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Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver
disease worldwide, and its prevalence is rapidly increasing. Antioxidants, lipid-
lowering medications, and lifestyle interventions are the most commonly used
treatment options for NAFLD, but their efficacy in inhibiting steatosis progression
is limited and their long-term ineffectiveness and adverse effects have been
widely reported. Therefore, it is important to gain a deeper understanding of the
pathogenesis of NAFLD and to identify more effective therapeutic approaches.
Mitochondrial homeostasis governs cellular redox biology, lipid metabolism, and
cell death, all of which are crucial to control hepatic function. Recent findings
have indicated that disruption of mitochondrial homeostasis occurs in the early
stage of NAFLD andmitochondrial dysfunction reinforces disease progression. In
this review, we summarize the physical roles of the mitochondria and describe
their response and dysfunction in the context of NAFLD. We also discuss the drug
targets associated with the mitochondria that are currently in the clinical trial
phase of exploration. From our findings, we hope that the mitochondria may be a
promising therapeutic target for the treatment of NAFLD.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease, featured with lipid
accumulation in the liver and hepatic steatosis based on imaging or histology, while
excluding secondary causes of hepatic steatosis such as significant alcohol consumption
(Rong et al., 2022). In 2020, a broader term, metabolic (dysfunction)-associated fatty liver
disease (MAFLD), was suggested to replace NAFLD, with expanded diagnostic criteria. This
updated terminology better emphasizes the significance of metabolic dysfunction in the
disease’s development (Shiha et al., 2021). In terms of disease progression, the stages of
NAFLD comprise non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH),
liver fibrosis, and cirrhosis (Loomba et al., 2021). It is estimated that the prevalence of
NAFLD has reached 25% among the global population (Younossi et al., 2019). Therefore,
NAFLD is a global public health concern. Hepatocytes are metabolically active cells with
enriched mitochondria. Mitochondrial homeostasis governs cell function through various
mechanisms, including cellular division, oxidative stress, autophagy, and mitochondrial
quality control (Kumar et al., 2021). In this review, we summarize the physical properties of
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the mitochondria and describe how disrupted mitochondrial
homeostasis participates in the pathogenesis of NAFLD.

Mitochondrial structure and function in
hepatocytes

The mitochondria are two-layered membrane-coated
organelles present in most eukaryotic cells. They possess their
own genetic material, and they are a semi-autonomous organelle
with a limited genome size. In general, they are approximately
0.5–1.0 μm in diameter, although this varies among species.
Nevertheless, the structure of the mitochondria is almost
identical among species, comprising the outer mitochondrial
membrane, mitochondrial membrane space, inner
mitochondrial membrane, and mitochondrial matrix. The
outer mitochondrial membrane (OMM) is smooth and acts as
the organelle boundary. The inner mitochondrial membrane
(IMM) folds inward to form a mitochondrial crest, which
participates in biochemical reactions. The mitochondrial
matrix is located in the space between the outer and inner
membranes (Clare et al., 2022).

The mitochondria are considered as the “powerhouses” of cells.
The chemical reactions of the tricarboxylic acid (TCA) cycle,
oxidative phosphorylation (OXPHOS), and fatty acid oxidation
occur in the mitochondria. Adenosine triphosphate (ATP) is
generated by utilizing the electrochemical gradient across the
inner mitochondrial membrane, which is produced by the

electron transport chain (ETC). Beyond energy production,
hepatocytes are actively involved in glucose metabolism (Wu
et al., 2019), lipid metabolism (Dong et al., 2024), cholesterol
synthesis (Goicoechea et al., 2023), and detoxification and
excretion (da Silva Lima et al., 2022; Ramanathan et al., 2022;
Chen et al., 2024). In addition, the mitochondria are involved in
multiple biological processes, such as cell death and differentiation.
To be noted, reactive oxygen species (ROS) are mainly produced in
the mitochondria, and they contribute to different forms of cell
death. For instance, downstream of apoptotic signals, the
mitochondrial outer membrane becomes permeabilized and
cytochrome-c is released into the cytosol for subsequent caspase
activation (Bock and Tait, 2020). Furthermore, excessive
accumulation of lipid peroxides on the cell membrane disturbs
iron metabolism and stimulates ROS production. Hydrogen
peroxide (O2•−) reacts with ferrous ions to accelerate
polyunsaturated fatty acid, hydroperoxide formation in the
mitochondria for ferroptosis (Gan, 2021).

Mitochondria structure and function is summarized in Figure 1.

Hepatic mitochondrial homeostasis

Mitochondrial homeostasis is delicately controlled by a set of
intrinsic mechanisms that safeguard mitochondrial integrity and
function. This system includes processes such as biogenesis,
mitochondrial fission and fusion, mitophagy, and redox
regulation (Li et al., 2020).

