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The emergence of targeted anti-tumor drugs has significantly prolonged the
lifespan and improved the prognosis of cancer patients. Among these drugs,
vascular endothelial growth factor (VEGF) inhibitors, particularly novel small
molecule tyrosine kinase inhibitors (TKIs), are extensively employed as VEGF
inhibitors; however, they are also associated with a higher incidence of
complications, with hypertension being the most prevalent cardiovascular
toxic side effect. Currently, it is widely accepted that TKIs-induced
hypertension involves multiple mechanisms including dysregulation of the
endothelin (ET) axis, reduced bioavailability of nitric oxide (NO), imbalance in
NO-ROS equilibrium system, vascular rarefaction, and activation of epithelial
sodium calcium channels; nevertheless, excessive activation of ET system
appears to be predominantly responsible for this condition. Moreover, studies
have demonstrated that ET plays a pivotal role in driving TKIs-induced
hypertension. Therefore, this review aims to explore the significance of ET in
the pathogenesis of hypertension induced by targeted anti-tumor drugs and
investigate the potential therapeutic value of endothelin antagonists in managing
hypertension caused by targeted anti-tumor drugs.
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1 The current status and research
significance of hypertension caused by
targeted anti-cancer drugs

With the advancement of targeted therapy for tumors, the
survival period of tumor patients has been continuously
extended, and cardiovascular events have gradually emerged as
one of the significant causes of mortality in tumor patients. The
primary anti-tumor drugs encompass vascular endothelial growth
factor (VEGF) inhibitors (Shaw et al., 2024; Tavakolian et al., 2024).
Particularly small molecule tyrosine kinase inhibitors (TKIs) that
effectively inhibit signal cascades (Liu et al., 2023a). By targeting
vascular endothelial growth factor receptor (VEGFR) to impede
tumor angiogenesis, they have become a predominant treatment
modality for numerous solid malignant tumors (Ciccarese et al.,
2021; Du et al., 2022). Nevertheless, approximately one-fourth of
patients using VEGF inhibitors will experience hypertension, while
nearly every patient will exhibit significantly elevated blood pressure
levels (Narayan et al., 2023; Pannucci et al., 2023). Cardiovascular
toxic side effects including hypertension not only impact patient
prognosis but also influence the efficacy of anti-tumor drugs.
Therefore, the objective of anti-tumor treatment is to maximize
its therapeutic effect while minimizing treatment-related
cardiovascular events. It is imperative to explore novel specific
therapeutic agents to facilitate seamless application of anti-tumor
treatments and prevent associated cardiovascular events while
improving patient prognosis.

2 The primary mechanism of TKIs in
anti-tumor therapy

The vascular endothelial growth factor (VEGF) is the most
potent factor in inducing vascular permeability and a specific
mitogen for endothelial cells, playing a crucial role in promoting
proliferation, migration, and angiogenesis of these cells (Liu et al.,
2023b). VEGF exerts its biological effects through three main
receptor subtypes: VEGFR 1–3. Among them, VEGFR2 serves as
the primary mediator of VEGF’s actions and is closely associated
with cell chemotaxis, division, and recombination (Sun et al., 2014).
It plays a pivotal role in stimulating endothelial cell proliferation and
migration while also regulating vascular permeability. VEGF
signaling pathway inhibitors encompass monoclonal antibodies
targeting VEGFA factor, VEGF trap, monoclonal antibodies
against VEGF receptors, and TKIs. Among these options, TKIs
competitively bind to the ATP site of tyrosine kinases, thereby
impeding phosphorylation levels of tyrosine kinases. Consequently,
tumor cell DNA repair is inhibited, G1 phase cell division is blocked,
and angiogenesis suppression is achieved to exert anti-tumor effects.
As a result of their efficacy in cancer treatment, TKIs have emerged
as extensively utilized anticancer drugs with favorable therapeutic
outcomes. However, it should be noted that cardiovascular toxic side
effects such as hypertension are commonly associated with their use.

