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Introduction: Due to its remarkable anti-inflammatory pharmacological activity,
Farfarae Flos has gained extensive usage in the treatment of various inflammatory
diseases such as bronchitis, pneumonia, prostatitis and colitis. And Farfarae Flos
come in two color types depending on the color of the flowers: yellowish-white
(YW), and purplish-red (PR). However, the difference in anti-inflammatory activity
and metabolic profiles between the two flower colors remains unexplored.

Methods: This study aims to explore the difference in the anti-inflammatory
potential between YW and PR variants of Farfarae Flos and unravel the
mechanisms responsible for the observed differences in anti-inflammatory
activity through an integrated approach encompassing untargeted
metabolomics and in vivo/vitro experimental studies. Initially, we verified the
contrasting effects of YW and PR on the inhibition of the inflammatory factors
interleukin-6 (IL-6) and nitric oxide (NO) by utilizing an in vitro RAW 264.7 cell
inflammation model. Subsequently, a comprehensive evaluation of the systemic
inhibitory capacity of YW and PR on IL-6, Interleukin-10 (IL-10), and tumor
necrosis factor-α (TNF-α) was conducted using a validated whole-body
mouse model, followed by the analysis of inflammatory factors and
histological examination of collected serum, liver, and spleen after 7 days.
Furthermore, non-targeted metabolomics profiling was employed to analyze
the metabolite profiles of Farfarae Flos with different colors, and quantitative
analysis was conducted to identify differential metabolites between YW and PR.
The correlation between the anti-inflammatory activities of differentially
accumulated metabolites (DAMs) and Farfarae Flos was investigated, resulting
in the identification of 48 compounds exhibiting significant anti-inflammatory
activity. Additionally, KEGG pathway enrichment analysis was performed to
elucidate the underlying mechanisms.

Results: Our findings demonstrate that both YW and PR possess anti-
inflammatory abilities, with PR exhibiting significantly superior efficacy. The
integration of in vivo/vitro experiments and non-targeted metabolomics
confirmed the exceptional anti-inflammatory potential of PR and solidified its
classification as the “purplish-red better” of Farfarae Flos.
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Discussion: This study provides valuable insights into the breeding and medical
transformation of Farfarae Flos varieties, along with a scientific basis for the
establishment of quality standards and the development of new drugs utilizing
Farfarae Flos.
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1 Introduction

Inflammation, a fundamental pathological process triggered by
internal or external stimuli, is categorized into acute and chronic
inflammation (Kany et al., 2019). Acute inflammation, usually
resolves spontaneously, while chronic inflammation is
characterized by excessive production of inflammatory factors
such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), and
interleukin-6 (IL-6) (Kapellos et al., 2019; Tanaka et al., 2020).
Inflammatory responses are closely associated with various diseases,
including cardiovascular, metabolic diseases, neurodegenerative
disorders, and other inflammatory conditions such as chronic
gastritis, rheumatoid arthritis, inflammatory bowel disease, and
cancer (Pan et al., 2021; Sugimoto et al., 2019). Although a
moderate inflammatory response is beneficial for the body’s
defense against harmful stimuli, excessive or prolonged
inflammation can lead to numerous detrimental effects, including

fever, redness, tumors, pain and loss of function. In fact, in clinical
settings, widely employed anti-inflammatory medications like
aspirin and ibuprofen are frequently linked to side effects and
allergic responses (Bellón, 2019; Braun et al., 2020; Moore
et al., 2019).