FIGURE 1
Mitochondrial structure and function. The mitochondria are two-layered membrane-coated organelles present in most eukaryotic cells.
Comprising the outer mitochondrial membrane, mitochondrial membrane space, inner mitochondrial membrane, and mitochondrial matrix.
Mitochondria serve as powerhouse for cell function and ATP is produced via tricarboxylic acid (TCA) cycle, OXPHOS system and fatty acid oxidation.
Mitochondria are a critical site for cell biosynthesis, metabolism and cell-signaling. Communications between mitochondria and other organelles
help maintain their homeostasis and function.
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Hepatic mitochondrial biogenesis
The mitochondrial genome is known as mitochondrial double-

stranded circular DNA (mtDNA). mtDNA encodes 13 proteins

involved in the ETC, all of which are subunits of enzyme complexes
involved in OXPHOS (Kremer and Rehling, 2024). In addition, nuclear
genes encode the mammalian mitochondrial proteome, which consists

FIGURE 2
Summary of mechanisms for mitochondrial homeostasis. Mitochondrial biogenesis, mitochondrial dynamics and mitophagy govern the number of
mitochondria. Physically, AMPK activation promotes PGC-1α activation which induces target gene expression to facilitate mitochondrial biogenesis.
When exposed to nutrient-rich environmental conditions, mitochondrial fission factor 1 and 2 (Mfn-1 and Mfn-2) regulate fission to reduce bioenergetic
efficiency and augmentmitochondrial uncoupling. Under nutrient deprivation, dynaminrelated proteins 1 (Drp-1)modulatemitochondrial fussion to
protect its function. Via phosphorylated PINK and PARKIN, mitochondrial mitophagy controls mitochondrial turnover and recycling, ensuring hepatic
homeostasis by eliminating long-lived or damaged mitochondria. Physically, mitochondrial is the key organelle to produce ATP via Krebs cycle and β-
oxidation. Metabolites such like glucose and pyruvate are fluxed into mitochondrial via transporters to participate Krebs cycle reaction. Ions such like
calcium are entered via VDAC channel to mediate bio-chemical reactions. Fatty acids are entered to carry out β-oxidation. Via Krebs cycles and β-
oxidation, ATP is produced to support cell function. NAD + generated from chemical reaction participates in cell metabolism. NADH passes through
respiratory complex chain to produce ROS and H2O2.
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of approximately 1,000–1,500 distinct proteins (Pfanner et al., 2019).
Once released into the cytosol, they target the submitochondrial
compartment to assemble mitochondrion (Pfanner et al., 2019).

Permanent mtDNA replication is a crucial step in mitochondrial
biogenesis, which is activated by the peroxisome proliferator-
activated receptor-γ co-activator-1 proteins (PGC-1α and PGC-
1β). Among the PGC-1 family members, PGC-1α is the most
important one. Following PGC-1α activation, transcriptional
factors, including nuclear respiratory factors 1 and 2, estrogen-
related receptor-α, and mitochondrial transcription factor 1
(TFAM), are activated (Rubio-Cosials et al., 2011; Ploumi et al.,
2017). TFAM, together with its interacting proteins in the initiation
complex, binds to specific promoters and induces structural changes
in DNA strands for RNA polymerase recognition, resulting in
mtDNA replication and transcription (Rubio-Cosials et al., 2011).

Adenosine monophosphate-activated protein kinase (AMPK)
and Sirt-1 regulate PGC-1α activity by posttranslational
phosphorylation and deacetylation, respectively (Ploumi et al.,
2017; Zeng and Chen, 2022). A previous study showed that in
cultured neonatal rat ventricular cardiomyocytes, treatment of C1q/
tumor necrosis factor-related protein-3 promoted mitochondrial
biogenesis via the AMPK/PGC-1α pathway (Zhang et al., 2017). In a
murine model of partial hepatic ischemia and reperfusion, the
administration of the anti-oxidant agent nobiletin protected
hepatocyte damage by enhancing the PGC-1α pathway, which
was abolished by Sirt-1 inhibition (Dusabimana et al., 2019).

Hepatic mitochondrial dynamics
Themitochondria undergo continuous fission and fusion, which

is referred to as mitochondrial dynamics. Mitochondrial fission is
defined as the division of onemitochondrion into twomitochondria,
whereas mitochondrial fusion denotes the formation of one
mitochondrion from two mitochondria. Fission and fusion events
can be influenced by metabolic conditions and are regulated by
different proteins.

When exposed to nutrient-rich environmental conditions,
hepatocytes tend to keep their mitochondria in a separated
(fragmented) state to prevent energy waste, reducing
bioenergetic efficiency and augmenting mitochondrial
uncoupling, all of which leads to a simultaneous increase in
nutrient storage (Adebayo et al., 2021). Mitochondrial fission is
facilitated by mitochondrial fission factor (Takeichi et al., 2021),
fission protein 1, and dynamin-related protein 1 (Du et al., 2017;
Stevanović et al., 2020).