The classification of TKIs can be based on their main target of
action, which includes inhibitors targeting epidermal growth factor
receptor (EGFR), anaplastic lymphoma kinase (ALK), human
epidermal growth factor receptor 2 (HER-2), VEGFR, Abelson
murine leukemia viral oncogene (ABL), and breakpoint cluster

region-fusion gene (BCR-ABL) (Réa and Hughes, 2022; Le et al.,
2021). Among them, certain TKIs specifically target a single
receptor, such as the widely used EGFR-TKIs osimertinib and
erlotinib in lung cancer (Soria et al., 2018; Ramalingam et al.,
2020). Apatinib is an innovative TKI that effectively inhibits
VEGFR-2 among various tumor-related kinases (TRKs) and
induces apoptosis of VEGFR-2, thereby effectively suppressing
the proliferation of multiple tumor cells (Xie et al., 2021; Zhao
et al., 2023). Currently, apatinib has demonstrated efficacy and
safety in gastric cancer, lung cancer, and breast cancer; moreover,
the combination therapy of apatinib with camrelizumab has been
recommended as first-line treatment for advanced liver cancer (Xia
et al., 2022; Mao et al., 2023). Meanwhile, some TKIs exhibit multi-
target activity. The kinase inhibitor sunetinib specifically targets
VEGFR, platelet-derived growth factor receptor (PDGFR), PDGFR-
a, PDGFR-b, and other receptors (Wang et al., 2023). It is indicated
for use in patients with gastrointestinal stromal tumors (GIST) who
have experienced treatment failure or intolerance to imatinib
therapy, as well as in patients with advanced renal cell carcinoma
(RCC) who have shown no response to cytokine therapy (Jin et al.,
2023; Plimack et al., 2023). The multi-targeted kinase inhibitor
Anlotinib demonstrates simultaneous inhibition of VEGFR,
PDGFR, and fibroblast growth factor receptor (FGFR), making it
a viable third-line treatment option for patients with advanced non-
small cell lung cancer (Shen et al., 2018; Lei et al., 2023).
Additionally, this drug has gained approval for its efficacy in
treating soft tissue sarcoma, small cell lung cancer, medullary
thyroid carcinoma, Metastatic Cervical Cancer and differentiated
thyroid carcinoma (Lv et al., 2022; Li, 2021; Wu et al., 2023; Xu et al.,
2022). The first anti-tumor drug, sorafenib, exerts dual inhibition on
Raf protein kinase (RAF) and VEGFR kinases. By suppressing the
activity of VGFR-2, VGFR-3, and RAF-1, it effectively hampers
tumor cell proliferation through direct blockade of the RAF/MEK/
ERK-mediated signaling pathway (Wilhelm et al., 2008; Gentile
et al., 2016; Kim et al., 2018). Moreover, its impact on VEGFR and
PDGFR enables angiogenesis inhibition and disruption of nutrient
supply to restrict tumor cell growth (Mangana et al., 2012; Fallahi
et al., 2022). Sorafenib is widely recognized as a standard first-line
treatment for advanced renal cell carcinoma (Hsieh et al., 2017; Sun
et al., 2022).

2.1 Possible mechanisms of ET-1 in TKIs-
induced hypertension

ET-1 exerts its influence on blood pressure through multiple
mechanisms, rendering it an appealing therapeutic target for
hypertension and other related conditions. Moreover, ET-1 plays
a pivotal role in the pathogenesis of antineoplastic drug-induced
hypertension, as well as being a crucial pathway involved in VEGF
inhibitor-induced hypertension and renal damage (Facemire et al.,
2009; Kappers et al., 2012). Studies have demonstrated that patients
and animals treated with VEGF inhibitors exhibit a two-to three-
fold increase in plasma levels of cleared receptors (Kappers et al.,
2010). Consistent with the dose-dependent nature of elevated blood
pressure, the increase in circulating ET-1 exhibited a corresponding
dose-dependence during VEGF inhibition (Lankhorst et al., 2015).
Themechanism by which VEGF deactivation leads to an elevation in
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ET-1 remains unclear. One hypothesis suggests that VEGF
inactivation results in the loss of vasodilatory endothelial ETB
receptors, thereby reducing ET-1 clearance and increasing its
circulation (Versmissen et al., 2019). Additionally, dual ETA/B
receptor antagonism or selective ETA receptor blockade has
shown to prevent VEGF-inhibitor-induced hypertension,
indicating that stimulation of ETA receptors by ET-1 is
responsible for this condition (Carneiro et al., 2008). The
utilization of sunitinib in a clinical pilot study resulted in an
elevation of circulating levels of ET-1 in vivo (Sourdon et al.,
2017). Indicating the crucial role played by endothelin in
hypertension induced by antineoplastic drug therapy that should
not be disregarded. (Figure 1).

