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Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive
inherited lysosomal lipid and cholesterol storage disorder caused by mutations
in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate
in endosomal cholesterol transport. Characteristic clinical manifestations of NP-
C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia.
While the rarity of NP-C1 presents a significant obstacle to progress,
researchers have developed numerous potential therapeutic approaches over
the past two decades to address this condition. Various methods have been
proposed and continuously improved to slow the progression of NP-C1, although
they are currently at an animal or clinical experimental stage. This overview of NP-
C1 therapy will delve into different theoretical treatment strategies, such as small
molecule therapies, cell-based approaches, and gene therapy, highlighting the
complex therapeutic challenges associated with this disorder.
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Introduction

Niemann-Pick type C1 disease (NP-C1) was first described in the early twentieth
century and further elucidated by Alan Crocker in the 1960s (Crocker, 1961). Peter
Pentchev, two decades later, conducted a series of investigations on a spontaneous
mouse model, shedding light on the molecular processes underlying this enigmatic
disorder (Pentchev et al., 1986). NP-C1 is now recognized as a prototypical lysosomal
storage disorder, characterized by the abnormal accumulation of cholesterol and other
lipids in late endosomes and lysosomes (LE/LY) (Brauer et al., 2019). While lipid buildup is
observed in various tissues such as the liver, spleen, lungs, and bone marrow, the most
critical disease manifestations stem from progressive neurodegeneration (Vanier, 2010;
Patterson and Walkley, 2017).
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The NP-C1 is a rare condition with a worldwide estimated
incidence ranging from 1/1,00,000 to 1/1,20,000 live births (Mengel
et al., 2013). However, the actual incidence is likely higher due to
frequent misdiagnoses or cases that go undetected (Stampfer et al.,
2013). NP-C1 presents with varying ages of onset, categorized into
infancy, childhood, juvenile, adolescence, and adulthood. Most
patients experience symptoms in early childhood and typically
pass away within 5–20 years after the onset of the disease (Hung
et al., 2014). The clinical diagnosis of NP-C1 currently relies on
laboratory analyses, including filipin staining of skin fibroblasts and
biomarker assessments. However, a definitive diagnosis is confirmed
through next-generation sequencing (NGS) analysis (Encarnacao
et al., 2023). Patients with NP-C1 typically present with liver and
spleen enlargement in the early stages, followed by progressive
neurodegeneration and other symptoms as the disease advances
(Nadjar et al., 2018). Unfortunately, there are limited well-
established pharmacological treatments available for NP-C1. Over
the past two decades, researchers have explored diverse approaches
for managing NP-C1 through animal or clinical experiments
(Patterson and Platt, 2004). This review aims to provide a
comprehensive overview of NP-C disease, delving into various
treatment strategies from multiple angles, including traditional
small molecules, cell-based therapies, and gene therapy. The
discussion highlights the intricate therapeutic challenges
associated with combating this debilitating condition.

NPC protein function

Cholesterol serves multiple crucial functions in the body, acting
as a key component of cell membranes and plasma lipoproteins
while also serving as a precursor for bile acids, hormones, and
vitamin D3. As such, the synthesis and transport of cholesterol are
essential for maintaining cellular integrity (Lamri et al., 2018). In
NP-C1, there is a disruption in the intracellular transport and
balance of free cholesterol. The accumulation of excess free
cholesterol in late endosomes and lysosomes can lead to
significant cellular and tissue damage in the nervous system and
other organs (Lopez et al., 2014). NP-C1 in humans is primarily
caused by mutations in two genes, NPC1 and NPC2, with
approximately 95% of cases linked to NPC1 mutations and 5% to
NPC2 mutations (Vanier, 2010).

NPC1 is a large transmembrane protein located on the boundary
membrane of late endosomes and lysosomes, consisting of
13 transmembrane domains encoding 1,278 amino acids crucial
for intracellular cholesterol transport. On the other hand, NPC2 is a
soluble lumen protein responsible for transporting cholesterol from
lysosomal vesicles to the N-terminal domain of NPC1. Both proteins
are essential for cholesterol export from lysosomes (Naureckiene
et al., 2000; Infante et al., 2008a; Scott and Ioannou, 2004). While the
precise roles of NPC1 and NPC2 in lysosomal cholesterol transport
are not fully understood, it is believed that they are involved in
pathways regulating cholesterol transport within lysosomes or
promoting movement of lysosomal lipid substrates (Lloyd-Evans
and Platt, 2010; Infante et al., 2008b).

A prevailing hypothesis suggests that when a lipid cargo
reaches late endosomes/lysosomes, it is broken down into its
constituent molecules. NPC2 facilitates the transfer of

cholesterol or other lipids to organelle boundary membranes,
while NPC1 detects an increase in cholesterol at the cell
membrane and initiates transport of the cargo to its designated
destinations (Wang et al., 2010; Kwon et al., 2009). NPC1, working
in conjunction with NPC2, facilitates the removal of low-density
lipoprotein (LDL)-derived cholesterol from the endosomal
compartment through a yet-to-be-defined mechanism, although
significant progress has been achieved (Somers et al., 2003). The
generally accepted model posits that NPC2 binds free cholesterol
post-hydrolysis of LDL cholesterol esterase and transfers it to
NPC1, which then mediates the extraction of cholesterol from
the lysosome (Zampieri et al., 2014) (Figure 1A). Consequently, the
absence of either NPC1 or NPC2 protein could lead to the
manifestation of this genetic disease, as there are no substitutes
for these two proteins in NP-C1.

Currently used NP-C1 model systems

The clinical spectrum of NP-C1 varies from a severe neonatal
disorder to a chronic neurodegenerative disease that can onset in
adulthood. The most severe cases present in early childhood and
result in death during childhood or adolescence. The onset of NP-C1
symptoms can vary among individuals, with some experiencing
disease manifestation in adolescence or adulthood due to different
genetic information influencing disease progression. Given ethical
considerations, the timing of symptom onset, and the complexities
involved, the development of animal and cell models is essential for
studying NP-C1 and advancing our understanding of this disorder
(Figure 1B). The evolving NP-C1 models should offer several
advantages, including ease of gene manipulation, straightforward
modification and screening processes, and are particularly well-
suited for establishing platforms for the discovery and development
of high-throughput drugs.