On the contrary, under conditions of nutrient deprivation,
the hepatic mitochondria remain in the connected (elongated)
state for a longer duration (Adebayo et al., 2021). Mitochondrial
fusion is considered a protective mechanism against metabolic
and environmental stress in which gene products are transferred
between the mitochondria to maintain optimal function.
Mitochondrial fusion in hepatocytes is controlled by mitofusin
proteins (Mfn-1 and Mfn-2) (Zhang et al., 2010; Gong
et al., 2019).

FIGURE 3
Mitochondrial dysfunction in NAFLD. When exposed to excess nutrient or stimuli, Oxphos gene expression is increased to adapt the metabolic
change. When adaption could not compensate the pathological change, peroxidation become dominant in mitochondrial rather than β-oxidation,
resulting in pronounced production of ROS, breakdown of mitochondrial fission and fusion, defected mitophagy. All of which induce mitochondrial
damage and release mtDNA fragment (DAMPs) and cytochrome C. The death signals propagate hepatocyte injury and triglyceride accumulation in
the liver, leading to NAFLD.
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TABLE 1 Summary of the results of randomized clinical trials of drugs in the treatment of NAFLD.

Drug name Type of clinical
study

Features of patients Number of
patients

Duration of
treatment

Main findings

PPARα agonist

Pemafibrate (Nakajima et al.,
2021)

Double-blind, RCT NAFLD 118 72 weeks Pemafibrate reduced liver
stiffness quantified by MRI
but did not decrease liver fat
content

Mitochondrial pyruvate carrier inhibitor

MDSC-0602K (31697972) Double-blind RCT NASH, F1-F3 392 52 weeks MSDC-0602K improved
hyperglycemia and liver
injury index, but did not
demonstrate statistically
significant effects on primary
and secondary liver histology
endpoints

GLP-1 receptor agonists

Liraglutide (Armstrong et al.,
2016)

Double-blind RCT Overweight with clinical
evidence of NAFLD

52 48 weeks Improved histological
resolution; less progression
to fibrosis (9% vs 36%)

Liraglutide, Gliclazide (Feng
et al., 2017)

Open-label, prospective,
randomized

T2DM with NAFLD 87 24 weeks Liraglutide resulted in
greater hepatic fat content
reduction than gliclazide

Liraglutide (Khoo et al., 2017) Randomized to a supervised
diet programing

Obese with NAFLD 24 26 weeks Liraglutide was effective as
lifestyle modification in the
aspect of reduction of liver
fat content

Liraglutide, Sitagliptin, Insulin-
glargine (Yan et al., 2019)

Randomized, active-
controlled, parallel-group,
open-label

T2DM with NAFLD 72 26 weeks Both liraglutide and
sitagliptin, but not insulin
glargine, reduced body
weight, hepatic fat content,
and adiposity in visceral
adipose tissue

Dulaglutide (Kuchay et al.,
2020)

Randomized, open-label,
parallel-group

T2DM with NAFLD 64 24 weeks Dulaglutide significantly
reduces liver fat content but
no significant reduction in
liver stiffness, serum AST
and serum ALT levels

Liraglutide, Insulin glargine
(Guo et al., 2020)

Prospective, RCT T2DM with NAFLD 96 26 weeks Compared with placebo,
Liraglutide treatment
reduced hepatic fat content
while insuline glargine
did not

Semaglutide (Newsome et al.,
2021)

Double-blind, RCT Biopsy-confirmed NASH and
liver fibrosis of stage F1, F2,
or F3

320 72 weeks Semaglutide resulted in a
significantly higher
percentage of patients with
NASH resolution than
placebo, but did not improve
fibrosis stage compared with
placebo

Semaglutide (Flint et al., 2021) Double-blind, RCT Liver stiffness 2.50–4.63 kPa
by MRE and liver
steatosis ≥10% by MRI

67 48 weeks Semaglutide reduced hepatic
fat content and steatosis but
had not changed liver
stiffness, compared with
placebo

Semaglutide (Loomba et al.,
2023)

Double-blind, RCT Biopsy-confirmed NASH-
related cirrhosis and
BMI ≥27 kg/m2

71 48 weeks Semaglutide did not
significantly improve fibrosis
or achievement of NASH
resolution compared with
placebo