3 The mechanisms of TKI-induced
hypertension

VEGF inhibitors can increase the risk of heart failure, coronary
artery disease, hypertension, and thromboembolic diseases through
mechanisms such as endothelial injury, vasoconstriction and
remodeling, inflammatory response, and platelet activation (Porta
and Striglia, 2020; Chen et al., 2018). The potential mechanisms
underlying the induction of hypertension by this class of drugs are
currently believed to include (Wang et al., 2021; Wang et al., 2022a;
Simonetti et al., 2009; Pérez-Gutiérrez and Ferrara, 2023; Wang
et al., 2024): (i) Inhibiting nitric oxide synthase (NOS) reduces the
synthesis of NO, thereby blocking its vasodilatory effects; (ii)
Increased production of endothelin (ET) enhances
vasoconstriction; (iii) Endothelial cell apoptosis and necrosis lead
to a decrease in capillary bed density (rarefaction); (iv) Impaired
renal function, increased salt sensitivity, and water-sodium

retention. Among these mechanisms, the relationship between
endothelin and hypertension is worth further investigation due to
the varying degrees of interaction between them (Figure 2).

4 The upregulation of ET-1 may
contribute to the development of
hypertension induced by TKIs

ET-1, NO, and vascular pseudohaemophilic factor (VWF) are
bioactive substances that reflect the function of vascular
endothelium and play a crucial role in the occurrence and
progression of cardiovascular disease and essential hypertension
(Taneja et al., 2019; Yu et al., 2020). NO is a pivotal factor in
endothelial nitric oxide synthase (eNOS)-mediated physiological
changes in smooth muscle relaxation, which is critical for
angiogenesis (Chen et al., 2024). Normal endothelial cells
constitutively express eNOS; however, under pathological
conditions, its inhibition leads to reduced bioavailability of NO
that inhibits eNOS expression (Leo et al., 2021). Meta-analyses have
demonstrated that VEGF inhibitors can increase ET-1 levels while
decreasing NO expression, ultimately leading to severe
cardiovascular complications such as hypertension (Xu et al., 2021).

4.1 Relationship between ET-1 and
vasodilation and contraction

ET was initially identified as a potent vasoconstrictive peptide
for porcine aortic endothelial cells (ECs) (Ma et al., 2023). It consists
of 21 amino acid residues with a hydrophobic C-terminus connected
by two sets of intrastrand disulphide bonds, exhibiting vasopressor

FIGURE 1
Possiblemechanisms of ET-1 in TKIs-induced hypertension. In the hypertension conditions induced by TKIs, microvascular damage is highly likely to
be one of the most crucial and leading factors. The substance ET can inflict damage on endothelial cells via L-type calcium channels, further intensifying
this condition. This will lead to amarked reduction in the density of themicrovascular network, making it increasingly rarefied. Such changes in the density
and structure of the microvascular network gradually break the originally normal physiological balance and interfere with the normal functions of
blood vessels, thereby gradually triggering the occurrence of hypertension. ETA: endothelin A; ETB: endothelin B; ET1: endothelin 1; ET2: endothelin 2;
ET3: endothelin 3; NO: endothelial nitric; NAPDH: Nicotinamide Adenine Dinucleotide Phosphate (reduced form).
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effects (Laudette et al., 2021). Three isomers of human ET exist,
namely ET-1, ET-2, and ET-3 (Davenport and Maguire, 2006).
Although they differ in structure and activity, all three are
antihypertensive in vivo and exhibit strong contractile effects on
vascular smooth muscle cells in vitro. Among these isomers, ET-1
plays a major role in regulating the cardiovascular system and
vascular endothelial cells serve as the primary source of this
isopeptide (Harrison et al., 2024; Finch and Conklin, 2016). In
addition to ECs, various cell types including vascular smooth muscle
cells (VSMCs), cardiomyocytes, fibroblasts, macrophages, epithelial
cells of the lungs and kidneys as well as neurons and glial cells
express ET-1 (Chen et al., 2020; Davenport et al., 2016). The degree
of vasoconstrictive activity induced by these peptides follows the
order: ET-2 > ET-1 > ET-3 (Inoue et al., 1989). However, ET-1 is
currently recognized as the most potent vasoconstrictor known to
induce constriction or relaxation in the vasculature by binding to
endothelin A (ETA)/endothelin B (ETB) receptors on smooth
muscle cells (SMCs) (Maguire and Davenport, 2015; Kumar
et al., 2013). The interaction between ET-1 and ETA receptors

