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Objective: This study was aimed at exploring a specific open region of chromatin
in the peripheral blood mononuclear cells (PBMCs) of patients with breast cancer
and evaluating its feasibility as a biomarker for diagnosing and predicting breast
cancer prognosis.

Methods: We obtained PBMCs from breast cancer patients and healthy people
for the assay for transposase-accessible chromatin (ATAC) sequencing (n = 3) and
obtained the GSE27562 chip sequencing data for secondary analyses. Through
bioinformatics analysis, wemined the pattern changes for chromatin accessibility
in the PBMCs of breast cancer patients.

Results: A total of 1,906 differentially accessible regions (DARs) and
1,632 differentially expressed genes (DEGs) were identified via ATAC
sequencing. The upregulated DEGs in the disease group were mainly
distributed in the cells, organelles, and cell-intima-related structures and were
mainly responsible for biological functions such as cell nitrogen complex
metabolism, macromolecular metabolism, and cell communication, in
addition to functions such as nucleic acid binding, enzyme binding, hydrolase
reaction, and transferase activity. Combined with microarray data analysis, the
following set of nine DEGs showed intersection between the ATAC and
microarray data: JUN, MSL2, CDC42, TRIB1, SERTAD3, RAB14, RHOB, RAB40B,
and PRKDC. HOMER predicted and identified five transcription factors that could
potentially bind to these peak sites, namely NFY, Sp 2, GFY, NRF, and ELK 1.

Conclusion: Chromatin accessibility analysis of the PBMCs from patients with
early-stage breast cancer underscores its potential as a significant avenue for
biomarker discovery in breast cancer diagnostics and treatment. By screening the
transcription factors and DEGs related to breast cancer, this study provides a
comprehensive theoretical foundation that is expected to guide future clinical
applications and therapeutic developments.
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1 Introduction

Breast cancer is the first among the major malignancies that
threaten the lives of female patients. Early diagnosis and treatment
are key to improving the prognosis of breast cancer, so an increasing
number of tumor predictive markers are being widely studied and
applied in clinical practice.

The detection of peripheral blood mononuclear cells (PBMCs)
and chromatin transposase sequencing such as the high-throughput
assay for transposase-accessible chromatin sequencing (ATAC-seq)
can provide more sensitive and specific guidance in the diagnosis
and treatment of cancer patients (Ding et al., 2020). PBMC testing
can be used to detect and analyze circulating tumor cells (CTCs),
which are highly relevant to breast-cancer-metastasis-related
studies. CTCs are the means by which tumor cells spread to
other parts of the body through the blood or lymphatic fluid and
constitute one of the important links in breast cancer metastasis.
CTC testing can help physicians and researchers detect metastasis
risks early, thereby guiding individualized treatment; it can also be
used to explore the heterogeneity of gene expressions between
individual tumor cells, providing insights into the molecular
mechanisms of tumor development (Ding et al., 2020). ATAC-
seq technology can be combined with other methods, such as RNA
chip data and ChIP-seq, to further explore the mechanisms of
initiation and development of breast cancer (Wang et al., 2021).

In recent years, given the rapid development of multiple omics,
researchers have attempted to understand the mechanisms of
various organisms. Therefore, we also adopted the multi-omics
method combined with ATAC-seq and RNA chip data to explore
the gene expressions of PBMCs; we also investigated the
relationships between chromatin accessibility from the level of
transcriptomics and epigenetic omics to explore the molecular
mechanism and genetic bases of early-stage breast cancer to
enable prediction of the potential therapeutic targets of
breast cancer.

2 Materials and methods

2.1 Acquisition of the specimens

The blood samples required for the study were obtained through
the Breast Surgery Department of Guangzhou First People’s
Hospital from three early-stage breast cancer patients and three
healthy adult volunteers. This study was approved by the Ethics
Committee of Guangzhou First People’s Hospital (approval no. K-
2023-019-01). All clinical studies were conducted in accordance
with the principles of the Declaration of Helsinki.

