).
Computational prediction of compound–protein interactions for orphan targets
using CGBVS. Molecules 26 (17), 5131. doi:10.3390/molecules26175131

Kaneko, H., and Funatsu, K. (2014). Applicability domain based on ensemble learning
in classification and regression analyses. J. Chem. Inf. Model. 54 (9), 2469–2482. doi:10.
1021/ci500364e

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2019). PubChem
2019 update: improved access to chemical data. Nucleic Acids Res. 47 (D1), D1102-
D1109–d1109. doi:10.1093/nar/gky1033

Koutsoukas, A., Lowe, R., KalantarMotamedi, Y., Mussa, H. Y., Klaffke, W., Mitchell,
J. B., et al. (2013). In silico target predictions: defining a benchmarking data set and
comparison of performance of the multiclass Naïve Bayes and Parzen-Rosenblatt
window. J. Chem. Inf. Model. 53 (8), 1957–1966. doi:10.1021/ci300435j

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature 521 (7553),
436–444. doi:10.1038/nature14539

Leung, M. K., Xiong, H. Y., Lee, L. J., and Frey, B. J. (2014). Deep learning of the tissue-
regulated splicing code. Bioinformatics 30 (12), i121–i129. doi:10.1093/bioinformatics/
btu277

Liu, C., Wang, K., Zhuang, J., Gao, C., Li, H., Liu, L., et al. (2019). The modulatory
properties of Astragalus membranaceus treatment on triple-negative breast cancer: an
integrated pharmacological method. Front. Pharmacol. 10, 1171. doi:10.3389/fphar.
2019.01171

Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L.,
et al. (2012). Large-scale prediction and testing of drug activity on side-effect targets.
Nature 486 (7403), 361–367. doi:10.1038/nature11159

Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., and Svetnik, V. (2015). Deep neural nets
as a method for quantitative structure–activity relationships. J. Chem. Inf. Model. 55 (2),
263–274. doi:10.1021/ci500747n

Mak, K.-K., and Pichika, M. R. (2019). Artificial intelligence in drug development:
present status and future prospects. Drug Discov. today 24 (3), 773–780. doi:10.1016/j.
drudis.2018.11.014

Mayr, A., Klambauer, G., Unterthiner, T., Steijaert, M., Wegner, J. K., Ceulemans, H.,
et al. (2018). Large-scale comparison of machine learning methods for drug target
prediction on ChEMBL. Chem. Sci. 9 (24), 5441–5451. doi:10.1039/c8sc00148k

Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., et al. (2019).
ChEMBL: towards direct deposition of bioassay data. Nucleic acids Res. 47 (D1), D930-
D940–D940. doi:10.1093/nar/gky1075

Mervin, L. H., Afzal, A. M., Drakakis, G., Lewis, R., Engkvist, O., and Bender, A.
(2015). Target prediction utilising negative bioactivity data covering large chemical
space. J. cheminformatics 7, 51–16. doi:10.1186/s13321-015-0098-y

Oprea, T., and Mestres, J. (2012). Drug repurposing: far beyond new targets for old
drugs. AAPS J. 14, 759–763. doi:10.1208/s12248-012-9390-1

She, S., Chen, H., Ji, W., Sun, M., Cheng, J., Rui, M., et al. (2022). Deep learning-based
multi-drug synergy prediction model for individually tailored anti-cancer therapies.
Front. Pharmacol. 13, 1032875. doi:10.3389/fphar.2022.1032875

Sheik, A., Kim, K., Varaprasad, G. L., Lee, H., Kim, S., Kim, E., et al. (2021). The anti-
cancerous activity of adaptogenic herb Astragalus membranaceus. Phytomedicine 91,
153698. doi:10.1016/j.phymed.2021.153698

Frontiers in Pharmacology frontiersin.org13

Ji et al. 10.3389/fphar.2024.1465890

https://www.frontiersin.org/articles/10.3389/fphar.2024.1465890/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2024.1465890/full#supplementary-material
https://doi.org/10.1093/bib/bbz157
https://doi.org/10.1093/bib/bbz157
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1016/j.aca.2012.09.021
https://doi.org/10.1371/journal.pone.0220113
https://doi.org/10.1093/bioinformatics/btaa524
https://doi.org/10.1093/bib/bbv066
https://doi.org/10.1021/acs.jcim.9b00143
https://doi.org/10.1093/nar/gkv1072
https://doi.org/10.1016/j.biopha.2020.110735
https://doi.org/10.1016/j.biopha.2020.110735
https://doi.org/10.1038/nbt.2786
https://doi.org/10.1186/s13321-017-0209-z
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.3390/molecules26175131
https://doi.org/10.1021/ci500364e
https://doi.org/10.1021/ci500364e
https://doi.org/10.1093/nar/gky1033
https://doi.org/10.1021/ci300435j
https://doi.org/10.1038/nature14539
https://doi.org/10.1093/bioinformatics/btu277
https://doi.org/10.1093/bioinformatics/btu277
https://doi.org/10.3389/fphar.2019.01171
https://doi.org/10.3389/fphar.2019.01171
https://doi.org/10.1038/nature11159
https://doi.org/10.1021/ci500747n
https://doi.org/10.1016/j.drudis.2018.11.014
https://doi.org/10.1016/j.drudis.2018.11.014
https://doi.org/10.1039/c8sc00148k
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1186/s13321-015-0098-y
https://doi.org/10.1208/s12248-012-9390-1
https://doi.org/10.3389/fphar.2022.1032875
https://doi.org/10.1016/j.phymed.2021.153698
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1465890