on vascular smooth muscle cells leads to an increase in intracellular
calcium levels, while the interaction between ETA receptors further
elevates intracellular calcium levels (Ortega Mateo and de Artiñano,
1997; Hopfner et al., 1998). This rise in intracellular calcium triggers
phosphorylation and activation of myosin light chains, ultimately
resulting in vasoconstriction. Similarly, binding of ET-1 to ETB
receptors on endothelial cells activates both eNOS and
prostaglandin pathways, leading to vasodilation of the vasculature
(Wolf et al., 2014; Leite et al., 2013; Neves et al., 2019) (Figure 3).

4.2 Key factors involved in the ET-1 induced
hypertension

4.2.1 NO-ROS imbalance
The exploration of the mechanism underlying hypertension

induced by antineoplastic drugs has suggested a correlation with
ROS oxidative stress triggered by ET-1, which enhances NADPH
oxidase activity and consequently elevates ROS production. This, in

FIGURE 2
Themechanisms of TKI-induced hypertension. Themechanism of hypertension caused by vascular endothelial growth factor inhibitors may involve
4 pathways, namely the imbalance of the NO-ROS system, the impairment of the endothelin system, microvascular injury and the occurrence of renal
damage. However, ET-1 might be the central link. eNOS: endothelial nitric oxide synthase; BH4: tetrahydrobiopterin.
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turn, may contribute to hypertension by further diminishing
available NO, thereby challenging the disassociation of ET-1from
the NO-ROS equilibrium (Camarda et al., 2022; Wilcox et al., 2019;
Muhammad et al., 2020).

Oxidative stress resulting from excessive production of ROS is
a crucial mechanism underlying endothelial cell death (Zheng
et al., 2022; Fan et al., 2024; Lin et al., 2022). ROS, such as
superoxide and hydrogen peroxide, have been identified as
molecules involved in angiogenesis. While excessive ROS levels
induce senescence and apoptosis in endothelial cells and stem/
progenitor cells, low concentrations of ROS play a pivotal role in
redox signaling pathways that mediate angiogenesis (Ushio-Fukai
and Alexander, 2004; Yingze et al., 2022). During antiangiogenic
therapy, oxidative stress may contribute to the development of
hypertension by oxidizing NO to peroxynitrite, thereby reducing
NO-mediated vasodilator tone (Sedeek et al., 2003). The literature
has extensively investigated whether the elevation of MAP induced
by sunitinib is accompanied by an increase in oxidative stress
markers and if antioxidants can prevent or reverse this potential
rise in MAP (Kappers et al., 2011; Lankhorst et al., 2014). Through
studying the role of oxidative stress in hypertension, it has been
determined that upregulation of ROS production is more likely to
be a consequence of VEGF inhibitor-induced hypertension
(Versmissen et al., 2019). The reduced availability of NO plays
a crucial role in the development of hypertension induced by
VEGF inhibitors, while it has been demonstrated that ET-1
enhances NADPH oxidase activity, leading to increased

production of ROS and potentially contributing to hypertension
by further diminishing the levels of available NO (Kappers et al.,
2011; Sarkar et al., 2019). ETA receptors are implicated in blood
pressure regulation as well as chemotaxis, release of inflammatory
mediators, generation of ROS, and neointimal formation
associated with vascular remodeling processes (Eid, 2024;
Sobrano Fais et al., 2023).

4.2.2 Microvascular damage
Microvessel thinning (reduced microvessel density), leading to

impaired microcirculation and increased vascular resistance. This is
one of the mechanisms of VEGF inhibitor-induced hypertension
(Touyz and Herrmann, 2018). Microvessel thinning was initially
speculated to be possibly functional, and with intense
vasoconstriction, and later structural, then the relationship
between endothelin and microvessel thinning had to be revisited.
There are experimental and clinical data suggesting that ET-1 is
responsible for maintaining arterial stiffness (Amiri et al., 2004).
Increased ET-1 activity may lead to atherosclerosis and
atherosclerotic arterial stiffness (Sedeek et al., 2003; Kostov, 2021;
Gu et al., 2015). These pathological processes significantly reduce the
elastic properties of central conduit arteries, leading to the
manifestation of isolated systolic HTN. Increases in systolic and
central pulse pressure may lead to eutrophication or hypertrophic
remodelling of small arteries. In particular, hypertrophic
remodelling of resistant arteries is a hallmark of ET-1
involvement in the hypertensive process.