2.2 Acquisition, processing, and purification
of PBMC specimens

Three women with early-stage breast cancer were selected as the
experimental group, while three women without breast diseases were
chosen as the control group. Blood samples were extracted from these
subjects from the forearm; we obtained 5 mL of whole blood from each
subject, which was placed in appropriate tubes (BD Vacutainer™)

containing ethylenediamine tetraacetic acid, mixed for 8–10 times, and
marked with the patient name and outpatient/hospital number before
being stored at 4°C and transported to the laboratory for cell treatment
within 2 h. During processing the tubes were centrifuged for 30 min at
2,500 rpm using a centrifuge with a swing bucket rotor. The plasma
layer was removed, and the remaining sample was poured into a 15-mL
conical tube. Next, 5 mL of frozen phosphate-buffered saline (PBS)
containing 2% fetal calf serum (FBS) was added to a separate tube,
capped, and mixed in an inverted position. The contents were then
poured into the 15-mL conical tube and centrifuged at 1,200 rpm for
10 min at room temperature; the supernatant was then discarded for
ATAC detection.

2.3 ATAC sequencing

The sample used for sequencing contained approximately 5 ×
104 cells in 100–200 μL, and the cell survival was controlled above
90% as much as possible. Then, 1 M of DNase was added in the ratio
of 1:50 and mixed at 37°C for 30 min; this sample was centrifuged at
500g for 5 min, and the supernatant was carefully discarded. Next,
1 mL of precooled EPITM ATAC lysis buffer was added to the
sample and mixed in an ice bath for 3 min before being centrifuged
at 500g for 10 min; during centrifugation, the 50 µL transposase
reaction systemwas configured with 35 μL of ddH2O, 10 μL of 5× TT
buffer, and 5 µL of Tn5mix. The supernatant was then removed, and
the nuclei were collected and added to the reaction system before
mixing thoroughly 20 times. Following this, the samples were
incubated for 30 min at 37°C and agitation at 1,000 rpm; lastly,
the DNA was extracted from the incubated samples.

The raw data were obtained in the fastq format using fastp
software (https://github.com/OpenGene/fastp); this procedure
controls the raw data, including IP samples and input samples,
and performs adaptor removal, repetitive sequence, and low quality
sequences to yield clean data in the fastq format. Then, FastQC
(https://github.com/s-andrews/FastQC) was applied to this clean
data for quality control analysis. The clean reads data were then
aligned with the reference genome using BWA software (version 0.7.
17-r1188).

The data were further processed after comparing the bam files. The
mitochondrial genome and duplicates were removed, where the
duplicate refers to the sequence of reads to the genome at exactly
the base and alignment with the reference genome. To avoid the
impacts of these replications on subsequent analyses, we used Picard
to remove the duplicates. Next, we used bedtools to remove the blacklist
region. For reads on the positive strand, the starting position of
alignment was +4, and for reads on the negative strand that are
5 bp to the left, the starting position of the alignment was
-5 bp. We used the deeptools-alignmentSieve software (version:
3.5.1) to remove the offset reads, and HOMER was used to predict
the motif sequences in the possible peak binding data.

2.4 GSE27562 chip data download and
standardization

We downloaded the GSE27562 dataset from the NCBI gene
expression omnibus (GEO) database (http://www.ncbi.nlm.nih.
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gov/geo) to obtain the chip data. This dataset mainly includes
information from female patients diagnosed with breast cancer,
patients with benign breast masses, patients with negative
molybdenum targets, and patients after breast cancer surgery.
We extracted the data of 57 female patients diagnosed with breast
cancer and 31 patients without abnormalities as the control
groups, including their Affymetrix cel and probe annotation
files for the subsequent analyses. The platform used for the
chip data is the GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array (Affymetrix Company,
United States).