(Continued on following page)
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Hepatic mitophagy
Mitochondrial biogenesis and mitophagy work together to

maintain mitochondrial homeostasis. As a specialized type of
autophagy, mitochondrial mitophagy controls mitochondrial
turnover and recycling, ensuring hepatic homeostasis by eliminating
long-lived or damaged mitochondria (Xian and Liou, 2021). Three
primary mitophagy pathways have been identified: PTEN-induced
kinase (PINK1) and ubiquitin E3 ligase Parkin, Bcl-2 interacting
protein 3 (BNIP3)/light chain 3B (LC3B), and FUN14 domain-
containing 1 (FUNDC1) (Springer et al., 2021; Agarwal and Muqit,
2022; Bi et al., 2024). In response to mitochondria membrane potential
reduction, PINK1 is accumulated in OMM that recruits Parkin
translocation from cytosol to mitochondria for protein degradation
(Agarwal and Muqit, 2022). BNIP3 protein is required for glucagon/
fasting-triggeredmitophagy in the liver. Upon fasting, BNIP3 stimulates
LC3B translocation from the nucleus to the cytosol for mitochondrial
autophagosome degradation (Springer et al., 2021). FUNDC1 is a
mitophagy receptor present in the outer membrane of the
mitochondria (Bi et al., 2024), and FUNDC1 deficiency in
hepatocytes reduces mtDNA stability and promotes cascade
activation and inflammation (Zhou et al., 2019).

Hepatic endoplasmic reticulum (ER)–
mitochondrial interactions

The ER and mitochondria interact at contact sites known as
mitochondria-associated membranes or mitochondria–ER contacts,
where they exchange phospholipids and calcium, thus modulating
key signaling pathways and regulating cellular homeostasis (Filadi
et al., 2017). Reduced interactions and calcium exchange between
the ER and the mitochondria represent early events in the liver of
mice with diet-induced obesity. Disruption of the communication
between the ER and the mitochondria triggers hepatic insulin
resistance and steatosis. Conversely, enhancing the interactions
between the ER and the mitochondria can prevent diet-induced
glucose intolerance (Beaulant et al., 2022).

Phospholipid of mitochondria
Similar as the plasma membrane, the mitochondrial membrane

is mainly composed of three classes of lipids: glycerophospholipids

containing a glycerol backbone, sphingolipids containing a
sphingosine backbone, and sterols containing a four-ringed
structure. Mitochondria could synthesize several lipids such as
phosphatidylglycerol (PG), cardiolipin and in part
phosphatidylethanolamine (PE), phosphatidic acid and CDP-
diacylglycerol on their own. But other mitochondrial membrane
lipids such as phosphatidylcholine (PC), phosphatidylserine (PS),
phosphatidylinositol, sterols and sphingolipids have to be imported
from cytosol. These phospholipids are crucial for maintaining
membrane electrical potential, mitochondrial homeostasis and
function (van der Veen et al., 2017).

PE and PC are the main two types of phospholipids within the
mitochondrial membrane. PE is highly enriched and accounts form
40% to total phospholipids. Approximately, 70% of PE resides in the
outer side of the OMM (van der Veen et al., 2017). PC is synthesized
from the CDP-choline pathway and could be obtained by
conversion PE to PC via phosphatidylethanolamine
N-methyltransferase (PEMT). In PEMT deficient mice, PC/PE
ratio is decreased. Mitochondria are smaller and more elongated,
accompanying increased respiration and cytochrome oxidase and
succinate reductase production in liver (Li et al., 2023). When
challenged with high-fat diet, PEMT deficient mice could develop
more severe NAFLD than their littermates (Li et al., 2023). Apart
from that, PC could be also delivered to mitochondria via Stad7. In
vitro, knockdown of Star7 reduces PC content in mitochondria
whereas overexpression of Stad7 increases PC content and induces
mitochondrial fusions (Rojas et al., 2021).

PS is synthesized in mitochondria via phosphatidylserine
decarboxylase (PSD) or translocated from ER (Johnson et al.,
2023). In PSD deficient mice, mitochondrial mass is small and
fragmented and mice die in early stage of embryonic development
(Steenbergen et al., 2005). With regard to transfer, Mfn2 is the
mediator that specifically extracts PS from ER to mitochondrial
membrane. In case of Mfn2 deficiency, PS transfer is abrogated,
triggering ER stress and development of NASH (Hernández-Alvarez
et al., 2019).

PG is synthesized in the mitochondria and transported to ER for
maturation. PG is required for cardiolipin synthesis to maintain
cristae structure. Lysophosphatidylglycerol Acyltransferase

TABLE 1 (Continued) Summary of the results of randomized clinical trials of drugs in the treatment of NAFLD.

Drug name Type of clinical
study

Features of patients Number of
patients

Duration of
treatment

Main findings

Efinopegdutide, Semaglutide;
(Romero-Gómez et al., 2023)

Randomized, active-
comparator-controlled,
parallel-group, open-label

NAFLD 145 24 weeks Treatment with
efinopegdutide 10 mg weekly
led to a significantly greater
reduction in LFC than
semaglutide 1 mg weekly

GLP-1R/GcgR agonist

Cotadutide (36,228,195) RCT Obese, T2DM 834 54 weeks Cotadutide significantly
decreased HbA1c and body
weight, improved lipid
profile, AST and ALT levels,
propeptide of type III
collagen level, fibrosis-4
index, and nonalcoholic fatty
liver disease fibrosis score

MRI, magnetic resonance imaging; RCT, randomized and placebo-controlled clinical trial; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcohol steatohepatitis (NASH).
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1 (LPGAT1), PG an acyltransferase that catalyzes located in ER
coordinates transport of PG to mitochondrial (Sun et al., 2023a). In
LPGAT−/− mice, LPGAT1 ablation disrupted the transportation of
matured PG back to mitochondria is disrupted, resulting in loss of
crista structure and respiratory function (Sun et al., 2023a).

