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Bone tissue and breast tissue are interrelated, as demonstrated by breast
microcalcifications, breast cancer bone metastases, bone morphogenetic
proteins, and Wnt signaling. In addition, osteoblasts and osteoclasts
represent an important switch of tumor cell dormancy during bone
metastasis. Damage to both types of tissues mentioned above is highly
prevalent, especially in postmenopausal women, and manifests itself in
osteoporosis and breast cancer. Sea buckthorn (Elaeagnus rhamnoides L.), a
botanical drug with high antioxidant, antitumor, anti-inflammatory,
immunomodulatory, and regenerative properties, has great therapeutic
potential due to the unique composition of its bioactive metabolites. This
review aimed to summarize the current knowledge from in vitro and in vivo
studies on the effect of sea buckthorn, as well as its most widespread flavonoids
isorhamnetin, quercetin, and kaempferol, on bone and breast tissue health. In
vitro studies have revealed the beneficial impacts of sea buckthorn and
aforementioned flavonoids on both bone health (bone remodeling,
mineralization, and oxidative stress) and breast tissue health (cancer cell
proliferation, apoptosis, tumor growth, and metastatic behavior). In vivo
studies have documented their protective effects against disturbed bone
microarchitecture and reduced bone strength in animal models of
osteoporosis, as well as against tumor expansion and metastatic properties
in animal xenograft models. In any case, further research and clinical trials are
needed to carefully evaluate the potential therapeutic benefits of sea buckthorn
and its flavonoids. Based on the available information, however, it can be
concluded that these bioactive metabolites favorably affect both bone and
breast tissue health.
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1 Introduction

Sea buckthorn (Elaeagnus rhamnoides L.) is a nitrogen-fixing
thorny deciduous shrub that is naturally distributed in Asia and
Europe. It can grow in difficult conditions such as frost, drought, and
polluted air. This botanical drug has been widely used for its
nutritional and medicinal purposes (Patel et al., 2012; Jaśniewska
and Diowksz, 2021). Raw fruits, various products made from them
(e.g., juices, jams, tinctures), alcoholic extracts from different parts
of this botanical drug and oil from the seeds have shown to possess
antioxidant, antitumor, anti-inflammatory, immunomodulatory,
and regenerative properties, which are related to a unique
composition of bioactive metabolites, rich in phenolic metabolites
(mainly phenolic acids and flavonoids), essential fatty acids
(palmitic acid, palmitoleic acid, stearic acids), vitamins (A, B, C,
E, K), phytosterols (cycloartenol, campesterol, sitosterol), and
carotenoids (lycopene, lutein, zeaxantin) (Olas et al., 2018;
Dudau et al., 2021; Stochmal et al., 2022). In general, more than
60 flavonoids and 10 phenolic acids have been identified in sea
buckthorn. The most abundant flavonoids in fruits, leaves, and seeds
are isorhamnetin and quercetin, followed by kaempferol, luteolin,
myricetin, syringetin, naringenin, and epicatechin (Ren et al., 2020;
He et al., 2023). Considering phenolic acids, gallic acid, caffeic acid,
and ferulic acid are present in leaves and fruits (Jaśniewska and
Diowksz, 2021; Danielski and Shahidi, 2024). This broad spectrum
of bioactive metabolites can help prevent or treat a variety of
conditions, such as cardiovascular diseases, diabetes mellitus, liver
damage, gastrointestinal disorders, neuronal damage, skin lesions,
retina damage, osteoporosis, and tumors (Ren et al., 2020).

In this review, we summarize the current knowledge from
in vitro and in vivo studies regarding the effect of sea buckthorn,
as well as its most widespread flavonoids isorhamnetin, quercetin,
and kaempferol, on bone and breast tissue health. In individual
studies, where it was relevant, we assessed the fulfillment of the
requirements for the phytochemical characterization of the analysed
extracts according to the ConPhyMP (Heinrich et al., 2022). Selected
flavonoids exhibit both protective effects on bone tissue and
antitumor impacts on breast tissue, potentially ameliorating bone
loss in osteoporosis and inhibiting breast cancer progression.
Therefore, we hypothesized that all of these bioactive metabolites
should simultaneously attenuate bone damage and breast
malignancy. These profitable effects of aforementioned bioactive
metabolites on the health status of bone and breast tissues are still
not sufficiently presented, as well as the interplay between
both tissues.

2 The link between bone tissue and
breast tissue

The relationships between bone and breast tissues are generally
based on a constant dependence on the same regulatory and
signaling molecules, as well as on mutual interactions through
tissue-specific molecules that are mainly exposed at specific
periods of life. Both bone tissue and breast tissue are dependent
on estrogen, a key hormone that regulates bone mineral density
(BMD), thereby maintaining the balance between bone formation
and bone resorption. Estrogen is also an important mediator of