In contrast to Western medicines, the use of herbal medicine is
steeped in ancient history, with its origins tracing back over millennia
(Nunes et al., 2020; Shin et al., 2020). Today, natural and herbal
substances continue to receive increasing attention due to their low
side effects and cost-effectiveness (Yimer et al., 2019). In recent years,
the anti-inflammatory effects of herbal medicine have been extensively
studied. Numerous in vivo/vitro studies have demonstrated that herbal
medicine exerts its anti-inflammatory effects by impeding key
transcription factors, mitigating the activity of pro-inflammatory
cytokines and chemokines, reducing intercellular adhesion molecule
expression, and inhibiting the action of pro-inflammatorymediators (Li
et al., 2020; Tasneem et al., 2019; Xin et al., 2019).
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Tussilago farfara L., the only plant in the genus Tussilago L. in
the family Asteraceae, is widely distributed across Asia, Europe and
North Africa. The flower buds of T. farfara L. commonly known as
Farfarae Flos, have long been used in traditional medicine tomoisten
the lungs, alleviate coughs, reduce phlegm, and lower airway
inflammation (Xuan et al., 2020). Moreover, Farfarae Flos
exhibits notable anti-inflammatory, anti-allergic, and anti-platelet
aggregation properties (Liu et al., 2020). In China, the Farfarae Flos
has been used in the form of dried flower buds from ancient times to
the present day, and it is used in Chinese medicine as one of the
essential medicines for relieving coughs and phlegm and asthma
(Jang et al., 2019). In some European countries, indigenous people
also use Farfarae Flos to treat coughs and colds. Nevertheless, they
are more likely to use the leaves of the herb for the treatment of
diseases of the gastrointestinal tract, wounds, burns, urinary and
inflammatory damage in the eyes (Kalle et al., 2022). In recent years,
Farfarae Flos and related compound preparations have displayed
significant therapeutic effects on a wide range of inflammatory
conditions, making it a critical species in the development of
anti-inflammatory drugs. Numerous studies have identified
various compounds in Farfarae Flos, including flavonoids, sterols,
phenolic acids, alkaloids, polysaccharides, volatile oils,
sesquiterpenoids, triterpenoids, and other bioactive components.
The anti-inflammatory effects of key active monomeric components
such as sesquiterpenoids (e.g., Tussilagone), flavonoids (e.g.,
kaempferol), sterols (e.g., ergosterol and β-sitosterol), and organic
acids (e.g., chlorogenic acid, isochlorogenic acid, and caffeic acid)
have been clinically validated (Chen et al., 2021; Ferrer et al., 2018;
Jin et al., 2020; Song et al., 2019; Yang et al., 2020) (Figure 1).

It is well known that Farfarae Flos is dominated by two different
colors, purplish-red (PR) and yellowish-white (YW), and the
difference between the two colors is obvious and can be easily
judged by visual performance. The difference in color often
corresponds to variations in pharmacological activity (Zou et al.,
2021). Traditionally, the criterion of “purplish-red better” has been
employed to evaluate the quality of Farfarae Flos. However, precise
studies explaining the regularity behind the superior anti-
inflammatory activity of PR compared to YW are lacking. Hence,
it is crucial to compare the anti-inflammatory activity between these
two colors and conduct an in-depth investigation into the main
components and material basis underlying the difference in their
anti-inflammatory activity.

In this study, the difference in anti-inflammatory effects between
YW and PR through in vitro experiments was initially determined.
Furthermore, the anti-inflammatory effects of YW and PR were
evaluated using a mouse systemic inflammation model,
accompanied by histological analysis. Additionally, non-targeted
metabolomics analysis was performed to assess the natural
differences in metabolite types between YW and PR, and to
investigate the reasons for the difference. The presence of
differentially accumulated metabolites (DAMs) of YW and PR
were annotated into the KEGG pathway, revealing that
phenylpropanoid, flavonoid and flavonol, and sesquiterpene
metabolism pathways were strongly associated with the anti-
inflammatory activity of Farfarae Flos. Moreover, the correlation
between anti-inflammatory activities and highly differentially
accumulated metabolites (DAMs) of YW and PR was examined.
A total of 48 compounds, including flavonoids, sesquiterpenes,

sterols, and other compound types, exhibited high correlations
with anti-inflammatory activities. These results underscore the
correlation between the build up of secondary metabolites and
the varying degrees of anti-inflammatory efficacy observed
between YW and PR. In conclusion, this study provides
comprehensive insights into the patterns and mechanisms
underlying the contrasting anti-inflammatory effects of different
colors of Farfarae Flos, offering valuable guidance for selecting
Farfarae Flos varieties and facilitating its clinical application.

2 Experimental

2.1 Preparation of Farfarae Flos

Farfarae Flos was purchased from Shaanxi Best Enterprise
Group. The herb material was identified by Prof. Hu Benxiang.
The voucher specimens of Farfarae Flos were preserved in the
herbarium of Shaanxi University of Chinese Medicine. All
samples were divided into two groups, yellow-white (YW)
(Figure 2A) and purplish-red (PR) (Figure 2B), using the color
card as a control. Both groups were dried, crushed, and sieved
through 40 mesh (pore size 0.425 mm), placed in paper bags and
stored in a desiccator at room temperature.

2.2 Chemical solvents

All chemical solvents information can be found in
Supplementary Material.

2.3 Preparation of extracts

Took 80 g of each kind of powder from purplish-red and
yellowish-white Farfarae Flos, extracted with 85% ethanol for 1 h
and filtered while hot, the residue was rinsed three times,
concentrated under reduced pressure at 56°C to obtain the
extracts of different groups. The extracts were dissolved in
distilled water at established concentrations and were recorded as
PR for the purplish-red flowers and YW for the yellowish-
white flowers.