FIGURE 3
Relationship between ET-1 and vasodilation and contraction. Endothelin, a significant biomolecule, encompasses endothelin receptor A and
endothelin receptor B. These receptors respectively combine with three distinct subtypes of endothelin, namely endothelin 1, endothelin 2, and
endothelin 3. Through this specific interaction and combination, a physiological process is initiated that ultimately leads to vasoconstriction. This
mechanism plays a crucial role in regulating vascular tone and blood flow within the complex biological systems of the body. eNOS: endothelial
nitric oxide synthase; NO: endothelial nitric; ETA: endothelin A; ETB: endothelin B; ET1: endothelin 1; ET2: endothelin 2; ET3: endothelin 3.
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VEGF inhibition resulted in a decrease in the number of
perfused capillary networks, leading to an elevation in total
peripheral resistance (TPR) and blood pressure. Capillary atrophy
is attributed to endothelial cell apoptosis and chronic remodeling of
the microvasculature observed during VEGF occlusion (Iwagawa
et al., 2023). In one study, sunitinib-treated patients were examined
for capillary density using microscopy (Gu et al., 2015). The
researchers discovered that a reduction in microvascular network
density during tki treatment was correlated with an increase in blood
pressure. The reduced density of microvessels also results in
obstructed microcirculation and increased vascular resistance. In
a study involving patients with colorectal cancer, bevacizumab was
administered and after 6 months of treatment, the patients’ blood
vessels were evaluated. Moderate vasodilution was observed,
suggesting that vasodilution may be one of the mechanisms by
which VEGFI induces high blood pressure (Mourad et al., 2008).
Furthermore, it is likely that vascular thinning is functional rather
than structural (Chuang et al., 2018). Additionally, endothelial cell
dysfunction may contribute to thrombosis, leading to further
reduction in vascular perfusion, increased apoptosis, and loss of
microvasculature.

4.2.3 Activation of related signalling pathways
Previously, our team’s study has demonstrated that apatinib

can induce hypertension in WKY rat models through the
activation of the RhoA/ROCK pathway, specifically via Rho
protein kinase (ROCK) (Li et al., 2022). Furthermore, we
simulated the tumor microenvironment for in vivo experiments
and discovered that the RhoA/ROCK signaling pathway is also
implicated in apatinib-induced hypertension and vascular
remodeling mechanisms in mice with gastric cancer (Wang
et al., 2022b; Wang et al., 2022c).

In recent years, it has been proposed that ET-1 acts as an
upstream effector, stimulating the phosphorylation of myosin light
chain (MLC) in vascular smooth muscle through the RhoA/ROCK
pathway (Hwang et al., 2024). Simultaneously, it enhances
oxidative stress in vascular endothelial cells via this pathway,
leading to increased peroxide production and subsequent
reduction in NO production (Choraghe et al., 2020). These
effects ultimately contribute to vasoconstriction and the
development of hypertension. Consequently, high blood
pressure ensues. Prolonged (3 months) endothelium-specific
overexpression of ET-1 not only results in persistent elevation
of blood pressure, but also induces endothelial and renal damage
(Coelho et al., 2018; Zou et al., 2019). Furthermore, the
vasodilatory effects of NO are mediated through the RhoA/
ROCK pathway and NO can exert its vasodilatory effect via the
RhoA/ROCK pathway (Kai et al., 2019). Moreover, several studies
have confirmed that the RhoA/ROCK pathway plays a crucial role
in the development of salt-sensitive hypertension and
hypertension-induced cardiac hypertrophy (Cao et al., 2016;
Kobayashi et al., 2009). The vasoconstrictive effect of ET-1 can
be potentiated by the activation of the RhoA/ROCK pathway,
which is implicated in reducing vasodilator function by enhancing
oxidative stress, promoting peroxide production, and diminishing
endothelial NO production (Zhuang et al., 2018; Tsai et al., 2017).
Notably, ET-1 plays a pivotal role in mediating TKIs-induced
hypertension and serves as a key driver for this condition.