mammary gland morphogenesis (Stingl, 2011). Furthermore,
receptor activator of nuclear factor kappa β (RANK) and its
ligand RANKL were discovered as key regulators of osteoclast
development and activation. RANK and RANKL, however, also
play an important role in the development of a functional lactating
mammary gland during pregnancy (Sigl and Penninger, 2014). The
mammary gland and bones are closely linked during lactation, when
increased calcium requirements for milk production change bone
and mineral metabolism (Athonvarangkul and Wysolmerski, 2023).
In addition, with increasing age, cells and tissues, including breast
and bone, become more susceptible to oxidative stress, which could
modify the activity of key proteins and pathways needed to protect
against bone and breast tissue damage (Figure 1). Disruption of the
aforementioned important regulatory mechanisms and age-related
changes in the organism, including oxidative stress, inflammation,
and lipid accumulation contribute to simultaneous occurrence of
osteoporosis and breast cancer in postmenopausal women (Cho
et al., 2015; Muhammad et al., 2018; Martiniakova et al., 2023a).
Overall, osteoporosis is the most common type of bone disease and
its prevalence was reported at 18.3%. By 2050, more than 30 million
people in Europe are expected to be affected by osteoporosis (Salari
et al., 2021; Martiniakova et al., 2024). Globally, breast cancer is the
second most common cause of cancer death in women, representing
12.5% of all new annual cancer cases worldwide (Muhammad et al.,
2018; World Health Organization International Agency for
Research on Cancer, 2024). There is a close clinically significant
relationship between osteoporosis and breast cancer. Estrogen
deficiency is considered the main cause of postmenopausal
osteoporosis. Conversely, elevated estrogen levels during life (e.g.,
late menopause, obesity, estrogen replacement therapy) are
associated with increased incidence of breast malignancy.
Deregulation of the RANK/RANKL system also contributes to
the development of postmenopausal osteoporosis. The RANK/
RANKL pathway has also been found to be involved in
hormone-induced breast cancer development and metastatic
spread to bone (Muhammad et al., 2018; Martiniakova et al., 2023a).

Another clinical interrelationship between bone tissue and
breast tissue is demonstrated by breast microcalcifications and
breast cancer bone metastases (Antonacci et al., 2018). The
presence of breast microcalcifications and localized deposits of
hydroxyapatite in the breast tissue is actually considered an early
mammographic sign of breast cancer (Johnson et al., 1999).
Approximately 70%–80% of patients with advanced breast cancer
experienced bone metastases (Chen et al., 2010), which seriously
affect their quality of life and can lead to death. Moreover,
osteoblasts and osteoclasts represent an important switch in
tumor cell dormancy during bone metastasis (Haider et al., 2020;
Dai et al., 2022). Several researchers have also demonstrated the
expression of typical bone markers in breast cells, including
predominantly bone morphogenetic proteins (BMPs) and Wnt
signaling (Liu et al., 2008; Bramwell et al., 2014). In general,
BMPs are cytokines belonging to the transforming growth factor
(TGF)-β superfamily that play multiple functions during
development and tissue homeostasis, including the regulation of
bone homeostasis (Sánchez-Duffhues et al., 2015). Current studies
have shown that BMPs may also be involved in breast tissue. They
can support oncogenic behavior by affecting apoptosis, migration,
invasion, and angiogenesis (Alarmo and Kallioniemi, 2010), initiate
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microcalcification (Liu et al., 2008), and promote the phenomenon
of epithelial-mesenchymal transition (EMT) (Gonzalez and Medici,
2014). Canonical Wnt signaling activity supports bone formation
(Turashvili et al., 2006), and it is also involved in several stages of
mammary gland growth and differentiation and human breast
cancer development (Howe and Brown, 2004). Additionally, it is
also important to mention that the implication of other bone-
derived factors (e.g., osteocalcin, fibroblast growth factor 23,
sclerostin, lipocalin 2) in cancer biology has attracted research
interest in recent years (Mansinho et al., 2019; Santiago-Sánchez
et al., 2020; Martiniakova et al., 2023b), as they may be used as
promising tumor biomarkers. Conversely, breast cancer cells are
able to secrete various cytokines, including parathyroid hormone
(PTH)-related protein, vascular endothelial growth factor (VEGF),
RANKL, various interleukins (ILs) that serve as crucial bone
modulators (Shemanko et al., 2016). These facts also contribute
to a profound interplay between bone tissue and breast tissue.

Current pharmacological treatments for both osteoporosis and
breast cancer often cause undesirable side effects; therefore, various
natural metabolites, including those found in sea buckthorn, are

being intensively researched to discover an alternative and effective
treatment method with less harmful impacts (Li Y. et al., 2017;
Martiniakova et al., 2020).

3 The impact of sea buckthorn and its
flavonoids isorhamnetin, quercetin, and
kaempferol on bone tissue health

Several studies have shown that sea buckthorn fatty acids
significantly elevated levels of serum estrogen, TGF, insulin-like
growth factor (IGF), BMD, cortical bone thickness, trabecular
number, and bone mechanical properties in aged female rats (Liu
et al., 2006b; Liu et al., 2006a). In this context, Yuan et al. (2022)
found that sea buckthorn was able not only to increase BMD and
estrogen levels, but also to raise levels of bone turnover markers (e.g.,
procollagen type 1N propeptide: P1NP, C-terminal telopeptide:
CTX) and improve trabecular bone microstructure (relative bone
volume, trabecular thickness) in ovariectomized (OVX) rats.
Furthermore, it enhanced the efficacy of a traditional Chinese