2.4 Biocompatibility test of YW and PR

Biocompatibility of YW and PR was evaluated by RAW
264.7 cells (Johnson et al., 1983). The cell viabilities of YW and
PR were evaluated by alamarBlue® assay. First, RAW 264.7 cells
underwent standard thawing procedures and were grown in a
humidified incubator containing 5% CO2 at 37°C for 24 h. The
cells were passaged, and after the cells grown to 80% of their
maximum density, RAW 264.7 cells were seeded in a 96-well
plate at a density of 10,000 cells/well. After being cultured for
24 h, complete mediums containing YW and PR at different
concentrations and colors were introduced into the wells. The
details of the cytocompatibility evaluation were obtained in the
Supplementary Material.
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2.5 Animal research

All animals (Kunming mice; 20 ± 2 g; half male and female) were
domesticated in the animal laboratory for 7 days before the start of
the animal tests. All animal experiments were conducted by the
“Regulations on the Administration of Experimental Animals,” the
Chinese Animal Experiment Guidelines, and internationally
accepted ethical principles for the use and care of experimental
animals. The animal experiments involved in this study have been
approved by the ethics committee (approval number:
SUCMDL20220725001).

2.6 NO production assay

RAW 264.7 cells were seeded into 96-well plates at a density of
10,000 cells per well and incubated for 24 h. Subsequently, complete
mediums containing YW and PR were introduced into the wells. After
being co-incubated for another 24 h, cell suspensions were centrifuged and
the cell culture supernatant was obtained. The NO content in the cell
culture supernatant was determined by a commercial nitric oxide (NO)
content assay. All operations strictly follow themanufacturer’s instructions.
Optical density (OD) readings of the sampleswere taken at 530 nmusing a
microplate reader to determine the NO levels in the supernatant.

FIGURE 1
Chemical structures of compounds (A–G).

FIGURE 2
(A) A sample of dried YW of Farfarae Flos buds; (B) A sample of dried PR of Farfarae Flos buds.
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2.7 ELISA test

ELISA kits were utilized to quantify the secretion levels of NO,
TNF-α, IL-10, and IL-6 in RAW 264.7 cells induced by LPS. Initially,
RAW 264.7 cells were plated at a seeding in 96-well plates and
allowed to adhere for 12 h. Following attachment, the cells were
treated with LPS at a concentration of 1 μg/mL and incubated
together for 24 h. After incubation, the cell suspension was harvested
and subjected to centrifugation at 1,200 rpm to separate the cell
culture supernatant. The concentrations of NO, TNF-α, IL-10, and
IL-6 in the supernatant were then determined according to the
protocols provided with the ELISA kits. The assay was designed to
permit up to 10 replicate measurements for each sample.

2.8 Anti-inflammatory test

After 7 days of adaptation, 90 KMmice were randomly assigned
into 9 different groups (n = 10) randomly, including the TCP (tissue
culture plate, means this group does not undergo any treatment)
group (H2O), LPS group (H2O), positive group (Diclofenac Sodium
20 mg/kg), HYW group (High-dose group of YW), MYW group
(Middle-dose group of YW), LYW group (Low-dose group of YW),
HPR group (High-dose group of PR), MPR group (Middle-dose
group of PR) and LPR group (Low-dose group of PR). The dosage of
the above experimental groups: high-dose group (5 g/kg), medium-
dose group (2.5 g/kg), low-dose group (1.25 g/kg), and all the
dosages administered were equivalent to the crude drug. The
dose was administered daily at 9:00 a.m. for 7 days. 2 h after the
last dose, LPS (5 mg/kg) was injected intraperitoneally into the LPS
and dosing groups, and 200 µL of PBS was injected into the TCP
(without treatment) group. 2 h later, all mice were anesthetized,
blood was taken from the eyes, and the serum was collected after
immediate centrifugation. After the blood sampling was completed,
the liver and spleen were quickly removed and preserved in a 4%
paraformaldehyde solution.

2.9 Histological analysis

Histological analysis was performed by H&E staining. The livers
and spleens of the mice were cleaned with saline, preserved in 4%
paraformaldehyde, embedded in paraffin, and then sectioned. These
sections were subsequently stained using Hematoxylin and Eosin
(H&E) and observed and photographed using a microscope.

2.10 Metabolite extraction and UPLC-MS/
MS analysis for the untargeted
metabolomic analysis

Five samples of about 1 g each were taken from each of the two
groups of Farfarae Flos, labeled yellowish-white 1–5 for the YW and
purplish-red group 1–5 for the PR, wrapped in tin foil and stored in
liquid nitrogen for quick-freezing until use. Take the appropriate
amount of samples (50 mg) in a 2 mL EP tube, according to the
sample processing method of metabolomics, the 5 groups of samples
of YW and PR were further processed, and the detailed processing

information, metabolic sample preparation and UPLC MS/MS
chromatographic data can be found in the Supplementary Material.