Shi, H., Liu, S., Chen, J., Li, X., Ma, Q., and Yu, B. (2019). Predicting drug-target
interactions using Lasso with random forest based on evolutionary information and
chemical structure. Genomics 111 (6), 1839–1852. doi:10.1016/j.ygeno.2018.12.007

Sieg, J., Flachsenberg, F., and Rarey, M. (2019). In need of bias control: evaluating
chemical data for machine learning in structure-based virtual screening. J. Chem. Inf.
Model. 59 (3), 947–961. doi:10.1021/acs.jcim.8b00712

Sturm, N., Mayr, A., Le Van, T., Chupakhin, V., Ceulemans, H., Wegner, J., et al.
(2020). Industry-scale application and evaluation of deep learning for drug target
prediction. J. Cheminformatics 12, 26–13. doi:10.1186/s13321-020-00428-5

Tang, J., Szwajda, A., Shakyawar, S., Xu, T., Hintsanen, P., Wennerberg, K., et al.
(2014). Making sense of large-scale kinase inhibitor bioactivity data sets: a
comparative and integrative analysis. J. Chem. Inf. Model. 54 (3), 735–743.
doi:10.1021/ci400709d

Tsubaki, M., Tomii, K., and Sese, J. (2019). Compound–protein interaction prediction
with end-to-end learning of neural networks for graphs and sequences. Bioinformatics
35 (2), 309–318. doi:10.1093/bioinformatics/bty535

Wan, F., Zhu, Y., Hu, H., Dai, A., Cai, X., Chen, L., et al. (2019). DeepCPI: a deep
learning-based framework for large-scale in silico drug screening. Genomics, proteomics
and Bioinforma. 17 (5), 478–495. doi:10.1016/j.gpb.2019.04.003

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., et al.
(2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids
Res. 46 (D1), D1074-D1082–d1082. doi:10.1093/nar/gkx1037

Yang, K. K., Wu, Z., Bedbrook, C. N., and Arnold, F. H. (2018). Learned protein
embeddings for machine learning. Bioinformatics 34 (15), 2642–2648. doi:10.1093/
bioinformatics/bty178

Yu, X., Zhu, X., Zhang, L., Qin, J.-J., Feng, C., and Li, Q. (2022). In silico screening and
validation of PDGFRA inhibitors enhancing radioiodine sensitivity in thyroid cancer.
Front. Pharmacol. 13, 883581. doi:10.3389/fphar.2022.883581

Zhang, R., Ma, C., Wei, Y., Wang, X., Jia, J., Li, J., et al. (2021). Isolation, purification,
structural characteristics, pharmacological activities, and combined action of Hedyotis
diffusa polysaccharides: a review. Int. J. Biol. Macromol. 183, 119–131. doi:10.1016/j.
ijbiomac.2021.04.139

Frontiers in Pharmacology frontiersin.org14

Ji et al. 10.3389/fphar.2024.1465890

https://doi.org/10.1016/j.ygeno.2018.12.007
https://doi.org/10.1021/acs.jcim.8b00712
https://doi.org/10.1186/s13321-020-00428-5
https://doi.org/10.1021/ci400709d
https://doi.org/10.1093/bioinformatics/bty535
https://doi.org/10.1016/j.gpb.2019.04.003
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/bioinformatics/bty178
https://doi.org/10.1093/bioinformatics/bty178
https://doi.org/10.3389/fphar.2022.883581
https://doi.org/10.1016/j.ijbiomac.2021.04.139
https://doi.org/10.1016/j.ijbiomac.2021.04.139
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1465890

	A general prediction model for compound-protein interactions based on deep learning
	1 Introduction
	2 Materials and methods
	2.1 Data collection and collation
	2.2 Feature representations
	2.2.1 Compound feature representations
	2.2.2 Protein feature representations

	2.3 Model construction
	2.3.1 Model architecture
	2.3.2 Model performance metrics

	2.4 Model performance evaluation
	2.4.1 Model performance comparison
	2.4.2 Model generalization ability evaluation by the external validation dataset
	2.4.2.1 Protein similarity evaluation
	2.4.2.2 Model performance evaluation on the external validation dataset

	2.5 Experimental validation of our model for discovering synergistic anti-tumor components in TCM

	3 Results
	3.1 Modeling dataset
	3.2 Overview of our model
	3.3 Model performance
	3.4 Model generalization ability evaluation by the external validation dataset
	3.4.1 Protein similarity evaluation
	3.4.2 Model performance evaluation on the external validation dataset

	3.5 Identification of anti-tumor compound combinations from Astragalus membranaceus and Hedyotis diffusaas herb pair

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