FIGURE 1
General mechanisms and links among bone tissue, breast tissue, sea buckthorn, its flavonoids (isorhamnetin, quercetin, kaempferol). Blunt red
arrows indicate an inhibitory effect, sharp green arrows designate a stimulatory effect. Blue arrows show a dose-different effect. Gray arrows indicate the
connection of individual mechanisms, molecules and structures. BMD, bone mineral density; BMP-2, bone morphogenetic protein-2; RANK, receptor
activator of nuclear factor kappa β; RANKL, receptor activator of nuclear factor kappa β ligand; ROS, reactive oxygen species. Created with
BioRender.com using chemical structures from PubChem (Kim et al., 2023); CIDs: 5281654, 5280343, 5280863, 122228.
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medicine QiangGuYin (used to treat osteoporosis) by inhibiting
Casein kinase 2-interacting protein-1 (CKIP-1) and Notum
expression through the Wnt/β-catenin pathway. Molecular
docking analysis revealed that seven active components,
including isorhamnetin, quercetin, and kaempferol, were able to
potentially influence CKIP-1 and Notum (Yuan et al., 2022).
However, this study did not provide important details about the
material used (Supplementary Table 1). Moreover, the discovery of
the ‘active’ metabolites of sea buckthorn was based only on the
calculated results of molecular docking and was not followed by
experimental studies. According to Park et al. (2022), an alcoholic
extracts of sea buckthorn fruits and their fractions increased BMD
and exerted the protective effects against cartilage damage and
disturbed trabecular bone microarchitecture. Moreover, the
extracts and their fractions stimulated the differentiation of
murine mesenchymal stem cells into osteoblasts and elevated
gene expression of osteogenic factors and markers, e.g., alkaline
phosphatase (ALP), runt-related transcription factor 2 (RUNX2),
osteopontin (OPN), osterix (OSX). Lee et al. (2023) pointed out the
anti-osteoporotic impacts of triterpenoids from sea buckthorn fruit
by promoting osteoblast differentiation from mesenchymal stem
cells. However, the extracts used in the studies mentioned above
would require better characterization. Relevant information related
to this issue is presented in Supplementary Table 1; Figure 1.

There is a limited number of studies examining the effect of
isorhamnetin in relation to bone damage. According to Yamaguchi
et al. (2007), isorhamnetin inhibited PTH-stimulated
osteoclastogenesis in mouse bone marrow cells and elevated
PTH-decreased calcium content in femoral-diaphyseal tissue
cultures. Moreover, isorhamnetin reduced osteoclast formation in
bone marrow macrophages through inhibition of mitogen-activated
protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and
protein kinase B (AKT) signaling (Zhou et al., 2019).

In contrast to isorhamnetin, more in vitro studies have shown
the ability of quercetin to reduce osteoblast apoptosis,
osteoclastogenesis, and oxidative stress (Woo et al., 2004;
Yamaguchi et al., 2007; Tsuji et al., 2009; Yamaguchi and
Weitzmann, 2011; Tripathi et al., 2015; Niu et al., 2020; Wong
et al., 2020). On the contrary, quercetin significantly increased
osteoblastogenesis, ALP activity, calcium content, expression of
bone formation-associated proteins in mouse preosteoblastic
MC3T3-E1 cells (Tripathi et al., 2015), rat osteoblast-like ROS
17/2.8 cells (Kim et al., 2007), human osteoblast-like MG-63 cells
(Prouillet et al., 2004), and bone marrow mesenchymal stem cells
(BMSCs) (Yuan et al., 2018; Feng et al., 2023). In some researches
mentioned above, the effect of quercetin on NF-κB and Wnt/β-
catenin signaling was also reported. Notably, higher doses of
quercetin had either suppressive or decreased activity on
osteoblast-specific gene expression, osteoblast growth and
mineralization in several studies (Yamaguchi and Weitzmann,
2011; Wong et al., 2020). Furthermore, quercetin has an ability
to bind to the estrogen receptor (ER) (Ross and Kasum, 2002) and
influence osteoblast and osteoclast activity, as well as the expression
and activity of various inflammatory cytokines, participating in bone
remodeling (Wang et al., 2017). Numerous in vivo studies have
established the protective effects of quercetin against bone loss
through increased BMD, improved bone microarchitecture and
bone strength, elevated bone growth, decreased bone resorption

markers, and increased bone formation markers (Tsuji et al., 2009;
Oršolić et al., 2018; Yuan et al., 2018; Niu et al., 2020; Sun et al., 2022;
Feng et al., 2023). Yurteri et al. (2023) revealed that quercetin was
also able to strengthen bone in both the early and late stages of
fracture healing.

Several in vitro studies have shown that inhibitory effects of
kaempferol on osteoclastogenesis may be linked to the
downregulation of osteoclastogenic factors, such as RANKL,
nuclear factor of activated T-cells cytoplasmic 1 (NFAT-c1),
tumor necrosis factor receptor-associated factor 6 (TRAF6), c-Fos
proto-oncogene, NF-κB signaling (Pang et al., 2006; Lee et al., 2014;
Kim et al., 2018; Wong et al., 2019). On the other hand, conducted
experiments have reported that kaempferol increased ALP activity
and promoted osteogenic differentiation and mineralization in rat
bone marrow mesenchymal stem cells (rBMSCs) via mediation of
SOX2/miR-124-3p/PI3K/AKT/mTOR axis as well as in osteoblastic
MC3T3-E1 cells by inducing autophagy and activating osteoblast
differentiation markers such as RUNX2, OSX, collagen 1 (Kim I. R.
et al., 2016; Xie et al., 2021; Gan et al., 2022). In addition, kaempferol
could affect bone through the regulation of AKT serine/threonine
kinase 1 (AKT1) and matrix metalloproteinase (MMP)-9 gene
expressions, which are closely related to the pathogenesis of bone
loss (Dong et al., 2024). Furthermore, kaempferol can modulate
bone metabolism also through the ER (Jia et al., 2012). Tang et al.
(2008) revealed that kaempferol activated ERβ-mediated estrogen
response element (ERE) transcription in MG-63 cell line. In vivo
studies have demonstrated that kaempferol can increase BMD and
ALP activity, reduce bone turnover, and improve trabecular bone
microarchitecture and bone strength in OVX rats (Trivedi et al.,
2008; Nowak et al., 2017; Liu et al., 2021). Moreover, kaempferol was
found to be able to ameliorate osteoporosis by raising C-X-C motif
ligand 12 (CXCL12) expression and decreasing miR-10a-3p (Liu
et al., 2021).