2.11 Bioinformatic analysis of the untargeted
metabolomic dataset

The bioinformatic examination of the untargeted metabolomic
dataset was conducted using the XCMS and ProteoWizard software
suites, alongside the CAMERA and metaX toolboxes, all these tools
were implemented by using R software (see Supplementary Material
for further details). The annotation of metabolites was facilitated
through the use of the online KEGG and HMDB databases. In
addition, an in-house library of metabolite fragment profiles was
used to validate metabolite identification.

3 Results

3.1 Biocompatibility of YW and PR

Good cytocompatibility is the premise for YW and PR to achieve
the medicinal effect. In this study, the biocompatibility of YW and
PR was assessed by evaluating the cell viability of RAW 264.7 cells
after treatment with these extracts in vitro. After 24 h of treatment
with complete mediums containing YW and PR, the cell viability of
all groups exceeded 90% (Figures 3A–D), indicating that the cell
viability was not significantly inhibited by YW and PR treatment.
Although the cell viability slightly decreased with increasing
concentrations of YW and PR, there were no significant
differences compared to the TCP group. Notably, the cell
viability of RAW 264.7 cells remained above 90% even at an
extract concentration of 2 mg/mL. Additionally, to exclude the
impact of lipopolysaccharide (LPS)-induced polarization of RAW
264.7 cells, the cell viability of LPS-treated cells was tested after 24 h.
Similarly, the reduction in cell viability after LPS treatment was
negligible. Moreover, the cell viability after treatment with YW, PR,
and LPS was comparable to that of the TCP group. In conclusion,
YW and PR demonstrated favorable cytocompatibility.

3.2 Anti-inflammatory activity of YW and PR

As a cytokine mediating inflammatory immune response, IL-6
plays a critical role in the body’s anti-infection immune response. To
further confirm the inhibitory effect of Farfarae Flos extracts on
inflammation, we evaluated the intracellular IL-6 levels of YW and
PR after LPS treatment. IL-6 levels were significantly increased in
RAW 264.7 cells after LPS treatment. As shown in Figures 4A–C,
both YW and PR significantly reduced intracellular IL-6 levels
compared to the LPS-treated group (p < 0.0001). The high-dose
(2 mg/mL) groups of YW and PR exhibited significantly lower IL-6
levels compared to the medium-dose (1 mg/mL) group and low-
dose (0.5 mg/mL) groups of YW and PR, indicating a dose-
dependent increase in the anti-inflammatory capacity of both
YW and PR. With the increase of the administered
concentration, the IL-6 content in the cells showed a negative
increase and the cellular inflammatory response was diminished.
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Most importantly, at the same concentration of YW, PR
demonstrated a significantly greater reduction in IL-6 levels,
highlighting its superior anti-inflammatory activity compared to
YW (p < 0.0001).

Nitric oxide (NO) serves as a signaling molecule with
inflammatory properties, regulating various physiological
activities. In this study, the ability of YW and PR to scavenge
NO was evaluated to verify their anti-inflammatory effects. As
illustrated in Figures 5A–C, the LPS-treated group significantly
induced NO production in RAW 264.7 cells compared to the
TCP group. Compared to the LPS-treated group, both YW and
PR were able to reduce the NO concentration significantly (p <

0.0001). At concentrations of 0.5 mg/mL, 1 mg/mL, and 2 mg/mL,
YW reduced the NO concentration to 9.2 μmol/L, 9.1 μmol/L, and
7.1 μmol/L, respectively, which were significantly lower than the NO
concentration in the LPS-treated group (16.8 μmol/L) (Figure 5A).
PR also exhibited a dose-dependent increase in the inhibitory effect
on NO concentration, with the high-dose group of PR reducing NO
concentration to 4.18 μmol/L (Figure 5B), which was not statistically
different comparable the TCP group (4.03 μmol/L). Furthermore, a
significant difference was observed between YW and PR at high,
medium, and low doses (p < 0.05). Additionally, when comparing
the intracellular NO scavenging abilities of YW and PR at a
concentration of 1 mg/mL, PR exhibited significantly stronger

FIGURE 3
(A)Cell viability of YW from various groups; (B)Cell viability of PR from various groups; (C)Cell viability of YWwith LPS treatment from various groups;
(D) Cell viability of PR with LPS treatment from various groups.

