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Introduction: Tuberculosis (TB) poses a significant threat to global health, with
millions of new infections and approximately onemillion deaths annually. Various
modeling efforts have emerged, offering tailored data-driven and
physiologically-based solutions for novel and historical compounds. However,
this diverse modeling panorama may lack consistency, limiting result
comparability. Drug-specific models are often tied to commercial software
and developed on various platforms and languages, potentially hindering
access and complicating the comparison of different compounds.

Methods: This work introduces stormTB: SimulaTOr of a muRine Minimal-pbpk
model for anti-TB drugs. It is a web-based interface for our minimal
physiologically based pharmacokinetic (mPBPK) platform, designed to simulate
custom treatment scenarios for tuberculosis inmurinemodels. The app facilitates
visual comparisons of pharmacokinetic profiles, aiding in assessing drug-dose
combinations.

Results: The mPBPK model, supporting 11 anti-TB drugs, offers a unified
perspective, overcoming the potential inconsistencies arising from diverse
modeling efforts. The app, publicly accessible, provides a user-friendly
environment for researchers to conduct what-if analyses and contribute to
collective TB eradication efforts. The tool generates comprehensive
visualizations of drug concentration profiles and pharmacokinetic/
pharmacodynamic indices for TB-relevant tissues, empowering researchers in
the quest for more effective TB treatments. stormTB is freely available at the link:
https://apps.cosbi.eu/stormTB.
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Introduction

Tuberculosis (TB) poses a significant threat to global health, with millions of new
infections and approximately 1.3 million deaths annually (World Health Organization,
2023). Recent initiatives have spurred research in the field, with several novel drug
candidates rekindling a pipeline that was nearly empty a decade ago (Dartois and
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Rubin, 2022). In this context, computational models play a crucial
role by rapidly providing information on the exposure and efficacy
of new compounds, expediting the drug development process, and
aiding in prioritizing the most promising candidates (Dartois and
Rubin, 2022).

Alongside this renewed momentum in TB research, various
modeling efforts have emerged, offering tailored solutions for both
novel and historical compounds. These models suggest dosing
strategies and elucidate the effectiveness of monotherapies and
drug combinations, i.e., regimens. Data-driven solutions, such as
pharmacokinetic (PK) and pharmacokinetic/pharmacodynamic
(PK/PD) models, provide effective means to derive exposure and
efficacy indexes for TB compounds (Alffenaar et al., 2022; Ernest
et al., 2023; Wicha et al., 2018; Zhang et al., 2020). Simultaneously,
physiologically based approaches, including physiologically based
pharmacokinetic (PBPK) and semi- or fully mechanistic models,
provide insights into the intricate diffusion of anti-TB compounds
within TB lesions, revealing scenarios that may differ among drugs
(Ernest et al., 2021; Humphries et al., 2021; Mehta et al., 2023;
Muliaditan and Della Pasqua, 2022).

While the rich and varied landscape of modeling efforts presents
valuable insights, it sometimes faces challenges in maintaining
uniformity, which can affect the comparability of results. The
creation of drug-specific models frequently relies on proprietary
software and unfolds across diverse platforms and programming
languages, potentially hindering access and complicating the
comparison of different compounds. A recent approach is to rely
on web interfaces that generate, tune, and simulate (PB)PK models
for a wide range of applications. Some examples include igPBPK, an
R-based Shiny app for simulating drug withdrawal intervals in cattle
or swine for flunixin, florfenicol, and penicillin G with a PBPK
model (Chou et al., 2022). ModVizPop is another web app to
simulate PK/PD dynamics for compartmental modeling
(Vaddady and Kandala, 2021). E-campsis and gPKPDviz are
freemium R Shiny apps developed by Calvagone and Genentech,
respectively, that allow simulating the PK/PD dynamics with a
collection of PK models (Lu et al., 2024; Luyckx, 2024) and the
custom integration of thresholds and the area under the curve
(AUC) to be displayed in the plots. Still, there is a need for an
open-source unified tool specific to anti-TB PBPK drug analysis.

Here, we present a web-based tool tailored for anti-TB drug
dynamics and PK/PD metrics in the treatment scenarios to support
model-informed treatment development under a unified
perspective.