After successfully downloading the data from
BRAINARRAY and the GeneChip custom chip description
file (CDF) from GENCODE, the data were background
corrected and normalized using Affymetrix power tools
software. Then, the gene-level probe set was mapped to the
human GENCODE annotation (version 28) using a custom perl
script. Only the RNA in the GENCODE database with probe-set
annotation was retained as “PROTEIN-CODING,” while the
other genes were filtered out. The rationality of line data
normalization in the boxplot was assessed with log2PM. The
differentially expressed genes (DEGs) were defined as genes with
|log2FC| > 0.5 and adjusted p < 0.05. DEGs from the breast
cancer and normal populations from the ATAC-seq and
microarray reanalysis were retrieved for intersection analysis
using the Venn diagram.

2.5 Data normalization and batch effect
correction

To ensure comparability and reliability of our data analyses,
we implemented robust normalization and batch effect
correction. For the ATAC-seq data, we used the fragments
per kilobase of transcripts per million mapped reads (FPKM)
method to normalize the sequencing depth across samples,
which mitigated the impacts of varying sequencing depths.
The GSE27562 microarray data were processed for
background correction, normalization, and probe-level signal
summarization using the robust multiarray average (RMA)
method. To address potential batch effects, we applied the
“ComBat” method to the ATAC-seq data and used the “sva”
R package for the GSE27562 data. These procedures effectively
reduced the technical variability and enhanced the consistency
and accuracy of the downstream analyses.

3 Results

3.1 Baseline and ATAC data quality
inspections

We selected three women with early-stage breast cancer as the
experimental group and three healthy adult women as the control
group. The experimental group did not receive any treatment for
early breast cancer, while the women in the control group had no
breast masses until presentation (Table 1).

The ATAC-seq quality control results are presented in Table 2,
for which we observed the accessible regions and found that all
specimens had 99% match with the genome (Table 3).

3.2 Analyses of association degree and
accessible region data for breast cancer
PBMC ATAC-seq samples

The correlations among the samples are shown in Figure 1A,
and a total of 1,906 differentially accessible regions (DARs) and
1,632 DEGs were identified by ATAC-seq. From Figure 1B, it is seen
that the DARs are mainly distributed in the promoter regions of the
DEGs, followed by distal intergenic as well as other intronic regions.
The ATAC-seq signals were enriched in the open chromatin regions
and were positively correlated with the gene transcription activities.
Heatmap analysis shows the enrichment distribution of the base
sequence between the start positions (TSS) of the transcription
factors (TFs) and the 3 kb upstream as well as downstream
region of all genes: the signals of the two groups of cells are
mostly located within ±3 kb. The overall trend of the control
group is slightly higher than that of the experimental
group. These results suggest intergroup differences, and the
heatmaps of the distances between the DARs and transcription
initiation regions of the samples are shown in Figure 1C.

Based on the Kyoto encyclopedia of genes and genomes (KEGG)
and gene ontology (GO) enrichment analyses of the DEGs
corresponding to the DARs, the differential genes were found to
be enriched for N-glycan biosynthesis, T receptor signaling,
peroxisome, GnRH signaling pathway, protein processing in the
endoplasmic reticulum, and other pathways (Figure 1D). In the GO
enrichment analysis, the DEGs of the experimental group were
mainly distributed in the cells, organelles, and cell-membrane-
related structures and were mainly responsible for biological
functions like cell nitrogen complex metabolism, macromolecular
metabolism, and cell communication, in addition to other functions
like nucleic acid binding, enzyme binding, hydrolase enzyme
reaction, and transferase activity (Figure 1E).

3.3 GEO online database for breast cancer
PBMC microarray analysis

We searched the GEO database for chip data related to the
PBMCs of breast cancer and finally selected the
GSE27562 dataset, which mainly includes information from
female patients diagnosed with breast cancer, patients with
benign breast masses, patients with negative molybdenum
targets, and patients after breast cancer surgery. We extracted
the population data for 57 female patients with breast cancers and
31 mammography cases for secondary analyses (Figure 2A). By
setting |Log2FC| > 0.5 and p < 0.05 in these data, we found that
86 genes were upregulated and 55 genes were downregulated in
the PBMCs of the experimental group. The GO and KEGG
enrichment analyses of the DEGs revealed that the
upregulated genes were primarily clustered in the GO
hematopoiesis as well as hemoglobin-related subterms. The
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KEGG analysis showed that the upregulated genes were mainly
enriched for MAPK signaling, TNF signaling, IL-17 post-
absorption, GnRH signaling, and NOD-like receptor signaling
(Figure 2E; Table 4), while the downregulated genes were mainly
enriched for hematopoietic cell lines, cytokine receptors and their
interactions with cellular proteins, sulfur metabolism, nitrogen
metabolism, and protein outputs (Table 5).