In vivo models

Numerous animal models have been employed in the study of
NP-C1, owing to the relatively conserved nature of the genes and
functions of Npc1 across non-mammalian and mammalian
populations. A disease model has been developed by mutating
Drosophila Npc1a. Null mutants exhibit early lethality, movement
impairments, neuronal cholesterol deposits, accumulation of
multilamellar bodies, and age-dependent neurodegeneration that
mimics the human neurodegenerative condition (Phillips et al.,
2008). In zebrafish (Danio rerio), Npc1 morphants and mutants
show high lethality, reduced steroidogenesis, abnormal cell
movements, and a severe neurometabolic phenotype (Quelle-
Regaldie et al., 2023; Schwend et al., 2011). In addition, the
nematode Caenorhabditis elegans and the yeast Saccharomyces
cerevisiae have been developed and utilized to gain insights into
NPC cellular pathways (Boland et al., 2017; Frain et al., 2024).
Currently, investigations into non-mammalian NP-C1
predominantly concentrate on Drosophila and D. rerio.
Nevertheless, research in this area has slowed in recent years,
largely due to the rapid advancement of mammalian and
in vitro models.
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Studies on NP-C1 in mammals predominantly focus on mice
and cats, which are frequently used in laboratory research and
clinical drug development studies. Different mutations in the
Npc1 gene in mice can lead to varying phenotypes. These mice
are currently the most common NPC1 rodent model for assessing
potential small molecules for this debilitating disease. The initial
mouse strains used for studying NP-C1, namely C57BLKS/Jspm and
BALB/cNpc1nih, originated as spontaneous mutations. Through
crossbreeding, researchers confirmed them as allelic and
independently positioned them on mouse chromosome 18, in a
region syntenic to the human NPC1 locus (Loftus et al., 1997;
Pentchev et al., 1984). These two commonly used mice models
display typical NP-C1 neurological symptoms such as
hepatomegaly, splenomegaly, decreased weight gain, increased
lung mass, disturbed motor coordination, tremor, ataxia and loss
of Purkinje cells (Loftus et al., 1997). The pathology of NP-C1 in
these mouse models initiates at 4–6 weeks of age, closely resembling
the onset of NP-C1 in infants and young children. They serve as

valuable research tools for studying the severe infantile onset forms
of NP-C1.

Maue et al. established a new mouse model (Npc1nmf164) with a
point mutation in the Npc1 gene, specifically an A to G change at
cDNA base pair 3,163, resulting in an aspartate to glycine
substitution at position 1005 (D1005G). The lifespan analyses
show that these mice begin developing the disease at 4 weeks
and typically survive until around 16 weeks, indicating a lifespan
extension of approximately 5 weeks compared to Npc1nih mice. The
histological analyses reveal abnormal cholesterol accumulation, glial
activation and Purkinje cell loss at a slower rate than in the Npc1nih

mouse model (Maue et al., 2012). Praggastis and colleagues
developed an Npc1I1061T knock-in mouse model that shows a less
severe and delayed form of NP-C1. This model is characterized by
reduced weight loss, improved motor coordination, decreased
Purkinje cell death, reduced lipid storage, and delayed premature
death compared to the Npc1nih mice (Praggastis et al., 2015).
Meanwhile, the lifespan analyses show that these mice begin

FIGURE 1
A brief overview of themechanisms andmodels of NP-C1. (A) The process by which NPC1 and NPC2 proteins transport cholesterol from lysosomes
to other organelle membranes. (B) Current in vivo and in vitro models used for researching NP-C1.
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developing the disease at 8 weeks and pass away within 17–18 weeks.
Taken together, these two mice models offer many advantages as a
model for the late-onset, more slowly progressing forms of NP-C1
that comprise the large majority of human cases. Furthermore,
current research is exploring the effects of cholesterol transport
abnormalities on organ development and homeostasis through
using the Cre-loxP system to selectively target Npc1 gene in
specific tissues (Elrick et al., 2010). NP-C1 in humans is a genetic
disorder commonly associated with widespread organ dysfunction.
Therefore, mice with systemic Npc1 mutations are considered more
appropriate candidates for NP-C1 drug development. However,
different mutations in Npc1 mutant mice can result in varying
phenotypes, reflecting the complexity observed in clinical cases.
These diverse mutations in the NPC1 gene result in the production
of unique proteins, triggering a cascade of biochemical responses in
the body and giving rise to a spectrum of disease presentations.

Additionally, a feline model of NP-C1 has been meticulously
characterized, exhibiting phenotypic, morphological, and biochemical
similarities to human NPC1. The disease manifestation in NP-C1
felines mirrors the juvenile form of human NP-C1, replicating
numerous clinical features such as hepatomegaly, pulmonary
complications, and central nervous system (CNS) involvement,
notably ataxia, among other symptoms (Rakib et al., 2023). Research
on Npc2 gene mutations causing NP-C1 is relatively limited compared
to studies on the Npc1 gene. However, in mouse and cat models,
mutations in the Npc2 gene have been shown to result in symptoms
similar to those observed in clinical NP-C1, including weight loss,
decreased motor coordination, cerebellar Purkinje neuron death, lipid
storage, and premature death (Rakib et al., 2023; Lee and Hong, 2023;
Pallottini and Pfrieger, 2020).

In vitro models

In addition to the NP-C1 animal models mentioned above,
researchers have developed cell models for NP-C1, emphasizing the
direct role of lysosomal lipid accumulation in cellular signal
transduction and phenotype analysis. Researchers isolated
fibroblasts, neurons, glial cells, hepatocytes, and other cell types
from Npc1 mutant mice with diverse genotypes to investigate
cellular states throughout the progression of NP-C1 (Peake and
Vance, 2012; Malara et al., 2024; Kulinski and Vance, 2007).
Findings from these studies using cells from mutant mice suggest
that the absence of the Npc1 disrupts cholesterol metabolism,
impacting intracellular processes such as autophagy, endoplasmic
reticulum (ER), vesicle sorting, and multiple signaling pathways
(Hoglinger et al., 2019; Schwerd et al., 2017; Sarkar et al., 2013).

In humans, obtaining a comprehensive understanding of the
majority of NP-C1 variants using patient-derived fibroblasts
remains challenging due to their infrequent occurrence in
isolation. Recent advances in induced pluripotent stem cells
(iPSCs) technology have made it possible to create cell-based
disease models using human cells derived from patient iPSCs.
Utilizing a fibroblast-induced iPSCs model from NP-C1 patients
can offer valuable insights into the pathological mechanisms of NP-
C1 (Trilck et al., 2013). The iPSCs derived from NP-C1 fibroblasts
express various stem cell markers, differentiate into cells of all three
germ layers, and induce teratoma formation in immunodeficient

mice. Additionally, the iPSCs from NP-C1 patients exhibit
cholesterol accumulation in the cytoplasm, a characteristic not
seen in cells from healthy individuals. These observations
demonstrate that iPSCs derived from patient cells retain
pluripotency while displaying disease-specific features,
highlighting their potential as a valuable tool for studying and
modeling diseases (Trilck et al., 2013; Volkner et al., 2022).
While the iPSCs model established using fibroblasts provides
valuable insights into NP-C1, it may be limited in studying
organ-specific pathologies such as neuronal loss and hepatocyte
damage. Therefore, it is crucial to differentiate the iPSCs into specific
cell types like neurons, glial cells and hepatocyte-like cells using
specialized methods during in vitromodeling. These approaches are
essential for gaining a deeper understanding of the mechanisms
underlying brain and liver dysfunction in NP-C1 (Prabhu et al.,
2021; Volkner et al., 2021; Peter et al., 2017).

