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Galectin-9 (gal-9) is a protein that belongs to the galectin family. Gal-9 is
expressed in cells of the innate and adaptive immune system, including
lymphocytes, dendritic cells, giant salivary cells, eosinophils and T cells, etc. In
different immune cells, the role of gal-9 is different. Gal-9 can induce the
proliferation and activation of immune cells, and also promote the apoptosis
of immune cells. This effect of gal-9 affects the occurrence and development of a
variety of immune-related diseases, such as the invasion of pathogenic
microorganisms, immune escape of tumor cells, and inflammatory response.
Thus, understanding the biological roles of gal-9 in innate and adaptive immunity
may be essential for autoimmune diseases treatment and diagnosis to improve
patient quality of life. In this review, we aim to summarize current research on the
regulatory roles of gal-9 in human immune system and potential inducers and
inhibitors of gal-9, which may provide new strategies for immune diseases
therapies.
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1 Introduction

The galectin (gal) family is a family of endogenous lectins with high affinity to
polyglycans containing galactose residues, belonging to the animal lectins in the lectin
family. To date, 15 members have been discovered and named, all of which have one or two
carbohydrate recognition domains (CRDs) and have a special affinity for β-galactoside
(Leffler et al., 2002). According to the structure and the number of the CRDs, the gals can be
divided into 3 types. The first type is called prototype gal, which only has a CRD and can
form a non-covalent homodimer, including gal-1, -2, -5, -7, -10, -11, -13 -14 and -15. The
second type is tandem repeat gal, which has two similar CRDs, including gal-4, -6, -8, -9 and
-12. The third type is gal-3, which is a chimeric gal that contains a CRD and an elongated
N-terminal region domain (NRD) (Figure 1). Gals can be expressed in cytoplasm, nucleus,
cell membrane or extracellular matrix, and can participate in cell growth and differentiation,
cell signal transduction, cell apoptosis, secretion of inflammatory factors,
immunomodulation and tumor progression, etc., (Arthur et al., 2015).

Gal-9 was first isolated from mouse fetal kidney tissue in 1997 (Wada and Kanwar,
1997). Later, Gal-9 was gradually found to be widely distributed in liver, pancreas, spleen,
heart, small intestine, lung and other tissues and organs, and has a wide range of biological
activities, such as participating in cell differentiation and maturation, regulating cell
chemotaxis, aggregation and adhesion, and inducing cell apoptosis (Rabinovich and
Toscano, 2009; Schnaar, 2016; Golden-Mason and Rosen, 2017). Gal-9 can be found in
the cytoplasm, cell surface and circulation. But the source of gal-9 in the serum has not been
fully identified. A small amount of literature suggests that gal-9 in serummay be released by
immune cells and endothelial cells, while tumor cells lack the ability to release gal-9
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(Hirashima et al., 2002; Iqbal et al., 2022; Reyes-Vallejo et al., 2022).
A growing body of research describes gal-9 as an independent
biomarker for multiple autoimmune diseases, such assystemic
lupus erythematosus (SLE) (Matsuoka et al., 2020), autoimmune
hepatitis (AIH) (Matsuoka et al., 2019), systemic sclerosis (SSc)
(Chihara et al., 2018), multiple sclerosis (MS) (Burman and
Svenningsson, 2016), primary Sjogren’s syndrome (pSS) (van den
Hoogen et al., 2020), and juvenile dermatomyositis (JDM) (Bellutti
Enders et al., 2014; Wienke et al., 2019). In acute viral hepatitis, viral
myocarditis and other diseases, gal-9 can reduce acute inflammatory
response by promoting the proliferation of regulatory T cells and
alernatively activated Th2 cells (Lv et al., 2011; Lv et al., 2012). In
addition, gal-9 can also influence the prognosis of many cancers by
modulating immune homeostasis (Lv et al., 2022). These data
indicate that the expression of gal-9 can influence various disease
through regulating immune system, which suggest that gal-9 may be
a biomarker in immune disease. The current review will summarize
the regulatory roles of gal-9 in regulating the function of various
immune cells in immune system, which is essential for immune
diseases therapies. In order to obtain more studies on gal-9
regulation of immune cell function, we conducted literature
searches using PubMed, Embase and Web of Science databases.
We first conducted a literature search using the subject term
“galectin-9” combined with free words (various immune cells),
and then selected included studies by reading literature abstracts
in order to describe in more detail the regulatory role of galectin-9 in
immune cells.