The mitochondria–lysosome-related organelle
Very recently, a novel organelle was identified in

dedifferentiated primary mouse hepatocytes cultured in vitro.
When primary mouse hepatocytes were cultivated for up to
7 days, the mitochondria underwent dynamic remodeling,
exhibiting increased elongation and fragmentation. An organelle
with a hybrid “mitochondria–lysosome-like structure” was
identified, named the mitochondria–lysosome-related organelle.
This organelle is distinct from the mitophagosome and functions
in mitochondrial degradation during cell dedifferentiation (Ma
et al., 2023).

Mitochondrial transfer
Very interestingly, mitochondria could be transferred among

cells via tunnelling nanotubes. Alternatively, mitochondria can be
transferred in packaged vesicles and released to the extracellular
compartment. The released vesicles are captured by recipient cells
and degraded by the lysosome. Thus, the content of mitochondria is
captured by recipient cells (Borcherding and Brestoff, 2023).
Although the biological meaning of mitochondria transfer is not
understood, to some extent, it acts as a “gain of function” mode for
recipient cells in the aspect of exogenous respiration and rescue of
inherited mitochondria defect. For instance, in vitro, the addition of
purified mitochondria to NDUF4-deficient mice could restore
mitochondria respiration in peritoneal macrophages (Borcherding
et al., 2022). Furthermore, massages delivered via mitochondria
transfer could modulate the fate of recipient cells. For example,
mitochondria are transferred from osteoblasts to their progenitors
could promote its differentiation to osteoblasts for bone formation
(Mohammadalipour et al., 2020).

Figure 2 summarizes a series of mechanisms to maintain
mitochondrial homeostasis.

Hepatic mitochondrial dysfunction
in NAFLD

Mitochondrial homeostasis is disrupted in the early stage of
NAFLD and becomes dysfunctional along with the transition from
NAFL and non-alcohol steatohepatitis (NASH) to more severe
NAFLD, accompanying with significant morphological changes,
impaired biogenesis and dynamics, increased oxidative stress, and
inflammation.

Mitochondrial adaptation

Using high-resolution respirometry to measure oxygen flux,
mitochondrial function was studied in the whole liver tissue and
ex vivo isolated liver mitochondria from lean individuals and obese
patients with different stages of NAFLD. When steatosis-resistant
A/J mice were fed a high-fat diet (HFD) for 2, 6, and 30 days,

respectively, 13 OXPHOS genes were increased shortly after 2 days
of the HFD, as evidenced by complementary DNA microarray.
Accompanying that, hepatic ATP content was increased, suggesting
elevated mitochondrial function (Poussin et al., 2011). In line with
that, the uncoupled respiration to β-oxidation and TCA cycle
activity was 85% higher in individuals with obesity compared
with lean controls. Likewise, OXPHOS activity was increased
despite low intrahepatic triglyceride content, indicating
mitochondrial adaptation to elevated lipid exposure in case of
obesity (Koliaki et al., 2015). In another study, liver biopsies were
obtained from patients with obesity undergoing bariatric surgery
and lean controls. Hepatic mitochondrial respiratory capacity by
high-resolution respirometry and mtDNA/nDNA content by
quantitative polymerase chain reaction were much higher in
patients with obesity than in controls (Pedersen et al., 2022).
Taken together, these data imply that the mitochondria undergo
adaptation or plasticity in order to reduce hepatic fat accumulation
in the early stage of NAFLD.

Defective mitophagy

Mitophagy governs mitochondrial quality via selective clearance
of damaged or excess mitochondria. A growing body of evidence has
revealed the impaired mitophagy and change in mitochondrial
function in the transition from NAFL to NASH (Koliaki et al.,
2015). Using high-resolution respirometry, mitochondrial
respiration was measured in liver biopsies from patients with
obesity without NAFL or with NAFL or NASH. The maximal
mitochondrial respiratory rate was comparable between patients
with obesity with or without NAFL. However, mitochondrial mass
was greater, but maximal respiration was 31%–40% lower, in
patients with NASH than in patients with NAFLD (Koliaki et al.,
2015). Changes in mitochondrial structure, reduced ATP
production, and increased oxidative stress become more
pronounced in the liver following disease progression toward
NASH (Ozer et al., 1999; Koliaki et al., 2015).