FIGURE 4
IL-6 content in the supernatant of RAW 264.7 cells treated with YW (A), PR (B) at 0.5 mg/mL, 1 mg/mL and 2mg/mL, IL-6 content in the supernatant
of RAW 264.7 cells treated with YW and PR (C) at 1 mg/mL. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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NO scavenging ability than YW (p < 0.0001, Figure 5C). These
results confirm that PR had the best NO scavenging capacity, and it
is worth mentioning that the reduced NO levels after administration
via the high-dose group of PR could even reach the NO levels of the
TCP group. Obviously, both YW and PR demonstrated desirable
inhibitory effects on inflammation, with PR exhibiting superior anti-
inflammatory activity compared to YW.

3.3 Therapeutic effects of the YW and PR on
the model of systemic inflammation

Lipopolysaccharide (LPS) is a major component of bacterial
outer membranes that causes inflammatory responses in disease and
low doses of LPS in mice can induce systemic inflammation. After
LPS treatment, the pro-inflammatory cytokines in the mice will
increase in a short time. Therefore, to investigate the anti-
inflammatory potential of Farfarae Flos, LPS was used to induce
systemic acute inflammation in mice. Serum samples from different
treatment groups were collected to measure the release of
inflammatory cytokines IL-6, TNF-α, and IL-10, serving as
indicators of the anti-inflammatory activity of YW and PR. We
compared the inhibition of inflammatory factors in LPS-treated
mice by YW and PR using mice administered without drugs as the
TCP group, mice administered with LPS only as the control group
and mice administered with Diclofenac Sodium Sustained Release
Tablets as the positive group, as shown in Figures 6A–C.
Quantitative data show that in comparison to the LPS control
group, Administration of YW and PR at all tested doses
suppressed the secretion of the pro-inflammatory cytokines IL-6
and TNF-α in mice. Likewise, all doses of YW and PR promoted the
release of the anti-inflammatory cytokine IL-10. Notably, the release
of IL-6, IL-10 and TNF-α in PR significantly differed from that in the
TCP, control, positive and YW groups (p < 0.0001). In comparison
to the control, positive control and high-dose group of YW, PR
reduced the release of pro-inflammatory cytokine IL-6 by 46.29%,
20.33%, and 31.9%, respectively. The release of pro-inflammatory
cytokine TNF-α decreased by 36.58%, 7.64%, and 22.16%
correspondingly. Additionally, the expression of the anti-
inflammatory factor IL-10 increased by 29.63%, 5.3%, and
14.86%. Consistent with the results in Section 3.2, the ability of

YW and PR to regulate inflammatory factors in mouse serum
improved with increasing doses. Moreover, PR demonstrated a
superior anti-inflammatory effect on LPS-induced systemic
inflammation in mice compared to YW, with the high-dose
group of PR even outperforming the positive group. These results
align with the findings of previous in vitro experiments. Hence, PR
exhibits notable anti-inflammatory activity and holds significant
therapeutic and clinical application potential. Further investigation
is necessary at the molecular level to elucidate any differences in the
anti-inflammatory activity between YW and PR and the underlying
mechanisms.

3.4 Histological analysis

Histological sections of normal liver tissues showed normal
lobular structure with central veins and radial hepatic cords
accompanied by intact hepatocytes with a homogeneous
distribution of cytoplasm. The control group showed marked
morphological changes and fibrosis, as indicated by disruption of
the histological structure, fibrous extension, formation of large
fibrous septa, pseudobulbar separation and fibrous accumulation.
Additionally, substantial hepatocyte degeneration, necrosis, hepatic
sinusoidal dilatation, inflammatory cell infiltration, and cytoplasmic
vacuole formation were observed. Treatment with YW and PR
resulted in noticeable improvements in liver structure, as
evidenced by reduced hepatic injury, inhibited hepatocyte
degeneration and necrosis, and significant restoration of liver
structure and function (Figure 7). Importantly, PR exhibited
better protection against liver and spleen injury compared to YW.

3.5 Difference in metabolic components
between YW and PR analyzed by UPLC-
MS/MS

Our findings revealed that both YW and PR exhibited anti-
inflammatory effects. However, PR demonstrated significantly
superior activity compared to YW. Notably, the high-dose group
of PR displayed the highest level of anti-inflammatory activity.
Despite these results, the underlying mechanism responsible for

FIGURE 5
NO content in the supernatant of RAW 264.7 cells treated with (A) YW and (B) PR at concentrations of 0.5 mg/mL, 1 mg/mL and 2 mg/mL,
respectively; (C) NO concentration in the supernatant of RAW 264.7 cells treated with YW and PR at concentrations of 1 mg/mL. (****p < 0.0001).
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FIGURE 6
Content of (A) IL-6, (B) TNF-α and (C) IL-10 in mouse serum of TCP, control group, positive group and YW and PR (n = 10). (*p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001).