4.2.4 Regulation of calcium ions
The study demonstrated that ET-1-mediated vasoconstriction is

associated with calcium ions, and experimental evidence also
confirmed the coupling of receptor-specific calcium signaling
cascades to endothelin ETA and ETB receptors in drug-resistant
arteries (Abdel-Samad et al., 2016). Endothelin ETA primarily
mediates ET-1-induced vasoconstriction, with a minor
contribution from VSM endothelin ETB receptors. This process
involves mobilization of Ca2+ from intracellular stores, activation of
nonselective cationic TRPC3 channels, entry of extracellular Ca2+
through dihydropyridine-sensitive L-type channels, and
mechanisms enhancing Ca2+ sensitivity (Peppiatt-Wildman et al.,
2007; Adebiyi et al., 2012). Additionally, protein kinase C (pKC)
plays a crucial role in regulating Ca2+ handling by augmenting
voltage-dependent Ca2+ influx (Ziemba and Falke, 2018).
Furthermore, regulation of Ca2+ handling serves a dual purpose
through a feedback loop that inhibits release of intracellular SR
stores’ stored Ca2+. ROCK not only regulates intracellular Ca2+

mobilization and entry but also acts as a major determinant for
increased myofilament sensitivity to vasoconstriction induced by
activation of ET receptors in drug-resistant arteries (Rattan, 2017;
Zhao et al., 2021). Enhanced ROCK activity contributes to increased
Ca2+ sensitization, vasoconstriction, and vascular remodeling in
hypertension. Additionally, PKC-mediated increases in L-type
Ca2+ entry are associated with abnormal vasoconstriction in
insulin-resistant states (Zhang et al., 2003). Therefore, these
kinases represent potential pharmacological targets for vascular
diseases that involve impaired ET pathways.

5 Traditional antihypertensive
treatment regimens

The position paper on tumor treatment and its impact on cancer
and cardiovascular toxicity suggests that medication
recommendations for high blood pressure can enhance the
prognosis of patients in the long term, particularly through the use
of angiotensin converting enzyme inhibitors (ACEIs), angiotensin
receptor blockers (ARBs), β-receptor blockers (Zamorano et al., 2016).
Similarly, both cardio-oncology guidelines in the United States and
Europe continue to advocate ACEIs/ARBs as the primary choice for
hypertension management (Alexandre et al., 2020). However, non-
dihydropyridine calcium channel blockers (CCB) are generally not
recommended due to their potential interaction with VEGF-targeted
therapy. Diuretics are used carefully, because diarrhea or using
diuretics cause electrolyte can increase the risk of QT extension. If
cause liver toxicity, VEGF inhibitors should be careful to use the CCB.
When TKIs cause bradycardia should be careful to use beta-blockers
drugs. The different classes of antihypertensive medications
commonly interact with antitumor drugs see in Table 1.

6 Potential therapeutic targets of TKIs
for enhancing blood pressure through
modulation of the endothelin system

The pathophysiological effects of ET-1 are primarily mediated
through ETA isoforms. In preclinical and acute experimental
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studies, highly selective peptide antagonists targeting ETA
(including BQ123 and TAK-044) as well as ETB (BQ788), along
with three nonpeptide antagonists (bosentan, macitentan, and
ambrisentan), which either exhibit hybrid ETA/ETB antagonist
properties or demonstrate ETA selectivity, have been clinically
approved for use primarily in the treatment of pulmonary
hypertension (Maguire and Davenport, 2015; Bonvallet et al.,
1993; Watanabe et al., 1995; Mazzotta et al., 2023). With further
research, endothelin receptor antagonists may also find application
in the management of refractory hypertension. A variety of ETRAs
have been developed and are categorized into three groups based on
their functions: selective ETAR antagonists (ETARA), such as
darusentan and ambrisentan (Enseleit et al., 2008; Croxtall and
Keam, 2008). Selective ETBR antagonists (ETBRA) like bosentan
and non-selective ETRAs including macitentan (Hosseinbalam
et al., 2023; Grünig et al., 2024). Additionally, there are non-
selective ERA aprocitentan (Dhillon, 2024).