The use of CRISPR/Cas9 technology to knockout specific genes
within the genome of mammals has indeed become routine in recent
years (Du et al., 2017). Research has indeed shown that knocking out
theNpc1 gene using technology can lead to cholesterol accumulation
characteristics in various cells. Deletion of the Npc1 has been
associated with enhanced cell connectivity in 293T cells and may
promote inflammation response and apoptosis in N2a cells (Du
et al., 2017; Jia et al., 2023; Yang et al., 2023). Furthermore,
researchers employed the saturation prime editing (SPE) platform
to edit the Npc1 gene, revealing that 410 out of the 706 assayed
missense mutations present significant risks for the disease (Erwood
et al., 2022). Additionally, a haploid cell model established using
CRISPR/Cas9 technology serves as a valuable platform for studying
the pathogenesis of NP-C1 (Erwood et al., 2019). These findings
highlight the importance of Npc1 in cellular function and the
significant potential of gene editing technology in developing
NPC1 models. With the advancement of CRISPR/
Cas9 technology, achieving single-base mutations has become
feasible (Chen and Liu, 2023). By integrating CRISPR/Cas9 with
iPSCs technology (Xu et al., 2019), a wide range of NP-C1 cell
models will be generated. This potent combination enables accurate
genetic alterations, rendering it an invaluable asset for exploring
gene functionality and disease mechanisms across
diverse organisms.

Potential therapeutic approaches for
NP-C1

Currently, there are limited effective therapies for NP-C1.
Treatment mainly focuses on symptom management and slowing
down the progression of the disease. Some treatment methods
include drug therapy, nutritional support and physical therapy,
aiming to improve the quality of life and delay the progression of
the disease. In recent years, advancements in NP-C1 animal and cell
models have provided a more profound insight into the
pathogenesis of NP-C1, facilitating high-throughput drug
screening. The introduction of innovative technologies like gene
editing and stem cell therapy has expanded the scope of potential
treatment options for the disease. Nevertheless, additional research
and clinical trials are imperative to pinpoint more effective
treatment strategies.

Frontiers in Pharmacology frontiersin.org04

Zhang et al. 10.3389/fphar.2024.1465872

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1465872


TABLE 1 Small molecule therapeutics in NP-C1 treatment.

Small molecules Models Effects Reference

Statins Npc1-KO and U18666A SH-SY5Y cells Reverse intracellular cholesterol accumulation,
decreased α-synuclein aggregation and secretion

Min et al. (2023)

Simvastatin Npc1-deficient macrophagy Promote Npc1-mediated free cholesterol efflux
from lysosomes through CYP7A1/LXRα pathway

Xu et al. (2017)

Lovastatin Npc1−/− mouse and oligodendrocytes Enhances the number of mature myelin-forming
oligodendrocytes by increasing Olig1 and
Olig2 expressions

Yang et al. (2018)

Statins Npc1−/− neurons Statin treatment may endanger survival of cells by
interfering in the autophagy

Meske et al. (2019)

Miglustat Npc1nih mice and Npc1−/− patients Modestly decreased gangliosides in liver and brain
in Npc1nih mice; alterations in plasma
gangliosides and CSF sphingolipids in patients

Fan et al. (2013)

Miglustat Npc1m1N mice and neurons Increase the expression of Flot2 in Npc1m1N mice
and neurons

Chen et al. (2023)

Miglustat Npc1−/− cats Delayed the onset of neurological signs; increased
the lifespan; decreased ganglioside accumulation;
improved purkinje cell survival

Stein et al. (2012)

Miglustat Npc1nih mice Rescue synaptic plasticity deficits, restore ERKs
activation; counteract hyperexcitability

D’Arcangelo et al. (2016)

Miglustat Npc1−/− patients and Npc1I1061T mice Decreased the NPY levels Li et al. (2023)

Miglustat Npc1−/− patients Sabilize neurological manifestations in late-
infantile and juvenile-onset forms of NP-C1 rather
than infantile-onset NP-C1

Nadjar et al. (2018); Di Rocco et al. (2012); Heron
et al. (2012)

Miglustat Npc1−/− patients Stabilized swallowing function and reduced
aspiration risk in NP-C1

Solomon et al. (2020)

HPβCD Npc1−/− mice
Npc2−/− mice

Decreased expression of proinflammatory
proteins; improved in liver function; less
neurodegeneration; prolongation of life span

Lopez et al. (2014); Liu et al. (2009); Davidson
et al. (2009)

HPβCD Npc1−/− mice and oligodendrocytes rescue myelination, epigenetic marks, and
oligodendrocyte gene expression

Kunkel et al. (2023)

HPβCD Npc1−/− mice
Npc1−/− cats

Enhanced purkinje cell survival and reversed all
microglia-associated defects

Marschalek et al. (2014); Vite et al. (2015);
Cougnoux et al. (2018a); Barthelemy et al. (2021)

HPβCD Npc1−/− mice Biomarkers for therapeutics: cathepsin S in the
liver, 24(S)-hydroxycholesterol in serum, and
calbindin D in CSF

Alam et al. (2014); Jiang et al. (2014); Tortelli
et al. (2014); Bradbury et al. (2016)

HPβCD Npc1−/− patients
Npc1−/− mice

GPNMB as a biomarker for therapeutics Rodriguez-Gil et al. (2021); Fukaura et al. (2021)

HPβCD Npc1−/− mice No effect on the progressive pulmonary disease Ramirez et al. (2010); Muralidhar et al. (2011)

HPβCD Npc1nmf164 mice Increased inflammatory response in lung Erickson et al. (2018)

HPβCD Npc1−/− neurons and glial cells Extracts cholesterol from the plasma membrane
and reduces ER cholesterol

Peake and Vance (2012)

HPβCD
HPγCD

Npc1−/− fibroblasts LAMP-1 rescue the cholesterol accumulation in
NP-C1

Singhal et al. (2018)

HPβCD Npc1−/− mice, neurons and axons Rescue lysosome transport, reduce axonal
autophagic stress and neuron death

Roney et al. (2021)

HPβCD Npc1−/− fibroblasts Increased the number of LC3-positive puncta and
the levels of p62

Tamura and Yui (2015)

MβCD Npc1−/− fibroblasts Restored impaired autophagy flux, activated
AMPK pathway

Dai et al. (2017)

HPβCD Npc1−/− mice
Npc1−/− cats

Caused a significant increase in hearing threshold Ward et al. (2010)

(Continued on following page)
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TABLE 1 (Continued) Small molecule therapeutics in NP-C1 treatment.

Small molecules Models Effects Reference

HPβCD Npc1−/− mice
Adult rats

Caused irreversible hearing loss; both inner and
outer hair cell death

Takahashi et al. (2016); Zhou et al. (2018); Liu
et al. (2020)

HPβCD Adult rats Destroyed both outer and inner hair cells, auditory
nerve fibers, spiral ganglion neurons and vestibular
ganglion neurons

Ding et al. (2020)

Vorinostat
(HDAC-1,2,3,6)

Npc1−/− fibroblasts Significantly lowered the relative amount of
unesterified cellular cholesterol

Wehrmann et al. (2012); Helquist et al. (2013);
Pipalia et al. (2017)

Vorinostat
(HDAC-1,2,3,6)

Npc1nmf164 mice Reduce the cellular cholesterol levels; did not
improve animal survival

Alam et al. (2016)

Vorinostat
(HDAC-1,2,3,6)

Npc1nmf164 mice and Npc1−/−

hepatocytes
Refolding of Npc1 mutant protein; modulates
apoB metabolism; improves liver function; does
not delay weight loss

Munkacsi et al. (2017)

Panobinostat
(HDAC-1,2,3,6)

Npc1−/− fibroblasts Reduce the cellular cholesterol levels and restore
cholesterol homeostasis