Physically, upon cellular entry, fatty acids are recruited to the
mitochondria for β-oxidation or esterified to triglycerides in the
cytosol. In the context of excess nutrients, triglyceride accumulation
and reduced fatty acid oxidation are the hallmarks of NAFLD. Acyl-
coenzyme A-dependent lysocardiolipin acyltransferanse 1
(ALCAT1) catalyzes the remodeling of cardiolipin, which is a
mitochondrial phospholipid involved in membrane biogenesis
and facilitates the catalyzation of fatty acid β-oxidation by
mitochondrial trifunctional protein. Western blot has
demonstrated elevated hepatic ALCAT1 expression in NAFLD
models, including HFD-fed wild-type mice and diabetic db/db
mice. Ectopic ALCAT1 overexpression in hepatocytes caused
cardiolipin peroxidation, resulting in mitochondrial dysfunction
and steatosis development. By contrast, ALCAT1 deficiency
promoted mitophagosome biogenesis via upregulation of PINK,
preserved mitochondrial structure, and attenuated steatosis (Wang
et al., 2015).

As described above, Parkin is an essential regulator of
mitophagy. In experimental models of NAFLD induced by a
high-fat/high-calorie diet, an initial increase in PINK1/Parkin-
mediated mitophagy was observed as a protective response to
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combat hepatic lipid buildup. However, prolonged HFD exposure
resulted in a decline in PINK1/Parkin expression, compromising the
efficiency of mitophagy and exacerbating liver damage, ultimately
progressing to NASH (Li et al., 2024). In wild-type mice fed an HFD
and palmitate acid-treated hepatocytes, macrophage-stimulating
1 expression was upregulated, which inhibited Parkin expression
and reduced mitophagy (Zhou et al., 2019). Conversely,
Mst1 knockdown restored mitophagy function, reducing liver
injury and enhancing hepatocyte viability (Zhou et al., 2019).

A recent study revealed the mortality factor 4-like protein 1
(MORF4L1, also called MRG15) as a novel regulator of mitophagy.
MRG15 is a component of the NuA4 histone acetyltransferase
complex, which is involved in transcriptional activation of certain
genes, principally by acetylation of the nucleosomal histones H4 and
H2A. MRG15 resides in OMM and its expression is elevated in the
liver of patients with NASH (Tian et al., 2022). In a murine model of
NASH, the increased MRG15 protein interacted with and
deacetylated mitochondrial Tu translation elongation factor
(TUFM) that activated the ClpXP protease system for protein
degradation. By contrast, MRG15 blockade stabilized TUFM-
sustained mitophagy and attenuated NASH progression (Tian
et al., 2022).

DEAD-box protein 5 (DDX5) is an ATP-dependent RNA
helicase that interacts with E2F1 to stimulate the transcription of
Atg4B to modulate mitophagy (Zhang et al., 2023). Nevertheless,
one study showed that DDX5 expression was downregulated in diet-
induced NASH models and palmitic acid-exposed hepatocytes
(Zhang et al., 2023). In another study, delivery of mesenchymal
stem cell-derived extracellular vesicles with enriched
DDX5 promoted mitophagy, mitochondrial function, and
hepatocyte proliferation in aged mice undergoing partial
hepatectomy (Zhang et al., 2023). Therefore, the roles of
DDX5 in mitophagy are to be covered.

ROS and oxidative stress

ROS are byproducts of OXPHOS and encompass a range of
compounds, including superoxide anion radical (O2•−), hydrogen
peroxide (H2O2), and hydroxyl radical (HO•), as well as various
peroxides, such as those found in nucleic acids, lipids, and proteins
(Cadenas and Sies, 2023). In NAFLD, ROS elevation leads to
prolonged mitochondrial permeability transition pores (mPTP)
opening, causing dissipation of the mitochondrial membrane
potential (ΔΨm). This results in an influx of water and ions into
the mitochondrial matrix, leading to mitochondrial swelling and
eventual outer membrane rupture. Subsequently, a rapid increase in
ROS production during the “burst phase” ensues, causing oxidative
damage to mitochondrial DNA, proteins, and lipids. In addition,
ROS triggers mitophagy by prompting Parkin to move from the
cytoplasm to the impaired mitochondria, activating the PINK1/
Parkin pathway (Lin et al., 2019).

Imbalanced fusion and fission

Of note, when hepatocytes are exposed to high levels of
cellular stress with excessive nutrients and free fatty acids, the

mitochondrial network becomes more disintegrated through
increased fission (Liesa and Shirihai, 2013). An in vitro study
showed that exposure of hepatocytes to saturated palmitate
resulted in triglyceride accumulation, mitochondrial
fragmentation, loss of transmembrane potential, cytochrome-c
release into the cytoplasm, and increased ROS activity (Eynaudi
et al., 2021).