3.4 Association analysis between ATAC-seq
and gene microarray data

Intersection analysis of the peripheral blood ATAC sequencing
and mRNA chip data from public databases revealed nine
differentially expressed genes, namely JUN, MSL2, CDC42,
TRIB1, SERTAD3, RAB14, RHOB, RAB40B, and PRKDC.

Among these, seven DEGs were noted to be regulated by both
mRNA data and ATAC sequencing, namely JUN, MSL2, CDC42,
TRIB1, SERTAD3, RAB14, and RHOB (Figure 3A). The RAB40B
gene showed ATAC upregulation and mRNA downregulation
(Figure 3B), while the PRKDC gene showed ATAC
downregulation and mRNA upregulation (Figure 3C); there were
no intersecting genes between both downregulations (Figure 3D).

3.5 Motif predictions

The open regions of the chromatin may be bound by TFs to
regulate gene expressions, and specific base sequences with high
affinities to certain TFs are called as motifs. In the motif analysis, five
specific TFs were identified: NFY, Sp 2, GFY, NRF, and ELK
1 (Table 6).

TABLE 1 Clinical patient information.

Group Sample number Age Sex Diagnosis Surgical operation Pathological type Clinical stage

Experimental group CSW 42 Female Breast cancer Denied HR-/HER2+ cTisN0M0

CXH 52 Female Breast cancer Denied HR-/HER2- cT1N0M0

QXL 63 Female Breast cancer Denied HR+/HER2- cT2N0M0

Control group CYZ 64 Female Normal Denied None 0

S13 48 Female Normal Denied None 0

S8 48 Female Normal Denied None 0

TABLE 2 ATAC quality controlled results.

Sample
name

Number of
original

sequences

Total base
numbers

Total number of
sequences controlled and

paired

Total number of bases that are
quality-controlled and paired

GC
ratio

CSW 118,518,974 1.78e+10 94,544,598 1.12e+10 0.445

CXH 146,227,086 2.19e+10 113,165,584 1.31e+10 0.443

CYZ 191,688,422 2.88e+10 140,223,270 1.58e+10 0.45

QXL 122,565,338 1.84e+10 89,271,816 8.85e+09 0.451

S13 218,332,778 3.27e+10 176,448,968 2.27e+10 0.437

S8 238,892,846 3.58e+10 198,617,718 2.53e+10 0.443

TABLE 3 Analysis of the sequence alignment results.

Sample name Total number of sequences Number of sequences in the alignment Comparison rate

CXH 113,165,584 113,056,514 99.9

QXL 89,271,816 89,195,666 99.91

CSW 94,544,598 94,466,193 99.92

S8 198,617,718 198,465,443 99.92

CYZ 140,223,270 140,107,764 99.92

S13 176,448,968 176,351,915 99.94
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FIGURE 1
Analysis of the degree of correlation and accessible region data from ATAC-seq samples: (A) Pearson association analysis between the samples; (B)
distribution of the accessible regions of the differential genes; (C) heatmap of the distance of the differentially accessible region (DAR) from the
transcription start region (TSS) for each sample. (D) KEGG enrichment analysis of the top 20 pathways enriched by the differentially expressed genes
(DEGs), where the dot sizes indicate the numbers of differential genes in each of the channels; the larger the dot size, the more are the number of
genes. The colors indicate the p-values, where blue indicates p > 0.01, purple indicates p > 0.005 and p < 0.01, and yellow indicates p < 0.005. (E) Bar
graph of the GO enrichment analysis of the DEGs, where red indicates that the DEG enriched subterms are upregulated in the disease group and green
indicates the subterms that downregulate DEG enrichment in the disease group.
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FIGURE 2
Enrichment analyses of DEGs and their functions in peripheral bloodmononuclear cells between breast cancer patients and healthy controls for the
GSE27562 dataset from the GEO database. (A) Heatmaps of all the genes in the GSE27562 dataset, where blue represents the tumor group and orange
represents the normal group; the red data indicate increased expressions, green data indicate decreased expressions, and darker colors indicate higher
gene expression value changes from the two extremes. (B)GOenrichment analysis of the DEGs for biological processes. (C)GOenrichment analysis
of the DEGs for cellular components. (D) GO enrichment analysis of the DEGs for molecular functions. (E) KEGG enrichment analysis of the DEGs. In
(B–E), the dot sizes indicate the numbers of differential genes in each channel, with larger sizes implying more numbers and colors indicating
the p-values.
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4 Discussion