Wehrmann et al. (2012); Pipalia et al. (2011);
Pipalia et al. (2017)

Valproic acid
(HDAC-1,2,6)

Npc1−/− NSCs Enhance neuronal differentiation and recover
defective cholesterol metabolism

Kim et al. (2007)

Valproic acid
(HDAC-1,2,6)

Npc1I1061T patient fibroblasts Reduce cholesterol accumulation; enhance NPC1-
I1061T expression and trafficking; reduce
HDAC7 expression

Subramanian et al. (2020)

Curcumin Npc1−/− mice Improve NP-C1 cellular phenotypes; prolong survival
of the NPC1 mouse; regulate cytosolic calcium levels

Lloyd-Evans et al. (2008)

Nicotinamide Npc1−/− mice Increased survival; reversing oxidative stress Marshall et al. (2017)

FTY720 Npc1−/− fibroblasts Increase the expression of NPC1; reduce the
accumulation of cholesterol and GSLs

Newton et al. (2017)

HNHA NPC1-iNSCs Improve body weight and motor function; Reduce
purkinje cell death; Increase the protein levels of
SNAP25; Induce autophagy

Jung et al. (2022)

Arimoclomol/rhHSP70 Npc1−/− mice Reduce GSLs levels; improve cerebellar
myelination and behavioural phenotypes

Gray et al. (2022)

HSP90 inhibitors Npc1I1061T fibroblasts Increase HSP70 levels; promote the cholesterol
trafficking; reduce cholesterol storage

Pipalia et al. (2021)

Imatinib (c-Abl inhibitor) Npc1−/− mice Reduce purkinje neurons; improve neurological
symptoms; increase survival of Npc1−/− mice

Alvarez et al. (2008)

Gadolinium chloride Npc1−/− mice Decrease the CD68 positive cells; normalize the
transaminase levels; rescue the liver dysfunction

Klein et al. (2018)

Pneumococci Npc1−/− mice Improve liver lipid accumulation and inflammation;
improve cerebellar phenotype and neuroinflammation;
delay the regression of motor skills

Houben et al. (2018)

Necrostatin-1 Npc1−/− mice
Npc1−/− fibroblasts

Delay cerebellar purkinje cell loss; improve
neurological symptoms

Cougnoux et al. (2016)

LXR agonist Npc1−/− mice Increase cholesterol excretion; decrease
neuroinflammation; deactivation of microglia;
extend the lifespan

Repa et al. (2007)

BK channel agonist Npc1−/− fibroblasts Reduce lipofuscin and cholesterol accumulation Cao et al. (2015); Zhong et al. (2016)

Lithium carbonate Npc1−/− patients Improve swallowing capacity Han et al. (2021)

Lithium Npc1−/− mice
Npc1I1061T mice

Improve ataxia and feeding phenotypes; attenuate
cerebellar inflammation and degeneration; extends
survival

Han et al. (2023)

GSH ethyl ester Npc1−/− mice Improve oxidative phosphorylation; protect
against oxidative stress; restore purkinje cells;
reverse locomotor impairment; increased the
lifespan

Torres et al. (2017)

(Continued on following page)
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Small molecule therapeutics

Indeed, as our understanding of the molecular mechanisms of
NP-C1 has improved, researchers have been able to explore a variety
of small molecules for treating the condition. By conducting studies
and clinical trials, researchers have made significant progress in
developing treatments for NP-C1. These efforts are directed towards
offering improved management and potential therapeutic options
for individuals affected by NP-C1 (Table 1).

Statins

Statins, 3-hydroxy-3-methylglutaryl-coenzyme A reductase
inhibitors, are a vital class of drugs used to lower cholesterol levels.
Researchers are investigating the potential therapeutic benefits of statins
for NP-C1, as they believe that these drugs may have a positive impact
on the accumulation and impaired trafficking of cholesterol in Npc1-
deficient cells. Studies have demonstrated that statins can reverse
intracellular cholesterol accumulation and α-synuclein aggregation
induced by Npc1-KO or U18666A treatment (Min et al., 2023). In
macrophages, simvastatin promotes Npc1-mediated free cholesterol
efflux from lysosomes through CYP7A1/LXRα pathway (Xu et al.,
2017). While lovastatin has been shown to restore the number of
mature myelin-forming oligodendrocytes (Yang et al., 2018), Meske
et al. reported that statin treatment may pose a risk to the survival of
Npc1 mutant neurons (Meske et al., 2019). These findings suggest that
statin drugsmay have the potential to improve symptoms inNP-C1 due
to their cholesterol-lowering properties, but they do not seem to
effectively alter the neurological progression.

Miglustat

In addition to the cholesterol accumulation, Npc1-deficient cells
also accumulate gangliosides and other glycosphingolipids (GSLs),
which are key players in the pathogenesis of NPC disease (Zervas
et al., 2001). Miglustat, a reversible inhibitor of GSLs synthesis
recognized for its ability to reduce GSLs buildup in type 1 Gaucher’s
disease, has demonstrated positive effects through reducing GSLs levels
on the progression of NP-C1 (Pineda et al., 2018). In addition to GSLs,
there was a notable accumulation of gangliosides in the liver and brain.
Following miglustat treatment in NP-C1 animal models and NP-C1
patients, the levels of gangliosides in plasma and cerebrospinal fluid
(CSF) decreased significantly (Fan et al., 2013). In Npc1−/− mice,
gangliosides sequestration and the loss of lipid rafts lead to cell
dysfunction and symptoms of NP-C1. Miglustat increased the
expression of Flot2, a marker for lipid rafts, which was found to be
diminished in neurons of Npc1−/− mice (Chen et al., 2023).

Accumulation of gangliosides and GSLs in neurons is closely
linked to cell metabolism, maintaining homeostasis, and cell death.
Research in the NPC1 feline disease model indicates that miglustat
delayed the onset of neurological symptoms, extended the lifespan of
treated cats, and correlated with reduced ganglioside buildup in the
cerebellum and enhanced Purkinje cell survival. Analyzingmicroglia
from treated cats decreased production of reactive oxygen species
(ROS) (Stein et al., 2012). Furthermore, the administration of
miglustat in Npc1−/− mice demonstrated the ability to rescue
deficits in synaptic plasticity, restore ERK activation, and alleviate
hyperexcitability (D’Arcangelo et al., 2016). Collectively, these
results indicate that the prolonged survival of Purkinje cells,
reduction in ganglioside accumulation, and restored synaptic
plasticity are key factors contributing to the neurological
enhancements observed in NPC-1 individuals treated
with miglustat.

Intense inflammation is a significant factor that triggers multi-
organ damage in NP-C1. Miglustat has been shown to suppress
astrocyte pathogenic activities in CNS inflammation by inhibiting
the production of pro-inflammatory cytokines and restoring lactate
generation in astrocytes (Chao et al., 2019). While there are
currently few specific data confirming the anti-inflammatory role
of miglustat in NPC1, several studies have confirmed its combined
use with anti-inflammatory drugs in this condition. Pro-
neuropeptide Y (NPY) levels were significantly elevated in
individuals with NPC1 compared to healthy controls. Miglustat
demonstrated efficacy in mitigating neuroinflammation and
decreasing excitotoxicity by modulating NPY levels (Li et al., 2023).