It leverages a previously published minimal physiologically
based pharmacokinetic (mPBPK) model that supports
11 historical and under-development anti-TB drugs in pre-
clinical murine model commonly used for developing effective
anti-TB drugs (Dartois et al., 2024; Reali et al., 2024). Murine
models provide critical insights into dosing, tissue distribution,
drug stability, probability of relapse, and resistance occurrence.
Animal and PK models enable researchers to predict patient drug
exposure, optimizing tuberculosis drug regimens. We have
consolidated the results from model calibration and variability
quantification in the herein introduced R-based web app,
stormTB, streamlining model inspection and enabling users to
conduct independent what-if analyses using the mPBPK
platform. Users can compose a treatment scenario by selecting

one drug from the 11 originally included in Reali et al. (2024),
the dosage and the treatment length. Scientists can iteratively adjust
the experimental settings based on the simulated PK/PD
performance and save the results in the workspace. Up to four
precomputed monotherapy scenarios can be selected from the
workspace and visualized in combination for comparative analysis.

In addition to mean PK profiles, an option for generating a
simulation ensemble (SE) for the variability quantification is
available, offering suitable choices for population size and the
coefficient of variation governing the sampling of clearance and
absorption rate values in the population. The tool produces
comprehensive visualizations of the drug concentration profile in
all nine compartments comprising the mPBPK model, along with
descriptions of the PK/PD indices for TB-relevant tissues.

stormTB is freely available at the link: https://apps.cosbi.
eu/stormTB.

Methods

Minimal-PBPK model

stormTB implements the minimal physiologically based
pharmacokinetics model (mPBPK) presented by (Reali et al.,
2024) that describes the disposition of 11 anti-pulmonary-TB
drugs in murine models. The supported drugs are rifampicin
(RIF, R), rifapentine (RPT, P), pyrazinamide (PZA, Z),
ethambutol (EMB, E), isoniazid (INH, H), moxifloxacin (MOX,
M), delamanid (DEL), pretomanid (PRE, Pa), bedaquiline (BDQ, B),
Quabodepistat (QBS, OPC-167832), and GSK2556286 (G286).

The mPBPK model consists of nine ordinary differential
equations obtained by streamlining a whole-body mPBPK model
via the identification of the tissues least involved in the TB site of
action, and the combination of relative compartments to obtain a
smaller set of equations (Nestorov et al., 1998; Ryu et al., 2022). Out
of the 25 model parameters, only the absorption rate (Ka) and the
total clearance (CL) were calibrated using mouse data for each of the
11 drugs and are presented in the app description. A complete list of
model parameters is available in Reali et al. (2024).

We present an example of comparison considering the drugs
constituting the BPaMZ regimen (Cevik et al., 2024; Xu et al., 2019)
at the human equivalent doses: 25 mg/kg of bedaquiline (B),
25 mg/kg of pretomanid (Pa), 100 mg/kg of moxifloxacin (M),
and 150 mg/kg of pyrazinamide (Z). The human equivalent dose is
set by default when the user selects a drug (Supplementary Table S1)
and can be adjusted. In this example, we simulate the drug
absorption, distribution, and elimination phases in the first
4 days of daily oral dosing of each compound.

Implementation and simulations

The original model (Reali et al., 2024), implemented in
MATLAB, has been translated into R (4.3.1) and C (gcc 11.4.0)
to reduce simulation time and executed using the deSolve (1.40)
package (Soetaert et al., 2010). The stormTB user interface is
developed with Shiny (1.7.5.1), shinyBS (0.61.1), shinyhelper
(0.3.2), shinycssloaders (1.0.0), shinyWidgets (0.8.0), shinyjs
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(2.1.0), dplyr (1.1.3), tidyr (1.3.0), collapse (2.0.13), zip (2.3.0),
ggplot2 (3.4.4), scales (1.2.1), ggiraph (0.8.7) (Attali, 2021; Bailey,
2022; Chang et al., 2024; Csárdi et al., 2023; Gohel and Skintzos,

2023; Krantz, 2024; Mason-Thom, 2019; Perrier et al., 2024; Sali and
Attali, 2020;Wickham, 2016;Wickham et al., 2023a;Wickham et al.,
2023b; Wickham et al., 2023c).