6.1 The progression of antihypertensive
effects exerted by endothelin and its
antagonists

Endothelin antagonists can be utilized for the treatment of
essential and refractory hypertension, with bosentan being the
first ETRA employed in clinical trials for hypertension
management. The findings from this study demonstrated that
bosentan alone exhibited a statistically significant reduction in
blood pressure after 4 weeks among patients with essential
hypertension, comparable to the antihypertensive effect of
enalapril (Karam et al., 1996). Another study revealed that

darusentan could potentially exert an evident antihypertensive
effect in treating essential hypertension (Black et al., 2007).
However, its efficacy was not superior to ACE inhibitors.
Moreover, serious hepatic damage, pulmonary arterial dilatation,
and other adverse effects associated with darusentan use, thereby
limiting further exploration into monotherapy for essential
hypertension treatment. In terms of the antihypertensive effect of
different drugs in ETRA, it has been newly reported that in animal
experiments, the new drug macitentan has a stronger
antihypertensive effect than bosentan, and it can also be clinically
studied (Iglarz et al., 2014). Aprocitentan helps to dilate blood
vessels and lower blood pressure by antagonising ETA receptors.
Aprocitentan is commonly used in the treatment of refractory
hypertension, patients with hypertension that has failed to
respond to other medications, either as monotherapy or in
combination with other antihypertensive medications
(Georgianos and Agarwal, 2023). Clinical trials have shown that
Aprocitentan provides clinically meaningful reductions in systolic
blood pressure (SBP) and diastolic blood pressure (DBP) in the
treatment of patients with refractory hypertension, that such
reductions in blood pressure can be sustained for up to 48 weeks,
and that its adverse effects can be controlled and the adverse effects
are controllable (Schlaich et al., 2022).

6.2 Potential targets for endothelin receptor
antagonists in hypertension caused by
antitumor therapy

Endothelin is not only associated with cancer, but also
implicated in the adverse effects induced by antineoplastic drugs,

TABLE 1 The commonly employed antihypertensive agents exhibit interactions with anti-tumor drugs.

Types of antihypertensive drugs Common drug interactions with anti-tumor drugs

Beta blocker • TKIs (such as imatinib and gefitinib) may increase metoprolol blood pressure concentration

• TKIs (such as Seretinib and Clozotinib) combined with all beta blockers may further exacerbate bradycardia

• The combination of beta blockers and all TKIs that prolong the QT interval may lead to worsening of QT interval extension

• Carvedilol interacts with afatinib and Venetok and should be avoided from use

Calcium channel blockers • Avoid using CYP3A inhibitors such as diltiazem, verapamil, and felodipine, as they cause elevated plasma levels in most
TKIs

• Verapamil reduces the excretion of doxorubicin, paclitaxel, and irinotecan, leading to increased cardiac toxicity of these
drugs

• Felodipine exacerbates sorafenib induced hypertension through CYP3A4

• Avoid using amlodipine with edranib, as the latter increases amlodipine levels

• When TKIs cause liver toxicity, avoid using amlodipine

ACEIs • Combined use with mTOR inhibitors increases the risk of vascular edema

Thiazide diuretics • May exacerbate bone marrow suppression caused by cyclophosphamide

Loop diuretic • May increase cisplatin related nephrotoxicity and ototoxicity

• May lead to electrolyte imbalance, resulting in prolonged and worsened QT intervals related to TKIs

• Furosemide increases the toxicity of methotrexate

Potassium preserving diuretics • The combination of mineralocorticoid receptor antagonists (such as spironolactone and epinephrine) and some
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particularly hypertension. Studies have demonstrated a significant
elevation of ET-1 levels during the treatment of patients across
various types of cancers (Aliabadi et al., 2022; Tapia and Niechi,
2019; Rosanò and Bagnato, 2016). Targeting the ET axis and
inhibiting it through specific, selective, and dual-competitive ET
receptor antagonists represents an appealing approach for cancer
therapy (Tocci et al., 2023). Currently, ETA and/or ETB antagonists
are undergoing clinical trials to evaluate their efficacy in diverse
indications such as cardiovascular disease and cancer.

It has been demonstrated that the targeting mechanism of anti-
tumour drugs is intricately associated with ET-1, while cancer
metastasis relies on neovasculogenesis. Tumour cells secrete
factors that stimulate angiogenic pathways to facilitate rapid
growth and formation of new microvessels in a state of
uncontrolled cell proliferation (Farhan et al., 2020). One
approach employed by targeted anti-tumour drugs involves
activating the endothelin system to induce vasoconstriction
and thinning.