4 The impact of sea buckthorn and its
flavonoids isorhamnetin, quercetin, and
kaempferol on breast tissue health

Several in vitro studies have demonstrated the antitumor activity
of sea buckthorn. Zhang et al. (2005) examined changes in apoptosis-
related gene expression profiles in human breast carcinoma Bcap-37
cells induced by flavonoids from sea buckthorn seeds. These authors
found that the expression of 32 apoptosis-related genes (e.g., IGFBP4,
CTNNB1, CASP3, GADD34) was affected by flavonoid treatment.
According toWang et al. (2014), sea buckthorn procyanidins isolated
from the seeds could induce apoptosis of human breast cancer MDA-
MB-231 cells through fatty acid synthase inhibition. Indeed, high
levels of this enzyme have been identified in cancer cells. Olsson et al.
(2004) reported that sea buckthorn fruit extracts reduced the
proliferation of breast cancer MCF-7 cells in a concentration-
dependent manner. Similarly, Boivin et al. (2007) determined the
inhibition of breast cancer (MCF-7 and MDA-MB-231) cell
proliferation by sea buckthorn berry juice, as well as the
suppression of tumor necrosis factor (TNF)-induced activation of
the nuclear transcription factor NF-κB. A limitation of the studies
mentioned above is the lack of characterization of the experimental
material. In addition, many studies have determined a positive role of
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TABLE 1 In vitro and in vivo studies reflecting the potential of sea buckthorn and its flavonoids isorhamnetin, quercetin, and kaempferol against breast
cancer.

Research model Applied treatment and
metabolite description

Obtained results References

In vitro: cells
MDA-MB-231 overexpressed fatty acid

synthase
Control: negative

Dried procyanidins isolated from sea
buckhorn seeds;
0–60 μg/mL/24 h

Herbal parts: dried powder seeds
Minimal active concentration: 0.087 μg/mL
Extraction details: solvent (70% ethanol,
anhydrous ethanol, 50% ethanol), type

(liquid), drug to solvent ratio 1:10, drug to
extract ratio 100:1

Methods for procyanidin determination:
ammonium ferric sulfate assay

No data about authentication of the plant
material, its origin, locality and date of

harvesting, deposition of voucher specimen.
The extract is poorly characterized by

analytical methods

↓ Fatty acid synthase activity
↓ Viability of the cells
↑ Apoptosis of the cells

Wang et al. (2014)

In vitro: cells
MCF-7

Control: negative

Extracts of sea buckhorn
0.025, 0.05, 0.25, and 0.5%/24 h

Herbal parts: fruits
Origin: university assortment, collected

from wild populations
Minimal active concentration: 0.025%

Extraction details: solvent (ethanol/water,
H3PO4), type (liquid)

Methods for extract characterization:
HPLC-UV, HPLC-DAD

No data about authentication of the plant
material

↓ Proliferation of the cells Olsson et al. (2004)

In vitro: cells
MCF-7, MDA-MB-231

Control: negative

Sea buckhorn berry juice;
10, 20, 30, 40, and 50 μL/mL/48 h

(proliferation)
25 μL/mL/24 h (viability)

Herbal parts: berries
Authentication: cultivar Sunny

Origin: obtained from local farmers
Extraction details: prepared by a centrifugal

extractor
No data about authentication of the plant
material, its exact origin, locality and date of
harvesting, deposition of voucher specimen.
The extract is not characterized by analytical

methods

↓ Proliferation of the cells
↓ Expression of cdk4, cdk6, cyclin D1 and

cyclin D3
↓ TNF-induced activation of the nuclear

transcription factor NFκB

Boivin et al. (2007)

In vitro: cells
MCF-7, T47D, BT474, BT549, MDA-MB-

231, MDA-MB-468
Control: positive and negative

Isorhamnetin;
0.4, 1.2, 3.7, 10, 11.1, 30, 33.3, 100 μM/48 h

Manufacturer and/or supplier of the
product: Shanghai Tongtian Biotechnology

Co., Ltd., Shanghai, China
Product name: Isorhamnetin

Minimal active concentration: 10 μM

↓ Proliferation of cancer cells
↑ Apoptosis of cancer cells

↓ AKT/mTOR and MAPK/ERK signaling
pathways

Hu et al. (2015)

In vitro: cells
MDA-MB-231

Control: negative

Isorhamnetin;
10, 20, or 40 μM/24 h

Manufacturer and/or supplier of the
product: Sichuan Weikeqi Biological
Technology co., ttd., Sichuan, China

Product name: Isorhamnetin
Minimal active concentration: 20 μM

↓ Viability of the cells
↓ Adhesion, migration, and invasion of the

cells
↓ Activity and expression of MMP-2 and

MMP-9
↓ p38 MAPK and STAT3

Li et al. (2015a)

In vitro: cells
MCF-7

Control: positive and negative

Isorhamnetin;
25, 50 and 100 μM/48 h

Manufacturer and/or supplier of the
product: synthesized by Paul W. Needs

Product name: Isorhamnetin
Minimal active concentration: 25 μM

↓ Growth of the cells
↑ Apoptosis of the cells

↑ Cytotoxicity

Wu et al. (2018a)

In vitro: cells
MCF-7/ADR, MDA-MB-231/DOX (both

Isorhamnetin;
10, 20, 30, 50 μM/24 or 48 h

↓ Proliferation and migration of drug-
resistant cells

Yang et al. (2023)

(Continued on following page)
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TABLE 1 (Continued) In vitro and in vivo studies reflecting the potential of sea buckthorn and its flavonoids isorhamnetin, quercetin, and kaempferol
against breast cancer.