FIGURE 7
Representative microscopic images of H&E stained liver sections from all study groups. (A) Liver TCP group: liver showing normal tissue of
hepatocytes and hepatic lobules; (B) Control group: mice liver with hepatocytes, most of which had cytoplasmic vacuoles; (C) High-dose group of YW:
gradual recovery of hepatocytes; (D) High-dose group of PR: hepatic lobule structure was clearly restored; (E) Spleen TCP group; (F) Spleen positive
group; (G) High-dose group of PR.
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the difference in activity between YW and PR remains elusive. To
gain further insight into the anti-inflammatory activity of Farfarae
Flos at the molecular level, we employed an untargeted
metabolomics approach to analyze the metabolite profiles of
YW and PR.

3.5.1 Principal component analysis (PCA)
In this study, we investigated the metabolic differences between

YW and PR using UPLC-MS/MS analysis. First, we performed
unsupervised pattern recognition principal component analysis
(PCA) to compare the overall distribution trends of secondary
metabolites and assess whether there were any differences
between YW and PR. As depicted in Figures 8A, B, the PCA 2D
plots clearly showed two distinct clusters corresponding to YW and
PR based on their spectral features. PR mainly clustered along the
positive axis of PC1, while YW predominantly clustered along the
negative axis of PC1. The coefficient of variation (CV) values were
below 30%, indicating good reproducibility. In both positive and
negative ion modes, PC1 and PC2 accounted for a significant
amount of the variation, demonstrating that YW and PR could
be easily differentiated. There was no overlap between the YW and
PR clusters, suggesting substantial differences in metabolite profiles

between the two groups. Thus, the PCA analysis confirmed a
significant distinction in the metabolites of YW and PR.

3.5.2 Orthogonal partial least squares discriminant
analysis (OPLS-DA)

To delve deeper into the metabolic distinctions between YW and
PR, we used OPLS-DA as our analytical method. High predictability
(Q2) is a key parameter representing the predictive ability of the
model, when Q2 > 0.9 and the goodness of fit is strong, the OPLS-DA
analytical model as well as the VIP values (Variable Importance
Projections) generated by the model are stable, reliable and valid. As
shown in Figures 8C, D, the Q2 value of 0.957 indicated a clear
separation between YW and PR metabolites, confirming a distinct
trend of separation in their metabolite profiles.

3.6 Screening of differential metabolites,
functional annotation, and enrichment
analysis between the groups

Next, we conducted differential metabolite screening, functional
annotation, and enrichment analysis to identify the most

FIGURE 8
PCA scores plot of YW and PR in positive ion (A) and negative ion (B); The OPLS-DA score plots in the positive ion mode (C) and negative ion
mode (D).
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FIGURE 9
(A) Volcano plot of differential metabolites between YW and PR. Blue indicates downregulation, red indicates upregulation; (B) Pathway map of the
top 20 KEGG metabolites annotated by DAMs; (C) Clustering heatmap of 87 DAMS. Green indicates downregulation, red indicates upregulation; (D)
Correlation network diagram of 87 DAMs with three inflammatory factors (IL-6, TNF-α, IL-10); (E) Network map between metabolites and anti-
inflammatory capacity. Red circles indicate different inflammatory factors, yellow circles indicate different metabolites, and the line connecting two
circles indicates correlation (r ≥ 0.7, p < 0.028); (F) Correlation of metabolites with three inflammatory factors in the Venn plot.
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representative differential metabolites between YW and PR. Using
UPLC-MS/MS qualitative and quantitative analysis, we identified
281 differential metabolites in YW and PR (VIP values ≥1, Fold
change ≥2, p ≤ 0.05). Compared with PR, the 87 DAMs in the
samples of YW changed significantly. The volcano plot provided an
overview of the distribution of differentially expressed metabolites,
showcasing upregulated metabolites highlighted in red and
downregulated metabolites depicted in blue, which can also serve
as the functional analysis of metabolic pathways. As shown in
Figure 9A, among the differential metabolites, 22 metabolites
upregulated and 65 metabolites downregulated. These changed
metabolites included flavonoids, alkaloids, phenolic acids,
nucleotides, and their derivatives.

To gain insight into the biological functions associated with
these differential metabolites, we performed KEGG metabolic
pathway enrichment analysis using Metabo Analyst 5.0. The top
20 metabolic pathways enriched are represented as enrichment
bubble plots as shown in Figure 9B.