Similar to these in vitro findings, enhanced fission machinery
and decreased mitochondrial respiratory capacity have been
observed in the liver of db/db mice and rats fed an HFD
(Galloway et al., 2014; Piacentini et al., 2018). In transgenic mice
expressing the dominant-negative fission mutant DLP1-K38A in a
doxycycline-inducible manner, DLP1-K38A was induced by an
HFD. Galloway et al. (2014) found that inhibiting mitochondrial
fission protected against liver steatosis, alleviated HFD-induced
oxidative stress, and reduced hepatic damage. Moreover, Takeichi
et al. (2021) demonstrated that hepatic deletion of mitochondrial
fission factor-induced ER stress impaired triglyceride secretion in
the liver, both in vivo and in vitro. They further showed that mice
lacking mitochondrial fission factor in hepatocytes exhibited
increased susceptibility to NASH induced by the HFD, primarily
due to enhanced hepatic apoptosis resulting from ER stress and
reduced triglyceride excretion from hepatocytes (Takeichi et al.,
2021). These findings provide novel insights into the role of
mitochondrial fission in NASH development.

In summary, the progression from NASH to more severe forms
of NAFLD is characterized by a cascade of mitochondrial changes,
including impaired function, altered biogenesis and dynamics, and
mitochondrial-induced apoptosis and inflammation.
Understanding these mitochondrial alterations is crucial for
elucidating the pathophysiology of NAFLD progression and for
developing targeted therapeutic strategies to mitigate liver damage
in patients with advanced disease.

Impaired cross-talk

When mitochondria undergo dysfunction, the communication to
other organelles is also affected. During mitochondria fusion, binding
of Mfn-2 to phosphatidylserine helps transfer of phosphatidylserine to
mitochondria for phosphatidylethanolamine synthesis. In liver biopsy
of NASHpatients,Mfn-2 expression was reduced. Inmice with hepatic
ablation of Mfn-2, phosphatidylserine transfer is abrogated, leading to
ER stress, triglyceride accumulation and fibrosis (Hernández-Alvarez
et al., 2019). In Cadmium-induced NAFLD mice, exposure of
cadmium to hepatocytes damaged nanotube system, mitochondria-
kinesin interaction and blocked mitochondrial transfer, all of which
resulted in lipid accumulation in liver (Sun et al., 2023b).

Figure 3 summarizes the dysfunctional mitochondria in the
pathogenesis of NAFLD.

Drugs targeting mitochondrial function
in NAFLD

For most patients with NAFLD, the primary goal is to improve
quality of life and prolong life expectancy. The second goal is to
reduce hepatic fat deposition and inhibit the progression of

Frontiers in Pharmacology frontiersin.org08

Deng et al. 10.3389/fphar.2024.1463187

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1463187


inflammation and fibrosis. Pharmacological agents can be classified
into five categories based on their mechanisms of action, namely
lipid-lowering, glucose-lowering, anti-apoptotic, anti-inflammatory,
and anti-fibrotic agents. Herein, we describe the clinical results of
the most promising drugs and agents for the treatment of NASH and
NAFLD, focusing on their effect on mitochondrial homeostasis.

Pemafibrate

Pemafibrate is a selective peroxisome proliferator-activated receptor
PPAR-α agonist. Upon ligand binding, hepatic PPAR-α induces
mitochondrial fatty acid uptake and β-oxidation (Matsumoto et al.,
2023). In a phase 2 randomized controlled trial, 118 patients with
NAFLD were assigned to 0.2 mg pemafibrate or placebo for 72 weeks.
Magnetic resonance elastography revealed that the liver fat content was
decreased by 5.7% at week 48 and by 6.2% at week 72 in the pemafibrate
group compared with placebo (Nakajima et al., 2021). Along with
reduced fatty liver, alanine transaminase and low-density lipoprotein
cholesterol were significantly lower in the treatment group (Nakajima
et al., 2021).

Mitochondrial pyruvate carrier (MPC)
inhibitors

Thiazolidinediones (TZDs) are a class of anti-diabetic drugs. It
activates PPAR-γ transcription and its subsequent increased glucose
transporter (GLUT4) expression to enhance glucose uptake in
hepatocytes and adipocytes (Colca et al., 2023). Interestingly,
TZDs have been found to specifically inhibit the activity of
mitochondrial pyruvate carrier (MPC) (Divakaruni et al., 2013).

Pyruvate is the key metabolite linking glycolysis and oxidative
phosphorylation in hepatocytes. The MPC components, MPC1 and
MPC2, are discovered to be located in themitochondrial and function in
transporting pyruvate produced in glycolysis into mitochondrial matrix
(Tavoulari et al., 2023). In NAFLD patients, a positive correlation
between MPC1 levels and hepatic lipid content was observed (Gao
et al., 2023). From mechanistic insight, inhibition of MPC1 ammolites
protein function by introducing lactylation modification onto targeted
proteins such like fatty acid synthase. Ultimately, suppression of
MPC1 results in reduced lipid accumulation and inflammation in
hepatocytes. Based on that, insulin sensitizer MDSC-0602K is
specifically designed to preferentially target MPC while minimizing
direct binding to the transcriptional factor PPARγ. In a multicenter,
double-blinded RCT, 392 biopsy-confirmed NASH and fibrosis (F1-F3)
patients were recruited and administered different doses of MSDC-
0602K (0–250 mg daily). After 52 weeks of treatment, MSDC-0602K
significantly improved hyperglycemia, and reduced markers of liver
injury. Nonetheless, NAS was not changed compared with placebo
(Harrison et al., 2020).