Research model Applied treatment and
metabolite description

Obtained results References

doxorubicin-resistant)
Control: positive and negative

Manufacturer and/or supplier of the
product: Shanghai Tongtian Biotechnology

Co., Ltd., Shanghai, China
Product name: Isorhamnetin

Minimal active concentration: 10 μM

↑ Cell cycle arrest and apoptosis
↑ Intracellular ROS and DNA damage

↓ mTOR pathway

In vitro: cells
MCF-7

Control: positive and negative

Quercetin;
25, 50 and 100 μM/48 h

Manufacturer and/or supplier of the
product: National Institute for the Control
of Pharmaceutical and Biological Products,

Beijing, China
Product name: Quercetin

Minimal active concentration: 25 μM

↓ Growth of the cells
↑ Apoptosis of the cells

↑ Cytotoxicity

Wu et al. (2018a)

In vitro: cells
MCF-7

Control: negative

Quercetin;
2.5, 5, 10, 20 and 40 mg/mL/24 or 48 h

Product name: Quercetin
Manufacturer and/or supplier of the

product: Sigma, St. Louis, MO, United States
Minimal active concentration: 40 mg/mL

↓ Proliferation and growth of the cells
↑ Apoptosis of the cells

Deng et al. (2013)

In vitro: Cells
MDA-MB-231

Control: negative

Quercetin;
50, 100, 150, 200, 250, and 300 μM/12 and

24 h
Manufacturer and/or supplier of the

product: Sigma, St. Louis, MO, United States
Product name: Quercetin

Minimal active concentration: 100 μM

↓ Viability of the cells
↑ Apoptosis (higher concentrations)

↑ Caspase-3, -8 and -9, bax
↑ DNA damage

Chien et al. (2009)

In vitro: cells
MCF-7

Control: negative

Quercetin;
10–175 μM/24 and 48 h

Manufacturer and/or supplier of the
product: Sigma, St. Louis, MO, United States

Product name: Quercetin
Minimal active concentration: 10 μM

↓ Viability of the cells
↑ Number of S phase and sub-G1 phase

cells
↓ CDK2, cyclins A and B

↑ p53 and p57, caspase-6, -8 and -9

Chou et al. (2010)

In vitro: cells
MCF-7, MDA-MB-231

Control: positive and negative

Quercetin;
0.1–500 μM/12–96 h

Manufacturer and/or supplier of the
product: Sigma, St. Louis, MO, United States

Product name: Quercetin
Minimal active concentration: 5 μM

↑ Cell growth of MCF-7 at low
concentrations (1–20 μM)

↓ Cell viability at higher concentrations
(≥50 μM) in both cell lines

Xu et al. (2020)

In vitro: cells
MCF-7 and T47D (ER-positive), HCC-38

and MDA-MB-231 (ER- negative)
Control: negative

Quercetin;
0–100 μM/24 h

Manufacturer and/or supplier of the
product: Acros Organics, Nj, United States

Product name: Quercetin
Minimal active concentration: 10 μM

↓ Proliferation of ER- negative cells
↑ Proliferation of ER-positive cells at lower

concentrations
↓ Proliferation of ER-positive cells at

concentrations higher than 45 or 55 μM for
T47D and MCF-7, respectively

van der Woude et al. (2003), van
der Woude et al. (2005)

In vitro: cells
MCF-7

Control: negative

Quercetin;
12.5, 25, 50, 100, 200 μM/24, 48 and 72 h

Manufacturer and/or supplier of the
product: Sigma, St. Louis, MO, United States

Product name: Quercetin
Minimal active concentration: 12.5 μM

↓ Proliferation of the cells (>50 μM)
↑ Apoptosis of the cells (>50 μM)

Duo et al. (2012)

In vitro: cells
MCF-7, MDA-MB-231;

In vivo: xenograft mouse model (n = 6 per
group)

Control: negative

Quercetin;
25, 50, 80, 100 μM/48 h

Manufacturer and/or supplier of the
product: not provided

Product name: Quercetin
Minimal active concentration: 25 μM

↓ Proliferation of both cell types by miR-
146a upregulation

↑ Apoptosis of both cell types through
caspase-3 activation

↓ Tumor invasion through EGFR
downregulation

Tao et al. (2015)

In vitro: cells
MCF-7

Control: positive and negative

Quercetin;
25, 50 and 100 μM/48 h

Manufacturer and/or supplier of the
product: National Institute for the Control
of Pharmaceutical and Biological Products,

↓ Cell growth
↑ ROS-dependent apoptosis of the cells

↓ Cell-cycle in the S phase

Wu et al. (2018b)

(Continued on following page)
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TABLE 1 (Continued) In vitro and in vivo studies reflecting the potential of sea buckthorn and its flavonoids isorhamnetin, quercetin, and kaempferol
against breast cancer.