2 Gal-9 and innate immune cells

2.1 Gal-9 and NK cells

Natural killer (NK) cells are important immune cells of the
innate immune system in the body, which are not only related to
anti-tumor, antiviral infection and immune regulation, but also
participate in the occurrence of hypersensitivity and autoimmune
diseases in some cases. More and more researchers have confirmed

that gal-9 plays an important role in NK cells activation and release
of interferon (IFN). A previous study found that when NK92 cell
lines transfected with Tim-3 were co-cultured with soluble gal-9 or
Raji cell lines transfected with gal-9, a large amount of IFN-γ was
produced (Gleason et al., 2012). Tim-3+ NK cell lines stimulated by
low dose of interleukin-12 (IL-12) and IL-18 can also cause
significant increase in IFN-γ secretion after interaction with
soluble gal-9 or Raji cells transferred to gal-9, but the secretion
of IFN-γ is significantly reduced after the addition of Tim-3 blocking
antibodies (Gleason et al., 2012). This data shows that gal-9 can
activate NK cells through binding with Tim-3 (Figure 2). Jost et al.
(2013) found that high expression levels of gal-9 during early HIV-1
infection can lead to enhanced NK cell activity, which may improve
early control of HIV-1. However, persistent gal-9 production might
impair Tim-3 activity and lead to NK cell dysfunction in chronic
HIV-1 infection. In another study, gal-9 was significantly
upregulated on NK cells in HIV-infected groups compared to
healthy controls, associated with impaired expression of cytotoxic
effecting molecules granzyme B, perforin, and granin, and
conversely, significantly increased expression of IFN-γ in NK
cells of HIV-1-infected individuals (Motamedi et al., 2019).
Carreca et al. (2022) found that IFNα-activated NK cells secrete
large amounts of gal-9 and IFN-γ, which in turn inhibit HCV
binding to host cells and downstream infection. Additionally,
extracellular gal-9 might reduce the infectivity of hepatitis C
virus by binding to the viral surface envelope protein E2. This
binding may not only prevent reinfection of target cells, but may also
inhibit HCV’s connection to receptors on the surface of NK cells
thus interfering with the virus’s damage to effector cells (Carreca
et al., 2022). However, another research showed that the expression
of gal-9 could downregulate multiple immune-activating genes in
NKs independent of Tim-3, which impaired the killing of
lymphokine activation, and reduced the proportion of IL-12/IL-
15-stimulated NK cells that produce IFN-γ (Golden-Mason et al.,
2013). Moreover, in the case of short-term mouse cytomegalovirus
(CMV) infection, gal-9 gene knockout caused the accumulation of
eventually differentiated NK cells in the mouse liver, while the liver
NK cells spontaneously produced more IFN-γ (Golden-Mason
et al., 2013).

In addition, gal-9 has been found to play a positive role in the
anti-tumor process by promoting the activation of NK cells
(Figure 2). Multiple models and experiments have shown that
NK cells can distinguish between abnormal and healthy cells,
resulting in more specific anti-tumor cytotoxicity and can reduce
off-target complications (Vivier et al., 2012; Guillerey et al., 2016).
However, it was been reported that high infiltration or activity of NK
cells in tumor is associated with better clinical outcomes in patients,
depending on the cytotoxic effect of NK cells on tumor cells (Coca
et al., 1997; Takeuchi et al., 2001; Li et al., 2021). In tumor-bearing
mice, gal-9 increased the number of NK cells in peritoneal
exudation, suggesting that gal-9 may be involved in tumor
progression by regulating NK cells (Nobumoto et al., 2009). In
addition, reduced expression of gal-9 in colon tumor tissues is
associated with poor prognosis in these patients (Wang et al.,
2016). Gal-9 could enhance F-actin polarization by activating the
Rho/ROCK1 pathway of NK cells, and then promote the
chemotactic movement of NKs (Wang et al., 2016). However,
there is another idea that the Tim-3/gal-9 pathway mediated

FIGURE 1
The structural classification of galectins is divided into three
types. The prototype galectins possess one CRD and exist in a dimeric
form. The chimeric galectin-3 has a non-CRD structural domain at the
N-terminus and a CRD structural domain at the C-terminus. The
non-CRD structural domain of galectin-3 participates in the assembly
of pentamers. The tandem repeat galectins have two CRDs that are
connected by a short linker peptide.
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immune checkpoint mechanism might inhibit NK cell function in
gastrointestinal stromal tumors (GIST) tissues, and this inhibition
might be achieved by inhibiting or activating a complex mosaic of
receptors, possibly depending on signal strength (Komita et al.,
2015). Thus, Tim-3/gal-9 interaction seems to be complicated.