3.7 Correlation analysis of the secondary
metabolites in Farfarae Flos and their anti-
inflammatory activity

Furthermore, we examined the correlation between the
87 DAMs and the anti-inflammatory activities (IL-6, TNF-α, and
IL-10) to gain further insight into the anti-inflammatory
components present in Farfarae Flos by using Spearman
correlation coefficients. The clustering heatmap (Figure 9C) and
correlation network diagram (Figure 9D) depicted the relationships
between the 87 differential metabolites and the three inflammatory
factors (IL-6, TNF-α, and IL-10). We identified 48 metabolites that
were significantly correlated with anti-inflammatory activities (|r| ≥
0.7, p < 0.028), covering various compound types such as alkaloids,
flavonoids, sterols, sesquiterpenes, coumarins, and others
(Figure 9E). Analysis using Spearman correlation indicated that
there was a positive correlation between 24 distinct metabolites and
the anti-inflammatory cytokine IL-10. Conversely, 47 distinct
metabolites showed a negative correlation with the pro-
inflammatory cytokines IL-6 and TNF-α. Additionally,
12 differential metabolites showed correlations with all three
inflammatory factors (Figure 9F). Table 1 provides the names
and classifications of these 12 metabolites, including six
flavonoids and flavonols, one coumarin, one sterol, one
sesquiterpene, and three other compounds. Among them,
Quercetin exhibited the highest correlation coefficient with IL-6
(|r| = 0.977), N-Glucosylnicotinate showed the highest correlation
coefficient with TNF-α (|r| = 0.966), and the flavonoids Quercetin 3-
O-beta-D-glucosyl-(1->2)-beta-D-glucoside, Afzelin, and
Isoquercitrin displayed the highest correlation coefficients with
IL-10 (r = 0.830). Based on the correlation analysis and multiple
factors, we speculate that the differential content of these
compounds may contribute to the observed differences in the
anti-inflammatory capacity and pharmacological effects between
YW and PR. In addition to flavonoids, alkaloids, and sesquiterpenes,
coumarins (e.g., Scopoletin) and sterols (e.g., Progesterone) may also
play significant roles as anti-inflammatory substances in
Farfarae Flos.

4 Discussion

In recent years, the identification and quality control of
medicinal flowers have remained crucial in botanical medicine
research (Hadizadeh et al., 2022; Jeyaraj et al., 2022). Farfarae
Flos has emerged as a valuable resource for anti-inflammatory
drug development due to its rich content of various anti-
inflammatory active ingredients such as flavonoids,
sesquiterpenoids, and sterols (Yang et al., 2022). However, there
is still a need for further exploration of its anti-inflammatory
potential. The lack of uniform evaluation criteria for medication
selection in clinics and limited understanding of the differences in
anti-inflammatory activity between the two most common colors,
yellowish-white (YW) and purplish-red (PR), necessitate further
investigation. Although previous studies have explored that Farfarae
Flos exerts anti-inflammatory effects through the regulation of Nrf2,
NF-κB, and NLRP3 inflammasome (Aralbaeva et al., 2017; Kim
et al., 2006; Xu et al., 2022), the underlying mechanisms contributing
to the differential anti-inflammatory activity of different colors
based on secondary metabolomics remain unexplored. Hence, to
standardize the clinical use of Farfarae Flos and ensure efficacy and
safety, there is an urgent need to investigate the variation in anti-
inflammatory activity between YW and PR and understand the
potential underlying mechanisms from the perspective of secondary
metabolite accumulation.

In this study, we established a cellular inflammation model by
inducing RAW 264.7 macrophages with lipopolysaccharide
(LPS). The results demonstrated that both YW and PR
effectively inhibit the release of inflammatory factors IL-6 and
NO, and indicating initial differences in anti-inflammatory
effects between the two variants. Furthermore, in an
experimental model of systemic inflammation in mice, we
observed that both YW and PR suppressed the release of pro-
inflammatory cytokines IL-6 and TNF-α while promoting the
release of the anti-inflammatory factor IL-10 in the serum of
mice. Histological analysis confirmed that both YW and PR
ameliorated liver and spleen damage induced by systemic
inflammation. Notably, all of these results proved that PR
consistently exhibited superior anti-inflammatory effects
compared to YW, but the mechanisms underlying these
differences in activity have not been found.

The metabolomics approach provided a valuable
opportunity for a comprehensive investigation into the
metabolic variations exhibited by Farfarae Flos collected at
different stages, raw and processed Farfarae Flos (Cao et al.,
2021; Li et al., 2018; Li et al., 2017). Therefore, we employed an
untargeted metabolomic approach to analyze the metabolite
profiles of YW and PR, aiming to further elucidate the anti-
inflammatory activities of Farfarae Flos at the molecular level.
The PCA and OPLS-DA results showed a large population
difference and high separation between YW and PR, which
further verified that there were significant anti-inflammatory
activity differences between YW and PR in terms of
characterization. Meanwhile, we also screened all the
differential metabolites in YW and PR and found
281 differential metabolites. Screening these metabolites with
VIP values ≥1, Fold change ≥2, p ≤ 0.05, 22 metabolites displayed
elevated levels in YW compared to PR, while 65 metabolites