The determination of transposase-accessible chromatin involves
the use of the hyperactive Tn5 transposase to cut the accessible
genomic DNA and attach sequencing adaptor primers to the DNA
ends to measure the openness of certain DNA regions as well as
obtain important information about the open chromatin state of the
entire genome of a certain cell type (Buenrostro et al., 2013; Gross
and Garrard, 1988; Adey et al., 2010). This transposase preferentially
inserts sequencing junctions at the unprotected regions of the DNA,
thus serving as a probe to measure the genome-wide accessibility of
the chromatin (Buenrostro et al., 2015). ATAC-seq technology
explores how the open regions in the genome may be gene
regulatory elements, such as enhancers, promoters, and TF-
binding regions often enriched for TF-specific binding sites,
which share similar DNA sequence patterns (motifs).

By collecting PBMC suspensions from breast cancer patients
and normal controls, we identified five TFs that were highly
expressed in breast cancer patients: NFY, Sp 2, GFY, NRF, and

ELK 1. Four of these TFs have already been reported in breast
cancer. The nuclear transcription factor Y (NFY) is a cancer-
promoting gene that enhances the value-added invasion and
metastasis of breast cancer by promoting the expression of
proline-rich 11 (PRR 11) (Wang et al., 2019). The Sp 2 TF
regulates the biological functions in breast cancer by modulating
the mitochondrially related differentially expressed genes (mrDEGs)
(Yan et al., 2021). Inhibition of the NFKB (NRF) TF along with non-
coding the RNA TROJAN has been shown to abolish CDK2 activity
and reverse the resistances of breast cancer cells to CDK4/
6 inhibitors (Jin et al., 2020). The ELK 1 TF inhibits cell
proliferation in breast cancer along with the tumor suppressor
small non-coding RNA 135a (miR-135a) (Ahmad et al., 2018).
As a new discovery in this work, the olfactory signaling factor
(GFY regulator) has not been evaluated for its role in breast cancer
and may therefore be used as a prediction target for the diagnosis,
treatment, or prognosis of breast cancer in the future.

The combined use of ATAC-seq and RNA microarray data
reveal differences in the gene expressions and regulations between

TABLE 4 KEGG enrichment analysis of the top 10 upregulated differentially expressed genes in breast cancer patients and normal population.

ID Description Gene ratio Q-value

hsa04010 MAPK signaling pathway 0.14 0.010452

hsa04668 TNF signaling pathway 0.12 0.001096

hsa05167 Kaposi-sarcoma-associated herpesvirus infection 0.12 0.00689

hsa05417 Lipid and atherosclerosis 0.12 0.008378

hsa05120 Epithelial cell signaling in Helicobacter pylori infection 0.10 0.001096

hsa04657 IL-17 signaling pathway 0.10 0.002538

hsa04933 AGE-RAGE signaling pathway in diabetic complications 0.10 0.002698

hsa04928 Parathyroid hormone synthesis, secretion, and action 0.10 0.002989

hsa04380 Osteoclast differentiation 0.10 0.006025

hsa04932 Non-alcoholic fatty liver disease 0.10 0.008378

TABLE 5 KEGG enrichment analysis of the top 10 downregulated differentially expressed genes in breast cancer patients and normal population.