2.2 Gal-9 and macrophages

Macrophages are derived from circulating monocytes and are
widely distributed in tissues and organs throughout the body, which
can phagocytic and kill intracellular parasites, bacteria, tumor cells,
as well as their own aging and abnormal cells. Both human and
mouse macrophage subpopulations expressed high levels of gal-9,
and the expression was significantly increased after
proinflammatory stimulation (Krautter et al., 2020). The
increased expression will then affect the immune function of the
macrophages. For example, gal-9 could upregulate FcγRIIb and
downregulate FcγRIII expression in macrophages and thus
suppressed pro-inflammatory cytokine production and
complement component C5a generation resulting in the
suppression of immune complexes-mediated inflammation
(Arikawa et al., 2009). Yu et al. (2018) found that Salmonella
Typhimurium infection enhanced the expression of Tim-3 on
CD4+ T cells and gal-9 on F4/80+CD11c+ macrophages in
intestinal lamina propria, respectively. Through the interaction of
gal-9 and Tim-3, these macrophages and CD4+ T cells trigger the

activation of inflammasome and promote the production of IL-1β,
thereby enhancing the antibacterial function of macrophages. Gal-9
expression was increased during the differentiation of monocytes
into macrophages (Harwood et al., 2016). The expression of gal-9
can be involved in regulating the polarization of classical activated
(M1) and alternatively activated (M2) macrophages, thereby
affecting infection-related complications and their severity
(Zhang et al., 2019). In the inflammatory state, macrophages are
activated and differentiate into M1 and M2 macrophages. During
the development of inflammation, the two macrophage phenotypes
are in a state of homeostasis and are influenced by different
cytokines and signaling pathways. M1 macrophages promote
inflammatory responses and clear pathogens, while
M2 macrophages have anti-inflammatory effects, limiting
excessive inflammatory responses and promoting tissue repair
(Yunna et al., 2020). The exogenous gal-9 protein could alleviate
LPS-induced preeclampsia damage in rats, which may be related to
macrophage metastasis to M2 subtype (Li et al., 2019).

Moreover, gal-9 also plays an important role in tumors via
affecting polarization of macrophages (Figure 2). Li C. et al. (2023)
knocked down the expression of gal-9 in glioblastoma cells by using
T7 peptide-modified exosomes loaded with gal-9 siRNA (T7-exO/
siGalectin-9), thereby activating the TLR7-IRF5 pathway. This
pathway polarized macrophages to M1 phenotype, thereby
enhancing macrophage phagocytosis of GBM cells. In addition,
monoclonal antibody (mAb) (clonal P4D2) binding to CRD at
the C-terminal of gal-9 demonstrated a unique activation