FIGURE 1
An example of simulation considering the TB drugs involved in the BPaMZ regimen: 25 mg/kg of bedaquiline (B, red), 25 mg/kg of pretomanid (Pa,
blue), 100mg/kg of moxifloxacin (M, green), and 150mg/kg of pyrazinamide (Z, yellow). The top part of the figure shows the input panel. The central part
provides the predicted dynamics of the drug concentrations in plasma (mg/L) and lung (ug/g). Additionally, for each drug, it shows the values for the
minimal inhibition concentration (MIC), the minimum bactericidal concentration (MBC), the minimal inhibition concentration in macrophages
(MacIC), and the Wayne cidal concentration (WCC). Here, the logarithmic visualization is applied to better appreciate the different dynamics of the drugs,
since the Cmax of pyrazinamide is 2 orders of magnitude higher than the others. Note that lung density is assumed 1 g/mL, allowing for direct
concentration comparison. The bottom of the figure reports the simulation statistics and refers to the last day of dosing.
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Each simulation can be computed singularly, applying the
reference clearance and absorption rates, or on a simulations
ensemble (SE) computing the variability quantification with
perturbated parameters. In the latter case, the user can specify
the ensemble size (default 100) to be computed, along with the
coefficients of variation of the sampled model parameters (CV
clearance and CV absorption, both defaulting to 0.3) (Lyons
et al., 2013). These values are applied via a lognormal
distribution to the two parameters of the specified drug. With
the variability quantification option activated, all the statistics are
presented with their median and uncertainty expressed as 5th to
95th percentile interval of the values. The same percentiles are
represented in all the plots.

To generate the dynamics of the simulation ensemble, stormTB
particularly benefits from the translation of the model in C, being
able to simulate a test case with a set of a 1,000-parameter

perturbations (RIF, 15 days, and default parameters) in 4.3 s
(Supplementary Table S2). This is in clear contrast to the 20 min
required using a pure R implementation, resulting in a
computational time decrease of more than 287-fold. Moreover,
for fast postprocessing, we implemented data transformation and
basic statistical computation using the R library collapse (written in
C/C++). This solution reduced to just 9 s the time needed to
compute the test case from the start of the simulation to the
rendering of the resulting plots and tables.

Options

stormTB provides a platform to simulate custom anti-
pulmonary-TB treatment scenarios in which the user can choose
between the 11 supported drugs and can select the dose amount

FIGURE 2
The visualization produced for all the compartments’ simulation considering the TB drugs involved in the BPaMZ regimen: 25 mg/kg of bedaquiline
(B), 25 mg/kg of pretomanid (Pa), 100 mg/kg of moxifloxacin (M), and 150 mg/kg of pyrazinamide (Z).
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expressed in mg/kg and number of doses to be administered. When
a specific drug is selected from the dropdown menu, the dose is
automatically set to its human equivalent as a reference value, the
complete set of values is shown in Supplementary Table S1. Users
can then freely adjust this value as needed. The number of doses also
sets the duration of the simulation assuming the most common
setup for anti-TB treatments, which is one oral administration per
day. Once the simulation is completed, the user obtains plots and
tables summarizing the pharmacokinetics (PK) and
pharmacodynamics (PD) of the defined scenario.

The default PK plots show the drug concentration profile in
plasma and lung compartments, see Figure 1, or the users can

analyze PK profiles for all nine model compartments as shown in
Figure 2. To better appreciate the dynamics, the visualization can
be switched to the logarithmic scale with an adjustable lower limit
on the y-axis. The user can choose to select just the drugs with
comparable dynamics and visualize the plots in a linear scale with
a free y-axis as shown in Supplementary Figure S1. Here, we
exclude from the visualization pyrazinamide, which has a Cmax
two orders of magnitude higher than the other drugs, to better
appreciate the different behaviors of bedaquiline (B), pretomanid
(Pa) and moxifloxacin (M) in all 9 tissues. For plasma and lungs,
the plots can include the values of the minimal inhibitory
concentration at which at least 50% of the isolates in a test