ID Description Gene ratio Q-value

hsa04640 Hematopoietic cell lineage 0.05 0.190316

hsa04061 Viral protein interactions with cytokines and cytokine receptors 0.05 0.190316

hsa04062 Chemokine signaling pathway 0.05 0.190316

hsa04060 Cytokine-to-cytokine-receptor interactions 0.05 0.257848

hsa04080 Neuroactive ligand–receptor interactions 0.05 0.282966

hsa00920 Sulfur metabolism 0.02 0.190316

hsa00910 Nitrogen metabolism 0.02 0.190316

hsa03060 Protein export 0.02 0.190316

hsa00062 Fatty-acid elongation 0.02 0.190316

hsa01040 Biosynthesis of unsaturated fatty acids 0.02 0.190316

Other functional analysis results are shown in Figures 2B–D.
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tumor and normal cells. In our experiments, we used the ATAC-seq
data of human peripheral blood samples from a public database
RNA chip and found nine DEGs, namely JUN, MSL2, CDC42,
TRIB1, SERTAD3, RAB14, RHOB, RAB40B, and PRKDC. Eight of
these genes have already been reported in breast cancer. JUN can be
divided into cellular JUN (c-JUN) and viral JUN (v-JUN). c-JUN is a
member of the activated protein-1 (AP-1) TF family that is
stimulated by upstream signals and can be transmitted by the
JUN N-terminal kinase (JNK) to regulate gene expressions at the
transcriptional level, thereby inducing cancer (Vogt, 2001). c-JUN is
a potential regulator that stimulates the transformation of breast
cells into HR+/HER2-type breast cancers (Zhu et al., 2022). The cell
division control protein 42 homolog (CDC42) is frequently
upregulated by several cell surface receptors and breast cancer
oncogenes, as noted by Cruz-Collazo et al. (2021); the
CDC42 inhibitor inhibits infiltration and metastasis of triple-
negative breast cancer cells while also inducing cell cycle arrest
and apoptosis of HER2-overexpression-type breast cancer cells. It
reduces tumor growth and metastasis while inhibiting the migration
and invasion of HR+/HER2-type breast cancer cells (Khan et al.,
2020). SERTAD3 is a pro-cancer gene located within the
19q13 amplicon that has been shown to inhibit the growth of
breast cancer cells and enhance tumor sensitivity to treatment
with the drug tamoxifen (Li et al., 2021a). The RAS homolog
family member B (RHOB) gene acts as a tumor suppressor and
is the guanosine triphosphate enzyme of the RHO family; some

researchers have found that RHOB plays an important role in
inhibiting breast cancer invasion and metastasis (Wieland et al.,
2021), and reducing RHOB expression can increase the migration
and invasion capacities of triple-negative breast cancer cell lines.
Restoration of the breast cancer 1 (BRCA 1) gene expressions in
BRCA1-mutant triple-negative breast cancer cell lines can increase
the expression of RHOB, resulting in reduced migration capacity.
These results suggest that RHOB protein and BRCA1 mutations are
potential therapeutic targets for breast cancer (Privat et al., 2020).
RHOB alters the hormonal responses of breast cancer cells by
affecting the expressions of the estrogen receptors (ERs) and
progesterone receptors (PRs). We have shown that RHOB
regulates the expressions of ERs and controls their protein and
mRNA levels; furthermore, RHOB regulates the expressions of PRs
by enhancing the recruitment of ERs and other major coregulatory
factors to PR gene promoters. A major consequence of RHOB
regulation is that it differentially affects the proliferation of breast
cancer cell lines. It was earlier demonstrated that RHOB promotes
the expressions of ERs and PRs in a manner related to cell
proliferation in human breast cancer (Médale-Giamarchi et al.,
2013). Some investigators found that RHOB expression was
upregulated after treatment with atorvastatin, implying the
potential application of RHOB as a target for tumor suppressor
gene therapy in breast cancer (Ma et al., 2019). The recombination
process of cellular programs in malignant cells is a stage where the
tumor is very vulnerable. The male-specific lethal 2 homolog (MSL

FIGURE 3
Venn diagrams of the intersections between the ATAC peaks of the peripheral blood mononuclear cells and chip data: (A) intersection of
upregulated genes between ATAC andmRNA; (B) intersection of genes between upregulated ATAC and downregulated mRNA; (C) intersection of genes
between downregulated ATAC and upregulated mRNA; (D) intersection of downregulated genes between ATAC and mRNA.
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TABLE 6 HOMER predicts the top 20 transcription factors motifs with high binding probabilities in ATAC sequencing.