For NP-C1 with varying onset periods, research indicates that
miglustat can stabilize neurological manifestations in pediatric
patients with late-infantile and juvenile-onset forms of NP-C1,
rather than specifically targeting neurologic manifestations in
infantile-onset NP-C1 (Di Rocco et al., 2012; Heron et al., 2012).
Adolescent/adult-onset NP-C1 often initially presents with non-
specific isolated neuro-psychiatric manifestations (motor, cognitive,
or psychotic). Patients with milder neurological disabilities tend to
respond more positively to miglustat therapy (Nadjar et al., 2018).
Furthermore, the use of miglustat is linked to stabilized swallowing
function and reduced aspiration risk in NP-C1, underscoring the
potential for quantifying swallowing dysfunction as a clinically
relevant functional outcome measure in future therapeutic trials
for NP-C1 (Solomon et al., 2020).

2-hydroxypropyl--cyclodextrin (HPβCD)

Miglustat has shown limited effectiveness in reducing substrates
and does not affect the accumulation of cholesterol in the body.
Furthermore, its ability to slow the progression of neurological

TABLE 1 (Continued) Small molecule therapeutics in NP-C1 treatment.

Small molecules Models Effects Reference

S-adenosyl-L-methionine Npc1−/− mice Improve the decline of locomotor activity; increase
purkinje cell survival; extend the average and
maximal lifespan

Goicoechea et al. (2024)

Genistein NP-C1 patient fibroblasts Reduce p62 levels and increase levels of LC3-II Arguello et al. (2021)
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symptoms is also constrained (Pineda et al., 2018). Cyclodextrins
(CDs), a family of cyclic oligosaccharides, have the ability to form
complexes with cholesterol, effectively replacing dysfunctional
cholesterol transport proteins. In NP-C1, 2-hydroxypropyl-β-
cyclodextrin (HPβCD) is being considered as an alternative
treatment option. A range of studies have demonstrated the
effectiveness of HPβCD in treating NP-C1. A single dose of
HPβCD has been shown to suppress sterol synthesis, down-
regulate SREBP2 and its target genes, and reduce the expression
of macrophage-associated inflammatory genes in the liver and brain
(Liu et al., 2009; Liu et al., 2010). Additionally, HPβCD was able to
rescue myelination, epigenetic marks, and oligodendrocyte gene
expression, emphasizing the critical role of HPβCD in
oligodendrocyte lineage maturation and epigenetic regulation in
NP-C1 (Kunkel et al., 2023). Prolonged administration of HPβCD
has shown improvements in liver function tests, reduced
neurodegeneration, amelioration of cholesterol or GSLs storage,
and a significant extension of lifespan (Lopez et al., 2014; Liu
et al., 2009; Liu et al., 2010; Davidson et al., 2009). Importantly,
treatment with HPβCD resulted in a reduction in Purkinje cell loss,
reversed microglia-mediated neuroinflammation, and induced a
concerted action of neurons and glial cells to restore lipid
homeostasis in the CNS (Marschalek et al., 2014; Vite et al.,
2015; Cougnoux et al., 2018a; Barthelemy et al., 2021). Several
biomarkers in serum and body fluids have been developed for
predicting the prognosis of NP-C1 with HPβCD treatment. These
include cathepsin S in the liver, 24(S)-hydroxycholesterol in serum,
and Calbindin D in CSF (Alam et al., 2014; Jiang et al., 2014; Tortelli
et al., 2014; Bradbury et al., 2016). Transcriptome sequencing
analysis of NPC1 patients receiving cyclodextrin therapy
identified GPNMB as a key factor in evaluating treatment
efficacy (Rodriguez-Gil et al., 2021; Fukaura et al., 2021). While
HPβCD treatment shows significant protective effects in the brain
and liver in NP-C1, its influence on lung dysfunction is minimal
(Ramirez et al., 2010; Muralidhar et al., 2011; Erickson et al., 2018).
This implies that lung cells may have the capability to resist the
effects of CDs on cholesterol trafficking.

A mutation in NPC1 leads to the sequestration of unesterified
cholesterol in the late endosomal/lysosomal compartment. HPβCD
binds to unesterified cholesterol and facilitates its delivery from the
lysosome to the ER, resulting in a significant increase in ACAT-
mediated cholesterol esterification and a decrease in unesterified
cholesterol levels (Liu et al., 2009; Aqul et al., 2011). The
accumulation of cholesteryl esters in the cytosol is anticipated to
be considerably less toxic than the accumulation of free cholesterol
in NP-C1 patients (Abi-Mosleh et al., 2009). LAMP1, situated in the
membranes of lysosomes, was upregulated in response to HPβCD
treatment. This upregulation facilitated cholesterol trafficking at the
late endosome/lysosome compartments, effectively rescuing the
cholesterol accumulation defect observed in fibroblast cells
derived from NPC1 patients (Singhal et al., 2018). On the other
hand, HPβCD treatment significantly increased autophagic flux and
restored lysosome transport, leading to a reduction in axonal
autophagic stress and neuronal death in NP-C1 (Roney et al.,
2021; Tamura and Yui, 2015) Methyl-β-cyclodextrin (MβCD), a
potent analog of HPβCD, was also found to restore impaired
macroautophagy/autophagy flux in NP-C1 by activating the
AMPK pathway (Dai et al., 2017). These findings demonstrate

the translational promise of HPβCD in enhancing impaired
autophagic flux and reinstating axonal homeostasis in the initial
phases of NP-C1.

HDAC inhibitors (HDACi)

Histone deacetylase inhibitors (HDACi) are emerging as
promising therapeutics for a diverse array of diseases,
encompassing cancer and neurodegenerative conditions. Recently,
a genome-wide, conditional synthetic lethality screen was conducted
using the yeast model of NP-C1 (Munkacsi et al., 2011).
Additionally, a high-content screen targeting the reduction of
lysosomal cholesterol storage was performed with Npc11I1061T

patient fibroblasts (Pugach et al., 2018). Both studies suggest that
HDACi emerges as a promising candidate therapy for NP-C1.

Two HDAC inhibitors, vorinostat and panobinostat, have been
reported to be effective in treating various cancers and are showing
promise in the management of cholesterol metabolism disorders.
Both vorinostat and panobinostat have demonstrated the ability to
reduce levels of unesterified cellular cholesterol and restore
cholesterol homeostasis in Npc1−/− fibroblasts (Wehrmann et al.,
2012; Helquist et al., 2013; Pipalia et al., 2011). Vorinostat
additionally improves liver function and modulates apoB
metabolism, although it does not delay weight loss or enhance
animal survival in Npc1nmf164 mice (Alam et al., 2016; Munkacsi
et al., 2017). Mechanistically, vorinostat and panobinostat enhance
the expression and trafficking of the NPC1mutant protein, revealing
unanticipated epigenomic plasticity in spatial covariance
relationships that restore NPC1 functionality (Pipalia et al., 2017;
Wang et al., 2019). Valproic acid (VPA), a histone deacetylase
inhibitor, has the potential to promote neuronal differentiation
and restore impaired cholesterol metabolism in neural stem cells
(NSCs) derived from Npc1-deficient mice (Kim et al., 2007). In
Npc11I1061Tmodels, VPA enhances NPC1-I1061T protein expression
and trafficking, resulting in the restoration of cholesterol
homeostasis by reducing HDAC7 expression (Subramanian et al.,
2020). These studies suggest that FDA-approved HDAC inhibitors
can improve the development of NP-C1 to some extent in
preclinical research.