FIGURE 2
The possible effects of gal-9 on the activation of the innate immune cells. a: Gal-9 not only promotes the activation of NK cells to release IFN-γ, but
also promotes the polarization of F-actin of NK cells. b: Gal-9 promotes the polarization of M1 macrophages towards M2 macrophages, which is
detrimental to clear pathogens. c: Gal-9 promotes neutrophils recruitment to the site of inflammation and neutrophils degranulation, thereby clearing
pathogens. d: Gal-9 binds to IgE on mast cells, and this interaction prevents the formation of IgE antigen complexes and reduces allergic reactions.
e: Gal-9 can promote the adhesion of eosinophils to fibroblasts and prolong their function. f: Gal-9 promotes DCs maturation, thereby activating T cells.
In addition, gal-9 promotes cytokine release by interacting with Vamp-3.
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property leading to malignant mesothelioma (MM) cell apoptosis,
and tumors from P4D2-treated mice showed reduced tumor-
associated M2 macrophage infiltration (Bertino et al., 2019). As
is known, the tumor-associated macrophages (TAM) are dominated
by M2-like phenotypes and expressed high levels of Tim-3 (Wang
et al., 2017; Zhao et al., 2020). Therefore, the combination of gal-9
and Tim-3 may downregulate the polarization of mononuclear/
macrophage cells, affect the inflammatory immune response, and
downregulate the secretion of cytoplasmin and chemotactic cytokine
(Zhang et al., 2019; Li et al., 2019). In PTEN-deficient GBM cells,
gal-9 expression correlates with enhanced AKT activity, which
inhibits IRF1 degradation by phosphorylating GSK3β into the
inactivated form, thereby increasing gal-9 transcription (Ni et al.,
2022). The gal-9 and Tim-3 interaction could then increase the
vascular endothelial growth factor A (VEGFA) secretion by tumor-
associated macrophages, thus enhancing angiogenesis (Ni et al.,
2022). In addition to Tim-3, gal-9 could also bind to other partners
on the membrane of the M2 macrophages. Gal-9 was found to bind
to CD206 on M2 macrophages, altering the phenotype and
promoting tumor survival. CD206 is a marker of
M2 macrophages and plays an important role in wound healing
and promoting tumor progression in tissue injury or chronic
infection (Ezekowitz and Gordon, 1984; Shen et al., 2016).
Moreover, another study showed that dectin-1 on macrophages
in pancreatic ductal adenocarcinoma (PDA) could bind to gal-9, but
inhibition of this interaction produces a strong antitumor response
(Daley et al., 2017). When dectin-1 signaling was removed, the latter
PDA mouse model also showed reduced tumor invasion of CD206+
macrophages. Therefore, both dectin-1 and CD206 may be involved
in the regulation of macrophage function by gal-9. However, there is
a different view that in tumor-bearing mice, gal-9 could induce the
accumulation of unique macrophages expressing a plasmacytoid DC
(pDC) -like phenotype, and then enhance the antitumor activity of
NK cells (Nobumoto et al., 2009). This suggests that macrophages
regulated by gal-9 have different roles in the tumor immune
environment.

2.3 Gal-9 and neutrophil

Neutrophils are a kind of white blood cells with strong
chemotaxis and phagocytosis function, accounting for 50%–

70% of the total white blood cells, and the proportion of
neutrophils increases significantly when inflammation occurs
in the body. Its phagocytic objects are mainly bacteria, but it
will also engulf other pathogens. Gal-9 acts as an adhesion
molecule that captures and immobilizes neutrophils under
physiological level flow and promotes recruitment of
neutrophils to the site of inflammation (Iqbal et al., 2022).
Under tumor necrosis factor-alpha (TNF-α) and IFN-γ
stimulation, endothelial cells express and release large
amounts of gal-9 into the extracellular environment (Iqbal
et al., 2022; Imaizumi et al., 2002). Subsequently, gal-9 may
enhance the adhesion of neutrophils to the endothelium by
interacting with β2 integrin and CD44, thereby inhibiting the
crawling of neutrophils on intercellular adhesion molecule-1
(ICAM-1) (Iqbal et al., 2022). By interacting with TIM-3, gal-
9 induces neutrophil degranulation, promoting the killing of

gram-negative bacteria (Vega-Carrascal et al., 2014). In
addition, gal-9 can effectively activate neutrophil-mediated
cancer cell phagocytosis, thereby eliminating epithelial cancer
cells. This prophagocytosis is due to gal-9-mediated neutrophil
activation, upregulation of adhesion markers, and mobilization
of gelatin enzymes, secretions, and specific particles
(Ustyanovska Avtenyuk et al., 2021). However, the regulatory
effect of gal-9 on neutrophils is not very thorough and further
studies are needed.