FIGURE 3
(A) The variability quantification options: ensemble size and coefficients of variation to apply to clearance and absorption. (B) The extra simulation
parameters: the sampling time, the interval to be simulated after the last dose and the interval to be considered for the computation of the AUC after the
last dose. (C) The visualization parameters: selection between the plasma-lung visualization and all compartments. The y-axis behavior: free or fixed
scale, application of logarithm and setting of the lower limit of the scale. The potency section: selection of the thresholds to be considered in the plot
and result tables.
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population are inhibited (MIC), the minimal bactericidal
concentration at which at least 90% of the isolates are killed
(MBC), the concentration that inhibits 90% of growth in
macrophages (MacIC) and the Wayne cidal concentration or
concentration that kills 90% of dormant bacteria under
anaerobic and nutrient rich conditions (WCC)
(Lakshminarayana et al., 2015; Wayne and Hayes, 1996).
Potency values coming from the literature (Sarathy et al., 2018)
or computed by collaborators are automatically set as default
thresholds when a drug is selected. Each value can be adjusted by
the user to match different susceptibility rates, and in the next
simulation, the modified values will be used for statistics and
plots. An extra custom threshold with no default value is also
available to enrich the set of thresholds that the scientist can
explore and visualize. Furthermore, these plots are complemented
by tissue-specific tables summarizing important PK and PD
indices from the simulation, i.e., the maximum achieved
concentration (Cmax), the time at which the maximum
concentration is reached (Tmax), the area under the curve for
the total amount of drug and for the fraction unbound (AUC,

fuAUC), and the time above the potency thresholds (T > MIC50,
T >MBC90, T >MacIC90 and T >WCC90). The times above the
potency thresholds are computed considering the 24 h after the
last simulated dose. The AUC is calculated using the trapezoidal
rule on the simulated PK dynamics on the 24 h following the last
administration and it can be adjusted between 1 h and the end of
the simulation time, see Figure 3.

For both single mouse and simulation ensembles (Figures 1, 2,
4; Supplementary Figure S1), the web-app offers the option to store
and recall simulated scenarios in the workspace area. When
recalling saved simulations, the user can visually compare PK
profiles of different scenarios, analyzing the impact of various
drug-dose combinations with the aid of a combined plot and all the
statistics (Figures 1, 2). To guarantee a tidy visualization, the
comparison tool supports a maximum of four scenarios of the
same length. Plots, tables and parameters of the scenarios can be
easily downloaded for reporting purposes, moreover, the simulated
data can be saved in raw format for successive analysis with
external tools and possibly integrated with results from
other software.

FIGURE 4
An example of simulation computed with Rifampicin at a dose of 10 mg/kg, 4 doses and a variability quantification ensemble of 100 simulations and
coefficient of variation so 0.3 for both clearance and absorption. The plots show the plasma (mg/L) and lung (ug/g) concentrations with the black line
representing the median, and the 5–95 percentiles as the shaded pink area. Additionally, it plots and shows the values for the minimal inhibition
concentration (MIC, red), the minimum bactericidal concentration (MBC, blue), the minimal inhibition concentration in macrophages (MacIC,
green), and theWayne cidal concentration (WCC, yellow). The tables report the computed statistics showing the last day median and 5–95 percentiles of
the simulated ensemble.
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Visualization options include

• The simulation Sampling time, expressed in hours (default
0.25, min: 0.1, max: 1), governs the density of simulated points.
It affects the post-process time to render the images.

• The duration of the simulation after the last dose, expressed in
hours (default and minimum value 24 h, max: 5,000).
Increasing this parameter allows the user to exhaustively
analyze the dynamics of drugs with very long clearance
time such as bedaquiline or rifapentine.

• AUC time, expressed in hours (default 24), indicates the
number of hours after the last dose, for which the AUC is
computed. AUC time cannot exceed the duration of the
simulation after the last dose. Note that AUC time does
not apply to the computation of the time above the
potency thresholds, which always refers to the 24 h after
the last dose.

• For the Y-axis, the following options are available: activate the
logarithmic scale and set a Y-axis lower limit, set the same
limit for all the plots shown (Fix Y-axis), or automatically
adjust to the compartment dynamics (Free Y-axis).