In addition, other HDAC inhibitors have been reported to
improve NPC1. Treatment with curcumin, a natural compound,
has been shown to normalize cellular phenotypes associated with
NP-C1 and prolong the survival of NP-C1 mice by regulating
cytosolic calcium levels (Lloyd-Evans et al., 2008). Nicotinamide
has been shown to prolong NP-C1 mouse survival and prevent
oxidative stress (Marshall et al., 2017). FTY720 (fingolimod) and its
active phosphorylated form (FTY720-P) act as HDAC inhibitors,
increasing the expression of NPC1 and significantly reducing the
accumulation of cholesterol and GSLs in human NPC1 mutant
fibroblasts (Newton et al., 2017). A new synthetic HDAC inhibitor,
N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), has been
found to ameliorate NPC1 phenotypes such as body weight,
motor function, and Purkinje cell death through autophagy
induction (Jung et al., 2022). Furthermore, most HDAC
inhibitors enhance the NPC1 mutant protein and promote the
exit of the NPC1 protein from the ER, facilitating its delivery to
late endosomes/lysosomes to stabilize cholesterol metabolism in
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NPC1. This process involves the refolding of the NPC1 mutant
protein through changes in protein chaperones. Treatment with
arimoclomol, a well-characterized heat shock protein (HSP)
amplifier, or recombinant human heat shock protein 70
(rhHSP70) has been shown to reduce GSLs levels in the CNS,
leading to improved cerebellar myelination and behavioral
phenotypes in Npc1−/− mice (Gray et al., 2022). On the other
hand, inhibiting HSP90 with several HSP90 inhibitors has been
found to increase the expression of HSP70, promote the clearance of
cholesterol from late endosomes/lysosomes, and reduce cholesterol
storage in NPC1I1061T skin fibroblasts (Pipalia et al., 2021). These
studies suggest that heat shock protein-based therapies hold promise
and should be clinically evaluated for treating NP-C1.

Other types of drugs

At present, drug development for NP-C1 predominantly centers
on diminishing cholesterol buildup. Nevertheless, NP-C1 manifests
several other pathological characteristics, including
neuroinflammation occurs, heightened oxidative stress, disturbed
ion balance, among others. Each of these pathological processes
presents an opportunity for targeted drug development or
combination therapy. In recent years, there has been significant
advancement in the development of NPC1 drugs incorporating anti-
inflammatory strategies. In a previous study, it was demonstrated
that the proapoptotic tyrosine kinase c-Abl signaling is activated in
Npc1−/− neurons (Contreras et al., 2016). Treatment with the c-Abl-
specific inhibitor imatinib resulted in the preservation of Purkinje
neurons, a reduction in general cell apoptosis in the cerebellum,
improvement of neurological symptoms, and increased survival of
Npc1−/− mice (Alvarez et al., 2008). Furthermore, treatment with
gadolinium chloride (GdCl3) or heat-inactivated pneumococci was
found to effectively reduce liver lipid accumulation and
inflammation, leading to the rescue of some parameters of liver
dysfunction in NP-C1 mice (Klein et al., 2018; Houben et al., 2018).
In NP-C1, the necroptosis-related genes RIP3 and RIP1 are
upregulated. Inhibition of necroptosis has been shown to
significantly delay cerebellar Purkinje cell loss, slow the
progression of neurological symptoms, and prolong survival in
Npc1−/− mice (Cougnoux et al., 2016). Moreover, incorporating
drugs such as ibuprofen, aspirin, metformin, and others that
possess anti-inflammatory properties in combination therapy
with currently known effective drugs may provide additional
benefits in managing NP-C1.

Defective Ca2+ release has been associated with a number of
lysosomal storage diseases (LSDs), including NP-C1. Lysosomes
express big-conductance Ca2+-activated potassium (BK) channels
that regulate lysosomal Ca2+ release (Cao et al., 2015). Activation of
BK by NS1619 reduces lipofuscin and cholesterol accumulation in
NPC1 cells in a Ca2+-dependent manner (Zhong et al., 2016).
Lithium decreases STING/SREBP2 activation by reducing
intracellular Ca2+ levels. Treatment with lithium has been shown
to improve NP-C1 phenotypes, extend survival in Npc1 mouse
models, and enhance swallowing capacity in NP-C1 patients
(Han et al., 2021; Han et al., 2023). The buildup of cholesterol in
mitochondria is recognized to hinder the entry of glutathione (GSH)
into mitochondria, leading to the depletion of mitochondrial GSH.

However, the supplementation of GSH ethyl ester and S-Adenosyl-
L-methionine has been shown to restore the mitochondrial GSH
levels in the liver and brain, consequently increasing the median
survival and maximum lifespan of Npc1−/− mice (Torres et al., 2017;
Goicoechea et al., 2024). Furthermore, treatment with Genistein
enhanced lysosomal protein expression and autophagic flux,
resulting in reduced p62 levels and increased levels of LC3-II in
NP-C1 patient fibroblasts (Arguello et al., 2021). These findings
indicate that strategies involving anti-inflammatory actions,
oxidative stress mitigation, and autophagy activation could be
considered as potential treatments for NP-C1 or as
complementary therapeutic approaches.

Clinical trials

As previously noted, preclinical investigations into the efficacy
of conventional small molecules for managing NP-C1 have
predominantly centered on the mentioned medications. In recent
years, significant strides have been made in clinical research
concerning NP-C1. A review of clinical trial registrations
indicates that investigations into the efficacy of HPβCD,
Vorinostat, Lithium Carbonate, and other pharmaceuticals for
NP-C1 are currently in progress (Table 2).

HPβCD has been administered to NP-C1 patients with
approved Investigational New Drugs (INDs) globally since 2009.
In 2015, a clinical study on the intrathecal administration of HPβCD
in a 12-year-old subject with mildly symptomatic NPC
demonstrated that it was generally safe and well tolerated
(Maarup et al., 2015). Subsequently, open-label phase I/IIa
studies of VTS-270, a formulation of HPβCD, were conducted in
individuals with NP-C1 across various age groups. The research
demonstrated an acceptable safety profile for VTS-270 and offered
evidence of restoring neuronal cholesterol homeostasis and
decelerating the progression of neurological disease (Ory et al.,
2017; Farmer et al., 2019). Several case reports studying the
impact of intravenous administration of HPβCD in NP-C1
children and young adults demonstrate both the safety and
potential benefits of HPβCD, including an improvement in liver
function and cholesterol metabolism (Hastings et al., 2022; Hastings
et al., 2019; Reynolds et al., 2021). However, HPβCD is excreted
rapidly from the body and has poor penetration across the human
blood-brain barrier. The long-term injection of HPβCD can pose
challenges due to difficulties in metabolism, potentially resulting in
negative effects such as increased hearing threshold (Ward et al.,
2010), inner and outer hair cells (Takahashi et al., 2016; Zhou et al.,
2018; Liu et al., 2020) and significant damage to the auditory and
vestibular systems (Ding et al., 2020).