Frontiers in Pharmacology frontiersin.org11

Zhou et al. 10.3389/fphar.2024.1463864

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1463864


exhibited decreased levels. KEGG pathway analysis of these
87 differentially accumulated metabolites revealed enrichment
in phenylpropanoid, flavonoid, flavonol, and sesquiterpene
biosynthesis pathways. In our study, we identified that the
biosynthesis of phenylpropanoids, flavonoids and flavonols,
and sesquiterpenes represented key metabolic pathways
contributing to the variation in metabolites observed between
PR and YW. Among these, the phenylpropanoid biosynthesis
pathway was found to be particularly significant (Zhang et al.,
2021), This pathway encompasses the production of a variety of
compounds, including lignans, phenylpropanoids, flavonoids,
coumarins, and other substances, and it serves as a source of
precursors for many of the plant’s secondary metabolites. The
phenylpropanoid pathway not only plays a pivotal role in plant
growth and reproduction but also is involved in the plant’s
defense mechanisms against both biotic and abiotic
environmental stresses (Lavhale et al., 2018). Moreover, they
contribute to plant reproduction by the accumulation of flavonol
and anthocyanin pigments in floral parts (Rahim et al., 2023).
Significance analysis of KEGG allowed the identification of the
main biological functions of the different metabolites. This
information provides a foundation for further biological
studies on Farfarae Flos. The results of conjoint analysis with
anti-inflammatory activity showed that 48 DAMs out of
87 DAMs were significantly correlated with the anti-
inflammatory activity of Farfarae Flos, as evidenced by the
inhibition of pro-inflammatory cytokines IL-6 and TNF-α and
promotion of anti-inflammatory cytokine IL-10. It is worth
mentioning that our study unveiled the potential anti-
inflammatory activity of coumarins (e.g., Scopoletin) and
sterols (e.g., Progesterone) in addition to the established role
of flavonoids, alkaloids, and sesquiterpenes in Farfarae Flos.

Our study highlights the excellent qualities of PR, particularly
its superior anti-inflammatory activity. Experimental evidence
has consistently demonstrated higher content of indicator
components and greater anti-inflammatory activity in PR
compared to YW, and explores the underlying mechanisms

contributing to the important quality characteristic ‘purplish-
red better’ of Farfarae Flos. Our experimental results will guide
the subsequent clinical use of Farfarae Flos, for instance, in the
treatment of inflammation, PR should be considered the primary
choice. We speculate that the synergistic accumulation of key
active ingredients and the regulation of effective secondary
metabolites during bud development may be the main reasons
for the quality of Farfarae Flos. While this study focused on
exploring the difference in anti-inflammatory activity between
YW and PR through a combination of in vivo/vitro experiments
and non-targeted metabolomics, and confirmed that these
differences may be related to the accumulation of secondary
metabolites in YW and PR, but failed to provide explanations for
the reasons for the difference in anti-inflammatory activity in
terms of signaling pathways and other underlying molecular
mechanisms. These potential mechanisms will be clarified in
our next study.

5 Conclusion

Our study compared the difference in anti-inflammatory
activity and accumulation of secondary metabolites between
two distinct colors of Farfarae Flos using a comprehensive
approach that incorporated in vivo/in vitro experiments
alongside metabolomics analysis. It was confirmed that both
YW and PR could inhibit the release of NO, IL-6, and TNF-α,
while enhancing the expression of IL-10. Furthermore, they
exhibited the capacity to mitigate inflammation-induced liver
and spleen cell damage, thereby exerting significant anti-
inflammatory properties. Notably, PR exhibited superior anti-
inflammatory activity compared to YW. These differences in
anti-inflammatory activity were closely associated with the
accumulation of plant secondary metabolites. Our findings
may provide the experimental basis for the clinical application
of Farfarae Flos, and have promising implications for the
selection of varieties and quality evaluation of Farfarae Flos.

TABLE 1 12 DAMs were screened out that are closely related to inflammatory factors.

Number Compounds Classifications

1 Quercetin 3-O-beta-D-glucosyl-(1->2)-beta-D-glucoside

Flavonoids and Flavonols

2 Phloretin

3 Kaempferol

4 Isoquercitrin

5 Astragalin

6 Afzelin

7 Scopoletin Coumarins

8 Progesterone Sterols

9 Polhovolide Sesquiterpenes

10 Hypoxanthine

Others11 (E)-3-(4-Hydroxyphenyl)-2-propenal

12 Androsterone glucuronide
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