Glucagon-like peptide-1 (GLP-1) receptor agonists
GLP-1 is an incretin secretory molecule produced by

enteroendocrine L cells. Acting through the GLP-1 receptor, the
physical roles of GLP-1 and its agonists are multifaceted, including
the promotion of glucose-induced insulin secretion, retarding gastric
motility, protecting endothelial cell function, and inhibiting

inflammation (Drucker, 2018; Laurindo et al., 2022). Therefore,
GLP-1 receptor agonists have been widely applied in the treatment
of type 2 diabetes mellitus. Administration of liraglutide or semaglutide
to mice with diet-induced steatosis improved the NASH activity score
along with reducing fat deposition and inflammation in the liver (Niu
et al., 2022; Newsome and Ambery, 2023).

For mechanistic insight, liraglutide to mice upregulated the
expression of PGC-1α (peroxisome proliferator-activated receptor-γ
coactivator-1α), which is a potent transcription factor formitochondrial
biogenesis and function (Wu et al., 2022). In parallel, in amurinemodel
of NASH induced by a high-fructose and high-trans-fat diet, exenatide
treatment decreased TCA cycle flux and improved lipid metabolism
(Kalavalapalli et al., 2019). The addition of liraglutide partially rescued
mitochondrial dysfunction by reducing ROS, inhibiting
NLRP3 activation, and augmenting mitophagy in HepG2 cells
treated with palmitic acid (Yu et al., 2019).

In patients with type 2 diabetes mellitus with co-existing
NAFLD, administration of liraglutide (Feng et al., 2017; Yan
et al., 2019; Guo et al., 2020) or dulaglutide (Kuchay et al., 2020)
resulted in significant fat content in the liver compared with placebo
(Kuchay et al., 2020), insulin glargine (Yan et al., 2019; Guo et al.,
2020), or gliclazide (Feng et al., 2017). In overweight patients with
NAFLD, treatment with liraglutide (Armstrong et al., 2016; Khoo
et al., 2017) not only reduced fat content (Khoo et al., 2017), but it
also improved fibrosis resolution in the liver (Armstrong et al.,
2016). In patients with biopsy-confirmed NASH and liver fibrosis of
stage 1, 2, or 3 (Newsome et al., 2021; Loomba et al., 2023) or
advanced steatosis (Flint et al., 2021), subcutaneous injection of
semaglutide failed to improve fibrosis. Recently, a phase 2a
randomized controlled trial was conducted to compare the
therapeutic effects of efinopegdutide (GLP-1 and glucagon
receptor co-agonist) and liraglutide. After 24 weeks of treatment
in patients with NAFLD, efinopegdutide was more powerful than
semaglutide in reducing liver fat content, as assessed by magnetic
resonance imaging-estimated proton density fat fraction (Romero-
Gómez et al., 2023). Whether efinopegdutide attenuates fibrosis
progression remains to be explored in the future.

Cotadutide
Cotadutide is the GLP-1R/Glucagon receptor (GcgR) dual

agonist (Boland et al., 2020). Besides its beneficial effects via
GLP-1 signaling, Gcg signaling improved mitochondrial turnover,
glucose and lipogenic metabolism and function in mice (Boland
et al., 2020). In line with in vivo results, a phase 2 study was
performed to assess the therapeutic efficacy of cotadutide in
NAFLD. Overall, 834 obese and T2DM patients were
randomized with placebo or different dosages of cotadutide. After
54 weeks of treatment, cotadutide treatment decreased HbA1c and
fibrosis-4 index compared with placebo (Nahra et al., 2022).

Table 1 summarizes of the results of randomized clinical trials of
drugs in the treatment of NAFLD.

Perspective

NAFLD is a complex disorder that involves metabolic
dysregulation and inflammatory and fibrotic pathways. Although
substantial progression has been made in the treatment of this
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disease, more effective treatments for NASH are still needed.
Moreover, side effects are still common with the available
pharmaceuticals. Mitochondrial homeostasis governs liver
physiology and function. How to balance its phospholipid
composition in membrane and how to keep physical metabolism
and function under control are crucial for mitochondria
homeostasis. Mitochondria transplantation is considered as a
therapeutic approach in treating NAFLD is under investigation.
However, how to isolate functional mitochondria is not solved yet.
Moreover, further preclinical and clinical research on the
maintenance of mitochondrial homeostasis is absolutely required
for the treatment of NAFLD and NASH.
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