Results

We present stormTB: SimulaTOr of a muRine Minimal-pbpk
model for anti-TB drugs, a web-based tool to interact with our
minimal PBPK platform to simulate treatment scenarios for
tuberculosis in mice. Pharmacokinetics results are reported in
terms of AUC, Cmax, and Tmax. In addition, the user is
presented with four pharmacodynamics measures expressed as
the percentage of the treatment time above each threshold (MIC,
MBC, MacIC, and WCC). The use of a customizable simulation
ensemble allows the user to enrich the results with percentiles for
each quantitative result (Figure 4). To enhance the interoperability
of stormTB, we made the raw simulated data available ensuring
seamless integration and enhanced flexibility for users to add the
results to their projects.

An analysis using our web app typically begins with defining the
scenarios under investigation. Each scenario represents a single drug
treatment with a dose administered once a day and a specified
duration for the simulated experiment, in this case 4 days of dosing.
The simulation of a single drug generates PK profile plots for the
lung and plasma, and tables display key PK and PD statistics during
the final 24 h (day 4). Every simulated monotherapy treatment can
be saved to the workspace and be later reloaded singularly or in
groups to be compared. The comparative assessment across
simulated monotherapy treatments and tissues leads to insights
into their effectiveness (Figure 1). Specifically, pyrazinamide is the
only component of the BPaMZ regimen less abundant in the lung
than in plasma with an AUC ratio of 0.64. It reaches the highest
plasma Cmax among the four drugs, however, it shows poor
performance in terms of time above MIC and MBC in the lung
during the last day of treatment, with 19.59% and 21.65%,
respectively. The low level of PZA in lung is confirmed by

clinical studies and independent simulations (Mehta et al., 2023;
Strydom et al., 2019).

The simulations showed that bedaquiline, pretomanid, and
moxifloxacin accumulate more in the lung than in plasma. MIC
and MBC thresholds are reached for 100% of the treatment by
bedaquiline and pretomanid in the lung, while moxifloxacin, on the
last day of treatment, is above the MIC and MBC for 17.53% and
16.49% of the time, respectively. Moreover, bedaquiline and
pretomanid performs best in terms of WCC and MacIC, with
bedaquiline reaching both thresholds in the lung throughout the
whole treatment, followed by pretomanid, with 91.75% and 39.18%,
respectively, showing the importance of these two compounds in the
BPaMZ regimen to reduce the hard-to-treat bacterial and be
effective in TB-lesions (Cevik et al., 2024; Dartois and Rubin,
2022; Reali et al., 2024).

Additionally, stormTB allows to inspect the predicted exposure
in all compartments as presented in Figure 2. These allow to quantify
the drug penetration in the various compartments, providing
predictions that can be instrumental to understand the drug
absorption or used for toxicological assessments. To better
appreciate the different PK dynamics, the user can select from
the workspace drugs with similar Cmax and visualize them in a
linear scale (Supplementary Figure S1).

The insights gained from the comparative analysis of the BPaMZ
regimen highlight the potential of stormTB in optimizing drug
combinations and dosages for enhanced therapeutic efficacy.
Such analyses are instrumental for researchers in comparing
various drug combinations and doses, designing novel regimens,
and fine-tuning dosages to meet effective thresholds.

Discussion

The mPBPK model simulator stormTB is a versatile, web-based
application that streamlines the efforts of both modeling and non-
modeling scientists in extracting crucial pharmacokinetic and
pharmacodynamic measurements for supported anti-tuberculosis
compounds. This simulation tool enables users to access specific PK
and PD metrics, analyze compartment-specific PK profiles, and
compare them with existing data, thereby promoting efficient
benchmarking. While other web interfaces have been available
providing a valuable support for researchers in a broad set of
applications related to PBPK modeling (Chou et al., 2022; Lu
et al., 2024; Luyckx, 2024; Vaddady and Kandala, 2021), we focus
on anti-TB drug dynamics and PK/PD metrics in the
treatment scenarios.