Furthermore, Vorinostat and Lithium Carbonate are being
utilized in clinical research for treating NP-C1. Vorinostat, as an
HDACi, faces challenges in crossing the blood-brain barrier,
requiring higher dosages for clinical efficacy, which may pose
significant risks to patients. In comparison, Lithium Carbonate
shows inferior treatment outcomes compared to HPβCD (Han
et al., 2021). Therefore, to establish these drugs as effective
treatments for NP-C1, further researchs are essential to overcome
these obstacles and optimize combined therapeutic strategies in NP-
C1 treatment.
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Combination therapy

Given the broad impact of NP-C1 on various organs and biological
processes, a comprehensive treatment strategy targeting cholesterol
accumulation with anti-inflammatory agents, antioxidants, and the
promotion of autophagy holds great promise for addressing NP-C1.
Studies have shown that non-steroidal anti-inflammatory drugs
(NSAIDs) such as aspirin and ibuprofen can significantly prolong
the lifespan of NPC1 mice and delay the onset of neuro-
inflammation (Smith et al., 2009; Williams et al., 2014). Co-
treatment with HPβCD and metformin has been found to reduce
the inflammatory response in the liver, brain, and spleen of Npc1−/−

mice, though it did not lead to an extension of survival time or an
increase in body weight (Du et al., 2021). Furthermore, the beneficial
effects of RIPK1 inhibition onNpc1−/−mice may be attributed to its role
in neuroinflammation and cytokine production (Cougnoux et al.,

2018b). While the combination of antioxidant drugs with HPβCD
may reduce cholesterol accumulation, it does not improve NP-C1 lung
pathology or alleviate cochlear damage and associated hearing loss
caused by HPβCD treatment alone (Manohar et al., 2022; Erickson and
Borbon, 2019). These studies show targeting inflammation in the brain
represents a promising clinical intervention strategy (Table 3).

Numerous studies have employed a combination therapy
involving Cyclodextrin, Allopregnanolone, and Miglustat,
unveiling positive effects across multiple domains. These include
enhancements in corneal health, amelioration of motor deficits
(although not cognitive impairments), reduction in cerebellar
neurodegeneration and hepatic lipid accumulation, restoration of
splenic cholesterol balance, and reductions in body and brain
weights (Hovakimyan et al., 2011; Hovakimyan et al., 2013;
Maass et al., 2015; Ebner et al., 2018; Nesslauer et al., 2019;
Holzmann et al., 2021). Furthermore, the combination of HDAC

TABLE 2 Clinical trials for NP-C1.

ID Drugs Phases Enrollment Intervetion Follow-
up

Status Results Country

NCT04860960 Trappsol (R)
cyclo (TM)
(HPβCD)

3 94 Intravenous 5 years Active
Not
recruiting

No results posted United States

NCT03893071 Trappsol (R)
cyclo (TM)
(HPβCD)

1 12 Intravenous 4 years Completed HPβCD cleared cholesterol from
the liver and improved peripheral
biomarkers of cholesterol
homeostasis and CNS
neurodegeneration Hastings et al.
(2022)

United States

NCT02939547 Trappsol (R)
cyclo (TM)
(HPβCD)

1 13 Intravenous 28 months Completed Neurologic and neurocognitive
benefits were seen in most patients
Hastings et al. (2022); Hastings
et al. (2019)

United States

NCT02912793 Trappsol (R)
cyclo (TM)
(HPβCD)

1/2 12 Intravenous 4 years Completed Of the 9 patients who completed
the study, 7 were viewed by their
treating physicians as having
improved to some degree at the
end of the study, and 2 remained
stable Hastings et al. (2019);
Sharma et al. (2023)

United States

NCT04958642 Adrabetadex
(HPβCD)

2/3 66 Intravenous 7 years Terminated Results posted in clinicaltrials.gov United States

NCT02534844 VTS-270
(HPβCD)

2/3 56 Lumbar
intrathecal

3 years Completed Slow disease progression; enhance
neurological and neurocognitive
functions; improve the physicians
and caregivers Hastings et al.
(2019)

United States

NCT01747135 VTS-270
(HPβCD)

1 14 Lumbar
intrathecal

4 years Completed Slow disease progress up to
36 months post-initiation of
intrathecal VTS-270 Farmer et al.
(2019)

United States

NCT02124083 Vorinostat 1/2 12 Oral 32 months Completed Results posted in clinicaltrials.gov United States

NCT03201627 Lithium
carbonate

1 18 Oral 4 years Completed The mean NNSS was improved
after lithium treatment.
Improvement in swallowing
capacity was observed in treated
patients. No serious adverse events
were recorded in the patients
receiving lithium Han et al. (2021)

China

All information was extracted from https://www.clinicaltrials.gov/.
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inhibitors with HPβCD has shown promising therapeutic effects
(Alam et al., 2016; Davidson et al., 2019) (Table 3).

Gene therapy

In recent years, advancements in gene editing technology and
drug delivery have propelled gene therapy for NP-C1 as a promising
treatment strategy aimed at correcting the defective NPC1 gene
within the patient’s body. In studies using Npc1−/− mice, researchers
developed AAV9 vectors to transport the NPC1 gene under the
transcriptional control of neuronal-specific (CamKII) or ubiquitous
(EF1a) promoters. The results showed that treatment with AAV9-
EF1a-NPC1 led to improved survival, growth, and reduced hepatic
cholesterol accumulation compared to AAV9-CamKII-NPC1
(Chandler et al., 2017). This suggests that systemic AAV gene
delivery may be a preferred option for NPC1 therapy.

Systemic AAV9-mediated gene therapy can significantly
extend lifespan, enhance Purkinje cell survival, restore
locomotor activity and coordination, prevent or alleviate
neurodegeneration, reduce biochemical abnormalities, and
normalize various motor function indicators through different
injection approaches (Xie et al., 2017; Hughes et al., 2018;
Kurokawa et al., 2021). Moreover, the meticulous selection
and enhancement of AAV, as demonstrated by AAV-PHP.B
shell proteins, enable the effective transfer from the periphery
to the CNS. This progression results in a notably superior
alleviation of disease symptoms when contrasted with a
similar AAV9 vector in Npc1m1N/m1N mice (Davidson et al., 2021).

Indeed, the development of non-viral gene delivery methods is
crucial in advancing gene therapy for NP-C1. A study revealed that
the DNA of NPC1 is encapsulated within Trojan horse lipoproteins
(THLs) that selectively target organs using monoclonal antibodies.
THLs treatment reduced tissue inclusion bodies in the brain and
peripheral organs but did not extend the lifespan in Npc1−/− mice
(Jiang et al., 2020). Messenger RNA holds great potential as a
disease-modifying treatment for NP-C1. Engineered
NPC1 mRNA with optimized codons and N1-
methylpseudouridine base modification has been demonstrated to
correct the cholesterol transport defect in NP-C1 patient cells,
confirming the promising potential of engineered mRNA in the
treatment of inherited disease (Furtado et al., 2022). Compared to
miglustat and CDs treatments for NP-C1, currently, there have been
no reports of adverse effects resulting from the over-expression of
human NPC1 through gene therapy.