Research model Applied treatment and
metabolite description

Obtained results References

Beijing, China
Product name: Quercetin

Minimal active concentration: 25 μM

In vitro: cells
MCF-7, MDA-MB-231;

In vivo: xenograft mouse model (n = 5 per
group)

Control: negative

Quercetin;
20, 40, 60, 80, 100 μM/24 and 48 h
Manufacturer and/or supplier of the
product: Invitrogen, Carlsbad, CA,

United States
Product name: Quercetin

Minimal active concentration: 20 μM

↓ Viability of the cells
↓ Cell invasion and migration

↓ Glycolysis
↑ AKT/mTOR pathway mediated

autophagy

Jia et al. (2018)

In vitro: cells
MCF-7 and CD44+CD24−, non-
CD44+CD24− cancer stem cells

subpopulations;
In vivo: xenograft mouse model

Control: negative

Quercetin;
12.5, 25, 50, 100, 200 μM/24 h or 48 h
Manufacturer and/or supplier of the

product: National Institute for the Control
of Pharmaceutical and Biological Products,

Beijing, China
product name: Quercetin

Minimal active concentration: 25 μM

↓ Viability of MCF-7 cells
↓ Viability of both CD44+CD24−

subpopulations
↑ Apoptosis of MCF-7 cells

↑ Number of G1 phase MCF-7 cells
↓ Tumorigenicity and metastatic ability of

MCF-7 cells
↓ PI3K/AKT/mTOR-signaling

Li et al. (2018)

In vitro: cells
MDA-MB-453

Control: negative

Kaempferol;
1–200 μM for 24 and 48 h

Manufacturer and/or supplier of the
product: Sigma, St. Louis, MO, United States

Product name: Kaempferol
Minimal active concentration: 10 μM

↓ Cell growth and proliferation
↓ Cell cycle at the G2/M phase via

downregulation of CDK1
↑ Apoptosis in sub-G0 phase

↑ Expression and phosphorylation of p53

Choi and Ahn (2008)

In vitro: cells
MCF-7

Control: negative

Kaempferol;
25–100 μg/mL/48 h

Manufacturer and/or supplier of the
product: Sigma, St. Louis, MO, United States

Product name: kaempferol
Minimal active concentration: 50 μg/mL

↑ Apoptosis through the mitochondrial
pathway

↑ Cellular antioxidant ability
↑ Antiproliferative activity

Liao et al. (2016)

In vitro: cells
BT474, MDA-MB-231

Control: negative

Kaempferol;
10–4 - 10–8 M/48, 72 h

Manufacturer and/or supplier of the
product: Sigma-Aldrich, St. Louis, MO,

United States
Product name: Kaempferol

Minimal active concentration: 43 μM

↓ Proliferation of the cells
↑ Number of G2 phase MDA-MB-231 cells
↑ Apoptosis mediated by caspases and
DNA damage in MDA-MB-231 cells

Zhu and Xue (2019)

In vitro: cells
MCF-7, SKBR3, MDA-MB-231, BT474;

In vivo: xenograft mouse model (n = 6 per
group)

Control: negative

Kaempferol 3-arabinofuranoside (juglanin);
0–40 μM/24 and 48 h

Manufacturer and/or supplier of the
product: not provided
Product name: Juglanin

Minimal active concentration: 5 μM

↓ Proliferation of cancer cells
↑ Number of G2/M phase MCF-7 and

SKBR3 cells
↑ Apoptosis of MCF-7 and SKBR3 cells
↑ JNK activation and ROS production
↓ Tumor growth in the xenograft model

Sun et al. (2017)

In vitro: cells
MCF-7

Control: negative

Kaempferol;
10–100 μM/26 min and 24 h

Manufacturer and/or supplier of the
product: Sigma, St. Louis, MO, United States

Product name: Kaempferol
Minimal active concentration: 30 μM

↓ Glucose cellular uptake
↑ Extracellular lactate levels

↓ Cell viability, culture growth, and cell
proliferation (100 μM)

Azevedo et al. (2015)

In vitro: cells
MDA-MB-231

Control: negative

Kaempferol;
10, 20, or 40 μM/24 h

Manufacturer and/or supplier of the
product: Shanxi Huike Botanical

Development Co., Ltd., Shanxi, China
Product name: Kaempferol

Minimal active concentration: 20 μM

↓ Adhesion, migration, and invasion of the
cells

↓ Activity and expression of MMP-2 and
MMP-9

↓ Protein kinase Cδ and MAPK signaling

Li et al. (2015b)

In vitro: cells
MCF-7

Control: positive and negative

Kaempferol;
25, 50 μM/24 h, 48 h, 72 h

Manufacturer and/or supplier of the
product: Sigma-Aldrich, St. Louis, MO,

United States

↓ 17β-estradiol or triclosan-induced cell
migration and invasion

↓ Protein expressions of metastasis-
promoting genes induced by 17β-estradiol

or triclosan

Lee et al. (2017)

(Continued on following page)
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sea buckthorn oil in cancer treatment, including chemotherapy and
radiotherapy (Olas, 2018; Olas et al., 2018). Table 1; Figure 1
summarize relevant information related to this issue.