Rank Motif/Name Q-
value

% of Targets
Sequences with
Motif

% of Background
Sequences with Motif

1

Sp1(Zf)/Promoter/Homer

<0.001 21.56% 7.24%

2

NFY(CCAAT)/Promoter/Homer

<0.001 21.20% 7.15%

3

Ronin(THAP)/ES-Thap11-ChIP-Seq(GSE51522)/Homer

<0.001 4.93% 0.33%

4

GFY-Staf(?,Zf)/Promoter/Homer

<0.001 5.35% 0.63%

5

KLF3(Zf)/MEF-Klf3-ChIP-Seq(GSE44748)/Homer

<0.001 22.82% 10.29%

6

KLF1(Zf)/HUDEP2-KLF1-CutnRun(GSE136251)/Homer

<0.001 33.89% 18.61%

7

Sp5(Zf)/mES-Sp5.Flag-ChIP-Seq(GSE72989)/Homer

<0.001 35.10% 20.15%

8

GFY(?)/Promoter/Homer

<0.001 4.93% 0.77%

9

Elk4(ETS)/Hela-Elk4-ChIP-Seq(GSE31477)/Homer

<0.001 16.05% 7.18%

10

Fli1(ETS)/CD8-FLI-ChIP-Seq(GSE20898)/Homer

<0.001 24.34% 13.38%

11

NRF1(NRF)/MCF7-NRF1-ChIP-Seq(Unpublished)/Homer

<0.001 9.50% 3.17%

12

Elf4(ETS)/BMDM-Elf4-ChIP-Seq(GSE88699)/Homer

<0.001 20.83% 10.92%

13

KLF6(Zf)/PDAC-KLF6-ChIP-Seq(GSE64557)/Homer

<0.001 32.90% 20.65%

14

Elk1(ETS)/Hela-Elk1-ChIP-Seq(GSE31477)/Homer

<0.001 15.95% 7.52%

(Continued on following page)
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2) gene suppresses tumor proliferation through disruption-induced
excessive chromosomal instability (CIN) (Valsecchi et al., 2021).
Hence, targeting MSL may be a valuable approach to treating
tumors by increasing the CINs beyond the levels tolerated by
cancer cells without inducing serious side effects (Monserrat
et al., 2021) in normal tissues. For example, in hepatocellular
carcinoma (HCC), MSL 2 overexpression has been found to
partially block the inhibitory effects of the miRNA-296-3p tumor
suppressor gene mode for proliferation and migration of the HCC
cells, which could be used as a target for HCC therapy (Li et al.,
2021b). It was also shown that MSL 2 plays a role in maintaining a
normal histone modification profile that contributes to the repair of
DNA damage (Lai et al., 2013). However, the role of MSL 2 in breast
cancer has not been reported in other studies; hence, it may be used
as a future therapeutic target in breast cancer. Tribbles pseudokinase
1 (TRIB1) is a pro-cancer gene involved in cancer initiation and
progression, which could be used as a biomarker for the diagnosis
and prognosis of diseases. Studies have shown that both
overexpression and knockdown of TRIB1 in myeloid cells
promote the growth of breast tumors in mice; myeloid TRIB1 is
a negative regulator of the antitumor cytokine IL-15. Increased
expression of myeloid TRIB2 reduces IL-15 levels in breast tumors,
resulting in reduced numbers of T cells that are key to the antitumor
immune responses. Thus, the roles of TRIB1 in chemotherapeutic
responses in human breast cancer are critical and provide
mechanistic insights into the importance of controlling myeloid
TRIB 1 expression in breast cancer development (Kim et al., 2022).
TRIB1 can also be developed as a biomarker for direct targeted
therapy and predicting treatment responses (McMillan et al., 2021).
RAB14 inhibition mediated by miR-320a suppresses cell