Cell-based therapy

Cell therapy is an innovative treatment approach that involves
introducing healthy cells or repairing damaged cells to address a
wide range of diseases, including neurodegenerative disorders. A
study assessing the therapeutic impact of transplanted murine NSCs
on Npc1−/− mice revealed that the implanted cells survived in the
cerebellum and prolonged the lifespan of the mice. However, there
was no significant improvement in body weight or ataxic symptoms,
suggesting that the therapeutic effect of NSCs transplantation on
NP-C1 is only partially effective (Ahmad et al., 2007). However,

TABLE 3 Combination therapy in NP-C1 treatment.

Combine drugs Models Effects Reference

Miglustat
Aspirin
Ibuprofen
Vitamin C

Npc1−/− mice Combining NSAIDs therapy prolonged the lifespan of
NPC1 mice and slowed the onset of clinical signs

Smith et al. (2009)

Miglustat
Curcumin
Ibuprofen

Npc1−/− mice Triple combination therapy increases the time period
that maintained bodyweight and motor function and
maximally delaying the onset of purkinje cell loss

Williams et al. (2014)

HPβCD metformin Npc1−/− mice Reduce the inflammatory response; did not extend
survival time and increase the body weight

Du et al. (2021)

GSK’547
HPβCD

Npc1−/− mice
NPC1 cats and
patients

Slow neurological disease progression; modestly
increased lifespan

Cougnoux et al. (2018b)

Probucol
HPβCD

Npc1−/− mice Does not improve lung pathology Erickson and Borbon (2019)

Minocycline + HK-2 minocycline plus +
N-acetyl cysteine
HPβCD

Npc1−/− mice Fail to attenuate the early and late phases of
cyclodextrin-induced cochlear damage and hearing
loss

Manohar et al. (2022)

Cyclodextrin
Allopregnanolone
Miglustat

Npc1−/− mice Reveal beneficial effects on the cornea; ameliorate
motor but not cognitive deficits; reduce cerebellar
neurodegeneration and hepatic lipids; restore splenic
cholesterol homeostasis; reduce body and brain
weights

Hovakimyan et al. (2011); Hovakimyan et al.
(2013); Maass et al. (2015); Ebner et al. (2018);
Nesslauer et al. (2019); Holzmann et al. (2021)

Vorinostat
HPβCD
PEG

Npc1−/− mice
Npc1nmf164 mice
Npc1I1061T mice

Reduce lipid storage, extend lifespan, and preserve
neurological function; preserved neurites and purkinje
cells, delayed symptoms of neurodegeneration, and
extended mouse life span

Alam et al. (2016); Davidson et al. (2019)
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transplantation of human amniotic epithelial stem cells has been
shown to extend the lifespan, reduce rapid weight loss, and decrease
cholesterol deposition in NP-C1 mice, demonstrating promising
therapeutic effects (Hong et al., 2012).

Mesenchymal stem cells (MSCs) have the ability to secrete
various growth factors and contribute to tissue repair in diseases.
Recent studies have shown that the transplantation of bone marrow-
derived MSCs promotes the formation of neuronal networks with
functional synaptic transmission, restores SphK activity, and
reduces pathology in Purkinje neurons through the secretion of
VEGF (Bae et al., 2005; Bae et al., 2007; Lee et al., 2014; Lee et al.,
2010a). Transplantation of adipose tissue-derived MSCs has been
shown to rescue Purkinje neurons, restore motor coordination, and
alleviate inflammatory responses in NP-C1 mice (Bae et al., 2010).
Human umbilical cord blood-derived MSCs have been
demonstrated to protect against neuronal cell death and improve
motor deficits by modulating neuroinflammatory conditions (Lee
et al., 2010b; Seo et al., 2011). Additionally, these stem cells have the
ability to suppress cholesterol synthesis and improve impaired
autophagic flux in NP-C1 through the secretion of 14,15-
epoxyeicosatrienoic acid (Kang et al., 2018). Recent research has
suggested that conditioned medium from human menstrual blood-
derivedMSCs can protect against cell inflammation and apoptosis of
Npc1 mutant neurons in vitro (Yang et al., 2023). Additionally,
extracellular vesicles, which are important components of MSCs,
have been demonstrated to reduce inflammation, decrease
microglial and astrocyte proliferation, and modify the
pathophysiological processes of NP-C1 (Van Hoecke et al., 2021).

These findings offer new perspectives on the potential therapeutic
use of MSCs and their extracellular vesicles in the management of
NP-C1.

Conclusion and outlook

In this review, we offer a brief overview of the current
research on disease models used for NP-C1. We also conduct
a comprehensive analysis of both preclinical and clinical data
related to NP-C1 treatment, including traditional chemical drug
therapy, gene therapy, and cell-based therapy. By systematically
presenting the range of treatment options for NP-C1, this review
not only consolidates current knowledge but also highlights
potential directions for future research and therapeutic
interventions.

NP-C1 is a rare genetic disorder primarily caused by gene
mutations, characterized by the degeneration of brain nerves and
damage to various organs such as the liver and spleen. Treatment
challenges arise due to the necessity for therapies to effectively
penetrate the blood-brain barrier to address CNS damage.
Currently, the primary treatments for NP-C1 are oral
miglustat and intracranial injection of HPβCD. However, both
of these methods can lead to some side effects. Hence, there is an
urgent requirement to develop treatment strategies utilizing
innovative small molecule therapeutics. The development of
gene editing technology has enabled researchers to repair
mutated genes in patients within the body through precise

FIGURE 2
Current approaches for addressing NP-C1 encompass small molecule therapy, gene therapy, cell-based therapy, and combination therapy.
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gene delivery. This direct gene repair method holds promise as a
leading approach for treating various genetic disorders. However,
the heterogeneity of the Npc1 gene among patients, coupled with
the influence of diverse genetic backgrounds, leads to varying
degrees of disease characteristics (Guatibonza Moreno et al.,
2023). Therefore, analyzing the genetic backgrounds of
individual patients is essential for the development of tailored
treatments in the future (Las Heras et al., 2023). In NP-C1
patients, mutations in the Npc1 gene often present as single
nucleotide variations that result in missense mutations.
Advancements in next-generation genome editors, such as
base and prime editors, have demonstrated the potential to
correct these mutations in NP-C1, paving the way for
personalized treatment approaches. Adeno-associated viruses
have shown both safety and efficacy in the body, indicating
that using AAV viruses as vectors for gene therapy could be a
crucial treatment option for NP-C1. Furthermore, preclinical
studies on cell-based therapy have demonstrated that
mesenchymal stem cell transplantation can effectively preserve
Purkinje cells in NP-C1.

While current treatments for NP-C1 primarily focus on drug
therapies and do not provide a definitive cure, the emergence of
diverse treatment options offers possibilities for the comprehensive
management of the condition in the future. A multifaceted approach
that combines gene therapy for repairing mutated genes at the DNA
level, traditional drug adjuncts to enhance cholesterol excretion and
cellular phenotypes, and mesenchymal stem cell transplantation to
regulate tissues and organs through vital cytokine secretion may be
crucial in effectively managing this complex disorder (Figure 2).
Using a combination of treatment strategies could be crucial in
addressing the intricate nature of NP-C1.
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