Activation of the ET system is a crucial factor contributing to the
adverse effects caused by VEGF inhibitors, thereby favoring the
utilization of ET receptor antagonists as a means to mitigate these
undesired side effects. Selective ETA receptor antagonists exhibit
promising potential in this regard. In a study investigating the
cardioprotective effects of macitentan on animals treated with
sunitinib, it was determined that concurrent administration of
macitentan effectively prevented sunitinib-induced hypertension
while also improving ejection fraction and reducing cardiac
fibrosis (Sourdon et al., 2021).

However, ET receptor antagonists are currently not approved
for the treatment of systemic hypertension or renal injury, and there
is also a potential risk of adverse effects associated with selective ETA
receptor blockade, particularly edema (Wykoff et al., 2022).
Additionally, during VEGF inactivation, ETB receptors may
undergo a phenotypic switch from vasodilator to vasoconstrictor,
necessitating the use of dual ET receptor antagonists (Koyama et al.,
2014). Another potentially superior approach could be targeting
downstream ET-1 signaling to prevent VEGF inhibitor-induced
hypertension and renal injury or interfering with ET-1 upregulation.

Endothelin receptor antagonists possess potential therapeutic
value not only in the management of hypertension caused by
targeted antineoplastic agents, but also in directly targeting
cancer itself. Macitentan can disrupt the β-arr1 signaling network
by obstructing the ET-1 receptor, thereby impeding ET-1 signaling
and enhancing cancer cell response to platinum-based
chemotherapy (Tocci et al., 2021). Furthermore, it downregulates
angiogenic and metastatic effects across various types of cancer. In a
porcine model of sunitinib-induced hypertension discovered that
treatment with tizosentan (a non-selective endothelin receptor
antagonist) completely mitigated sunitinib-induced elevation in
blood pressure effects (Kappers et al., 2012). Using a selective
endothelin receptor antagonist, further elucidated that sunitinib-
induced hypertension and proteinuria are mediated via ETA
receptors rather than ETB receptors. This finding aligns with
known ETA-mediated effects on smooth muscle cell contraction.
Aprocitentan is an endogenous antagonist of the angiotensin ETA
receptor, which plays a crucial role in regulating vascular tone and
water-salt homeostasis (Danaietash et al., 2022). In the field of
oncology and the management of tumor-induced hypertension,

Aprocitentan emerges as a promising therapeutic target due to its
novel mechanism, remarkable efficacy, and excellent tolerability.

7 The summary and future prospects

The cardiovascular toxicity and other side effects caused by
VEGF inhibitors in anti-tumor therapy have become one of the
main reasons limiting the anti-tumor therapy process with VEGF
inhibitors. Traditional anti-hypertensive drugs are not effective for
treating such hypertension, and there is a close relationship between
traditional anti-hypertensive drugs and the occurrence and
development of some tumors. Therefore, it is of great importance
and urgent need to explore the relevant mechanisms of
cardiovascular complications caused by VEGF inhibitors in anti-
tumor therapy for clinical smooth application of VEGF inhibitors.

Vasoactive molecules, such as VEGF and ET, exhibit cytokine-
like activity and regulate endothelial cell growth, migration, and
inflammation. Several endothelial mediators and their receptors are
targeted by currently approved angiogenesis inhibitors, including
monoclonal antibodies against VEGF or inhibitors of vascular
receptor protein kinases and signaling pathways. Pharmacological
intervention that disrupts the protective function of endothelial cells
can lead to similar adverse effects. Clinically, hypertension is the
most common side effect associated with inhibition of the VEGF
signaling pathway. Hypertension also poses a significant risk for
cancer patients, as it increases mortality and morbidity related to
cardiovascular disease. When hypertension reaches a certain level,
cancer patients may need to discontinue antineoplastic drugs in
order to prevent further elevation of blood pressure. Therefore,
hypertension is not only an adverse reaction to the use of
antineoplastic drugs in cancer patients but also a significant risk
factor for increased mortality in this population. The management
of oncological hypertension is a critical aspect that requires
attention. Commonly used antihypertensive medications include
diuretics, β-blockers, calcium antagonists, angiotensin-converting
enzyme inhibitors, and angiotensin II receptor antagonists.
However, there is a need to explore new drugs for refractory
hypertension associated with cancer treatment. One promising
option worth investigating is endothelin antagonists. Endothelin
plays a crucial role in the pathophysiology of hypertensive
complications related to cancer therapy, and inhibiting its axis
can effectively reduce blood pressure levels. This research
direction represents our current focus and exploration.
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