Hu et al. (2015) revealed the anti-proliferative and pro-apoptotic
effects of isorhamnetin in breast cancer mediated through inhibition
of AKT/mTOR and MEK/ERK signaling pathways. Li et al. (2015a)
discovered an inhibitory impact of isorhamnetin on the invasion of
human breast carcinoma MDA-MB-231 cells by reducing the
expression and activity of MMP-2 and MMP-9. This inhibition
can be potentially linked to p38MAPK and STAT3 suppression.Wu
et al. (2018a) found that isorhamnetin dose-dependently inhibited
the growth of human breast cancer MCF-7 cells, and exerted a
strong cytotoxic effect through the reactive oxygen species (ROS)-
dependent apoptosis pathway. According to Yang et al. (2023),
isorhamnetin significantly reduced cell proliferation and migration
and enhanced antitumor competence of doxorubicin (DOX) against
resistant breast cancer cells both in vitro and in vivo, indicating its
anti-breast tumor action as a DOX sensitizer.

Numerous in vitro studies have shown that quercetin at high
concentrations exerts anti-proliferative impacts on breast cancer
cells by arresting the cell cycle and inducing apoptosis (Chien et al.,
2009; Chou et al., 2010; Deng et al., 2013). Conversely, lower doses of
quercetin resulted in strong pro-proliferative effects (van derWoude
et al., 2003; Xu et al., 2020). van der Woude et al. (2005) found that
quercetin-induced stimulation of breast cancer cell proliferation was
mediated by the ER. In ER+ (e.g., MCF-7) cells, lower concentrations
of quercetin led to proliferative effects, while higher concentrations
decreased cell viability. In ER− (e.g., MDA-MB-231) cells, reduced
cell proliferation was observed even at low doses of quercetin.
According to Duo et al. (2012), quercetin at higher
concentrations was able to induce apoptosis through induction of
BAX with concomitant inhibition of BCL-2 in human breast cancer
MCF-7 cells and also through mitochondria- and caspase-3-
dependent pathways in human breast carcinoma MDA-MB-
231 cells (Chien et al., 2009). Tao et al. (2015) found that

quercetin strongly inhibited cell proliferation in human breast
cancer cells in a time- and dose-dependent fashion, which was
associated with upregulation of miR-146a expression and induction
of apoptosis through activation of caspase-3 and mitochondrial-
dependent pathways. Wu et al. (2018b) pointed out the antitumor
effects of quercetin through the induction of ROS-dependent
apoptosis in MCF-7 cells. Jia et al. (2018) revealed that quercetin
suppressed breast cancer progression by inhibiting cell motility and
glycolysis via the induction of autophagy mediated by the AKT/
mTOR pathway. Animal studies using tumor xenografts revealed
that quercetin administration led to a reduction in tumor volume
and decreased the markers associated with tumor growth and
metastatic properties (Tao et al., 2015; Jia et al., 2018; Li et al., 2018).

In breast cancer, kaempferol can inhibit cell growth by
destroying the cell cycle and induce apoptosis through
p53 phosphorylation (Choi and Ahn, 2008), mitochondria-
dependent pathway (Liao et al., 2016; Zhu and Xue, 2019), ROS/
c-Jun N-terminal kinase (JNK) signaling pathway (Sun et al., 2017).
The primary intracellular antioxidant mechanism of kaempferol
involves scavenging the ROS accumulation and maintaining the
activity of antioxidant enzymes at a physiological level. According to
Azevedo et al. (2015), kaempferol at high concentrations strongly
inhibited glucose uptake by breast carcinoma MCF-7 cells, leading
to a significant decline in cell viability and proliferative capability. Li
et al. (2015b) reported that kaempferol suppressed the invasion of
human breast cancer MDA-MB-231 cells by downregulating the
activity and expression of MMP-9. Kaempferol was also able to
inhibit triclosan-induced EMT and metastatic behavior in breast
cancer MCF-7 cells (Lee et al., 2017). Zhu and Xue (2019)
demonstrated that the inhibitory effects of kaempferol on cell
proliferation are greater in ER− (MDA-MB-231) cells compared
to ER+ breast carcinoma (BT474) cells. According to Kim S. H. et al.
(2016), kaempferol exerted anti-proliferative activity against breast
cancer by suppressing triclosan- and estrogen-induced cancer
progression by acting as an antagonist of ER and IGF-1R

TABLE 1 (Continued) In vitro and in vivo studies reflecting the potential of sea buckthorn and its flavonoids isorhamnetin, quercetin, and kaempferol
against breast cancer.

Research model Applied treatment and
metabolite description

Obtained results References

Product name: Kaempferol
Minimal active concentration: 25 μM

In vitro: cells
MCF-7;

In vivo: xenograft mouse model (n = 5 per
group)

Control: positive and negative

Kaempferol;
50–100 μM/6 h, 4 and 6 days

Manufacturer and/or supplier of the
product: Abcam, Corp, Cambridge,

United Kingdom
Product name: Kaempferol

Minimal active concentration: 50 μM

↓ 17β-estradiol or triclosan-induced cell/
tumor growth

↓ Protein expressions of IGF signaling-
related genes promoted by 17β-estradiol or

triclosan

Kim et al. (2016b)

In vitro: cells
MDA-MB-231 and MDA-MB-453 (triple-
negative breast cancer cells); SKBR-3, MCF-

7
Control: negative

Kaempferol;
10, 20, 40 μM/6 h

Manufacturer and/or supplier of the
product: Sigma, St. Louis, MO, United States

Product name: Kaempferol
Minimal active concentration: 10 μM

↓Migration and invasion of triple-negative
breast cancer cells

↓ RhoA and Rac1 signaling pathway in
triple-negative breast cancer cells

Li S. et al. (2017)