proliferation, migration, and invasion in breast cancers. It has
also been shown that RAB14 is a miR-320a target in breast
cancer; thus, silencing RAB14 inhibits proliferation, migration,
and invasion of breast cancer cell lines (Yu et al., 2016).
However, RAB14 actively interacts with Nischarin by regulating
the production of exosomes in breast cancer cells, subsequently
affecting tumor cell adhesion, cell migration, tumor growth, and
metastasis (Maziveyi et al., 2019). RAB40B is also a member of the
RAS family of oncogenes and plays an important role in breast
cancer cell formation, invasion, and metastasis (Jacob et al., 2013).
DNA-dependent protein kinase (PRKDC) has been shown to
modulate tumor sensitivity to chemotherapy and is a potential
prognostic and predictive indicator of the efficacy of adjuvant
chemotherapy in cancer patients. Some studies have shown that
PRKDC expression is significantly higher in breast cancer tissue
samples; high expression of PRKDC is also associated with a higher
tumor grade, positive lymph node metastasis, and chemoresistance.
Furthermore, PRKDC downregulates the sensitivity of the HR+/
HER2-type breast cancer cells (MCF-7 line) to chemotherapeutic
agents in vitro and in xenograft mouse models, indicating that
PRKDC is a prognostic biomarker of chemoresistance in breast
cancer patients (Sun et al., 2017). High expression of PRKDC is also
a prognostic marker of poor survival in breast cancer patients
(Zhang et al., 2019).

5 Conclusion

The use of ATAC-seq technology to identify motifs has
important roles in gene regulation and disease; it provides an

TABLE 6 (Continued) HOMER predicts the top 20 transcription factors motifs with high binding probabilities in ATAC sequencing.

Rank Motif/Name Q-
value

% of Targets
Sequences with
Motif

% of Background
Sequences with Motif

15

NRF(NRF)/Promoter/Homer

<0.001 9.86% 3.68%

16

ELF1(ETS)/Jurkat-ELF1-ChIP-Seq(SRA014231)/Homer

<0.001 14.74% 6.87%

17

KLF5(Zf)/LoVo-KLF5-ChIP-Seq(GSE49402)/Homer

<0.001 37.88% 25.79%

18

Sp2(Zf)/HEK293-Sp2.eGFP-ChIP-Seq(Encode)/Homer

<0.001 41.82% 29.46%

19

ETS(ETS)/Promoter/Homer

<0.001 9.86% 3.92%

20

ETV4(ETS)/HepG2-ETV4-ChIP-Seq(ENCODE)/Homer

<0.001 24.29% 14.73%
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important basis for greater understanding of the mechanisms of TF-
specific binding sites as well as new ideas for the study of TFs,
enhancers, and promoters and development of new drugs. The
present study identifies several key genes and TFs associated with
breast cancer, providing a macroscopic theoretical basis for further
research in this area. Future studies should focus on the functional
validation of these identified genes and their interactions with the
TFs to enhance our mechanistic understanding of their roles in
breast cancer progression. Such validation could offer critical
insights into their potential as therapeutic targets and contribute
to the development of more effective treatment strategies. The
combined application of ATAC-seq and RNA-seq can provide
complementary results in tumor genomics research, help
researchers better understand the regulatory mechanisms and
expression profile changes during the occurrence and
development of tumors, and improve the understanding and
treatability of tumors. However, the present study is limited by
its relatively small sample size. To strengthen the clinical relevance
and utility of the identified biomarkers, future studies should focus
on validating these biomarkers in larger cohorts. This would not
only confirm their potential as diagnostic and prognostic tools but
also enhance their applicability in personalized medicine for breast
cancer treatment.

The TFs and differential genes identified and discovered in this
study provide a macroscopic theoretical basis for breast cancer
research and can be potential targets for future breast cancer
treatments.
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