stormTB enables users to visually compare simulated treatments
and assess their pharmacokinetic (PK) and pharmacodynamic (PD)
performance—an advanced feature not offered by similar online
tools (Figures 1, 2). Our comparison feature is limited to 4 drugs
since it is the typical number of drugs co-administered in a regimen
and for visualization clarity purposes. While this work focuses on
pulmonary TB, the tool simulates and displays PK dynamics across
six additional compartments, allowing for evaluation of drug
disposition in the liver, spleen, kidneys, gut, arterial, and venous
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blood (Figure 2). Therefore, this tool embraces the physiologically-
derived description of all the compartments that are pivotal in the
absorption, distribution, and elimination phases. Users can easily
adjust various parameters to fine-tune the simulation, visualization,
and computation of a simulation ensemble (SE). The ensemble
enables the system to return the median value and 5th–95th
percentiles for the generated PK and PD metrics of the simulated
plasma and lung concentrations (Figure 3). stormTB is designed
with the aim of comparing the effect of different drugs in a
simultaneous administration protocol mimicking the routine
clinical treatment.

To showcase a possible use of stormTB, we analyzed the BPaMZ
regimen, recently tested as possible replacement of the current
standard regimen HRZE (Cevik et al., 2024). Focusing on the PK
results in lung the concentration of bedaquiline is above all the PD
thresholds since the second administration of the treatment and
throughout the steady state. MIC50, MBC90 and MacIC90 are met
for more than 90% of the treatment by pretomanid; WCC90 – the
most stringent threshold–is reached only about the 40% of the time
by pretomanid and less that 20% bymoxifloxacin and pyrazinamide.
Finally, pyrazinamide is the only one that shows an efficacious
interval longer in plasma than in lung. The analysis of the four
in vitro potencies allows a complete investigation of the efficacy of
the treatment against replicating and persistent TB strains. The
simultaneous treatment of bacteria in different growth conditions,
here summarized as reaching the different efficacy thresholds, is
crucial to effectively eradicate the infection and reduce the risk of
developing pharmaco-resistance.

The webapp suggests that although the results in plasma are in
general a good proxy of lung exposure, drugs like bedaquiline, which
greatly accumulates in the target tissue, represent exceptions to this
rule. In fact, the values of T > MBC90 and T > WCC90 vary from
0 in plasma to 100% in lung, showing the importance of analyzing
target attainment at site of action.

stormTB and the original mPBPK on which the app is based
have some limitations that we aim at address in future updates (Reali
et al., 2024). For example, an updated version of stormTB should
integrate enzyme mediated drug metabolism to account for drug-
drug interactions (DDI). The refined metabolism description could
enable researchers to evaluate the intricate absorption, distribution,
metabolism, and excretion (ADME) dynamics of co-administered
drugs, thereby shifting the focus towards the complexities of realistic
treatment regimens.

Additionally, while the mPBPKmodel implemented in stormTB
already supports different routes of administration, the webapp
currently focuses solely on the oral route of administration for
consistency. However, in future updates, we aim to provide options
for different administration routes, including injectable forms for
certain compounds, such as Moxifloxacin, Rifampicin, and
Isoniazid. This flexibility will allow for a more comprehensive
analysis and tailored treatment planning based on patient needs.

Another important extension of the model would include more
animal models, such as rabbits commonly used as efficacy
benchmarks in TB, and dog and rat commonly used for
toxicological evaluations. Supporting cross-species translations can
also lead to early prediction of human exposure and efficacy bridging
the gap between preclinical findings and clinical outcomes, potentially
informing global health policies and refining TB treatment protocols.

Conclusion

We present a web application that not only serves as an interface
for the model presented in Reali et al. (2024), but can also perform a
complete comparative analysis of different therapeutic scenarios
producing qualitative and quantitative PK and PD results. The
option for users to save output data in a CSV format ensures
that users have full access to their data, allowing them to analyze,
share, and further process the results with ease, and integrate it with
other tools and workflows.

As a user-friendly and freely accessible resource, stormTB
democratizes the analysis of a broad spectrum of drugs, both
historical and novel, in a unified platform. It empowers TB
researchers globally to compare and benchmark drug
combinations and dosages, thereby accelerating the discovery
and optimization of treatment strategies removing the need for
licenses or subscription plans. Through its contributions,
stormTB aligns with the collective effort to eradicate TB by
the end of the decade, aspiring to make a significant impact
on public health.
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