Abbreviations: AKT, protein kinase B; CDK, cyclin-dependent kinase; EGFR, epidermal growth factor receptor; ER, estrogen receptor; ERK, extracellular signal-regulated kinase; HPLC-DAD,

high-performance liquid chromatography with diode-array detection; HPLC-UV, high-performance liquid chromatography with ultraviolet detection; IGF, insulin-like growth factor; JNK,

c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor-kappa B; p53, tumor

protein; p57, cyclin dependent kinase inhibitor 1C; PI3K, phosphatidylinositol-3, kinase; Rac1, Ras-related C3 botulinum toxin substrate 1; RhoA, Ras homolog gene family member A; ROS,

reactive oxygen species; STAT3, signal transducer and activator of transcription 3; TNF, tumor necrosis factor.
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signaling in both cellular and xenograft breast cancer models. Li S.
et al. (2017) revealed that a low dose of kaempferol inhibited the
migration and invasion of triple-negative breast cancer (TNBC) cells
by targeting the Rac1 or RhoA signaling pathway. In a mouse
xenograft model, kaempferol inhibited the growth of breast
cancer in vivo (Sun et al., 2017).

5 Methodological aspects and
limitations of the reviewed studies

From the point of view of the interpretation and validity of the
studies listed in Supplementary Table 1; Table 1, it is necessary to
focus attention on several methodological aspects that should be
fulfilled during pharmacological research (Heinrich et al., 2020). An
important limitation of the studies analysing sea buckthorn extracts
is the lack of characterization of the experimental material.
Moreover, although relevant animal and cell models, negative
and in several cases positive controls were used in those
researches, no comparable healthy controls were available for
cultured tumor cells to monitor metabolite selectivity. On the
contrary, it is positive that studies showing antioxidant effects of
metabolites used cell-based antioxidant assays, which, unlike
chemical ones, are pharmacologically relevant. Other potential
methodological risks arise from the structure and nature of
flavonoids investigated. In general, polyphenols are categorized as
Pan-Assay INterference compounds (PAINs or promiscuous
inhibitors) and can interfere with the results of various assays.
They also bind broadly to the protein targets of the assays
themselves (Sheridan and Spelman, 2022). It has been revealed
that polyphenols can self-associate to form colloids, which
can affect their affinity for proteins. Flavonoids are more prone
to aggregation than other phenolic metabolites under the
conditions of the biochemical assays, with quercetin confirmed
as promiscuous inhibitor (Pohjala and Tammela, 2012).
Consequently, flavonoids interfere with colorimetric protein
assays in a concentration- and structure-dependent manner
(Singh et al., 2020) and affect other commonly used assays,
such as MTT, by altering succinate dehydrogenase activity or
directly interacting with MTT (Wang et al., 2010). In addition,
such properties of flavonoids can be a potential source of
misleading results in molecular docking analysis, therefore its
findings should be verified in experimental studies. Thus, all
circumstances, specifics, and risks of using individual methods
should always be considered when analysing flavonoids and the
failure to provide details on dealing with these methodological
aspects can be considered as another limitation.

6 Conclusion

Botanical drugs have recently achieved remarkable success in
promoting the treatment of various diseases. Sea buckthorn shows
great medicinal and therapeutic potential due to its high content of
bioactive metabolites with anti-proliferative, antioxidant, and anti-
inflammatory activities. This review described the contemporary
knowledge from in vitro and in vivo studies on the effect of sea
buckthorn and its flavonoids isorhamnetin, quercetin, and

kaempferol on bone and breast tissue health with an emphasis
on osteoporosis and breast cancer, given their raising incidence in
postmenopausal women. Conducted studies related to bone damage
have demonstrated favorable impacts of all aforementioned
bioactive metabolites on bone remodeling and mineralization,
oxidative stress, bone microarchitecture and strength. In relation
to breast cancer, sea buckthorn and its flavonoids inhibited cancer
cell proliferation while inducing apoptosis, reduced tumor
expansion and metastatic properties. In any case, it should be
noted that several studies using extracts did not provide a
sufficiently detailed definition of the study material or reports on
the phytochemical analysis of the extracts as recommended by the
best practice guidelines, indicating limitations and lower reliability
of these studies. In addition, the known interference of flavonoids
with commonly used assays (such as protein or MTT assays) should
be always considered and may be another source of limitation. On
the contrary, all these investigations used standard research models
or cell lines and were published in peer-reviewed journals. By
evaluating the available studies that analysed extracts and
flavonoids mentioned in our manuscript, we can state that our
hypothesis was confirmed, as all bioactive metabolites improved the
impaired health status of both bone and breast tissues. In addition,
some research has investigated the role of sea buckthorn extracts in
reducing chemotherapy- and radiotherapy-related side effects,
suggesting their potential benefits to improve overall treatment
outcomes. Further in vitro studies and animal model studies that
provide enough detailed information on the investigated material
are needed, as well as clinical trials involving osteoporotic/non-
osteoporotic and breast cancer/non-breast cancer patients, which
may provide the key findings for identifying more effective therapies
against bone and breast tissue damage. In this regard, the
appropriate selection of the optimal dose and type of bioactive
agent for inducing protective effects on bone and breast tissues in
humans requires careful consideration and further validation in
clinical trials.
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