2.4 Gal-9 and dendritic cells

Dendritic cells (DCs) are the most functional professional
antigen-presenting cells in the body, which can efficiently take
up, process and present antigens. Immature DC has strong
migration ability, and mature DC can effectively activate
initial T cells, and is in the center of initiating, regulating and
maintaining immune response. Gal-9 plays an important role in
the maturation, stability and antigen presentation function of
DCs. An early research found that gal-9 could induce monocyte
derived DC maturation by promoting phosphorylation of
p38 and ERK1/2 (Yamauchi et al., 2005). Since gal-9 mutants
with β-galactosid-binding activity can also play this role, these
effects of gal-9 on immature DCs are not primarily dependent on
its lectin properties (Yamauchi et al., 2005). Moreover, gal-9
could also induce aldehyde dehydrogenase (ALDH) activity in
DC by promoting the activation of p38 and PI3K signals, thereby
affecting the innate immune response (de Kivit et al., 2017). A
recent study has shown that gal-9 promotes the transport and
secretion of intracellular cytokines such as TNF-α, IL-6, IL-10,
and IL-12 through functional interactions with the vesicle-
associated membrane protein (Vamp-3) (Santalla Méndez
et al., 2023). Among these factors, IL-10 is a key cytokine in
generating and maintaining immune tolerance (Raeiszadeh
Jahromi et al., 2014), and the presence of gal-9 in
conjunction with the inhibition of NF-κB is conducive to the
expression of IL-10 in tolerant DC (Li L. et al., 2023). IL-10-
producing DCs have the ability to regulate their immune system
and can induce type 1 regulatory T cells (Tr1 cells) (Rachid and
Umetsu, 2012). Intracellular vesicle transport is essential for cell
homeostasis by influencing cytokine secretion and immune
response initiation of DCs. Gal-9 deficient DCs accumulate
cytokine-containing vesicles in the Golgi complex and
eventually undergo lysosomal degradation (Santalla Méndez
et al., 2023). The intracellular gal-9 controlled the aggregation
of cortical actin by interacting with C-type lectin phagocytosis
receptors and regulating Rac1 activity, thereby maintaining the
integrity of DCs plasma membrane and pathogen uptake
function (Querol Cano et al., 2019). Gal-9 could increase the
number of mature DCs in vitro and in vivo (Nagahara et al.,
2008), and enhance infiltration in colorectal cancer (CRC)
(Wang et al., 2022). Tim-3(+) DC of tumor-bearing mice
treated with gal-9 increased the number of IFN-γ-producing
CD8(+) T cells, thereby enhancing the anti-tumor immunity
mediated by CD8(+) T cells (Nagahara et al., 2008). These data
suggests that both intracellular and extracellular gal-9 can
regulate the immune function of DCs.
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2.5 Gal-9 and mast cells

Mast cells (MCs) originate from bone marrow pluripotent
hematopoietic stem cells and are distributed in connective tissue
or mucosal tissue. They are effector cells of IgE-mediated rapid-
onset allergy and key cells in various types of inflammatory
processes. Experimental studies in mice have found that
treatment with gal-9 before antigen stimulation reduces allergic
airway inflammation induced by ovalbumin and mite allergens and
passive skin allergic reactions after antigen stimulation (Katoh et al.,
2007; Niki et al., 2009). This is because gal-9 strongly and specifically
binds IgE (a highly glycosylated immunoglobulin), and this
interaction prevents the formation of IgE antigen complexes and
thus exerts anti-degranulation effects (Niki et al., 2009). Moreover,
the presence of gal-9 could remove IgE even when IgE has been
bound to mast cells and inhibits antigen-induced mast cell
degranulation (Mizuno et al., 2020). The oral administration of
algin increased the expression of gal-9 in colonic epithelial cells and
inhibited hypersensitivity symptoms induced by mast cell activation
in ovalbumin (OVA)-induced allergic response model mice
(Mizuno et al., 2020). However, treatment with gal-9 after
antigen attack may exacerbate inflammation in advanced stages
of allergic disease by enhancing the production of cytokines and
chemokines in mast cells (Kojima et al., 2014). Gal-9 may play a dual
role in the function of the mast cells. Therefore, gal-9 may be a
potential therapeutic target for immediate allergic reactions caused
by MC degranulation (Figure 2).

2.6 Gal-9 and eosinophils

Eosinophils are differentiated white blood cells derived from
hematopoietic stem cells, which have a role in killing bacteria and
parasites, and are also extremely important cells in the process of
immune response and allergic reaction. Eosinophils can release the
contents of the particles, causing tissue damage and promoting the
progression of inflammation. Gal-9 is considered to be an
eosinophilic chemotactic agent (Matsumoto et al., 1998;
Hirashima, 2000). The N-terminal and C-terminal CRD of gal-9
showed comparable eosinophilic chemotactic activity (ECA),
which was much lower than that of full-length gal-9
(Hirashima, 2000). Gal-9 may induce dimerization/
polymerization of cell surface glycoproteins/receptors by
binding to eosinophilic surface glycoproteins, thus initiating
intracellular signaling pathways associated with ECA (Sato
et al., 2002). Gal-9 can promote the adhesion of eosinophils to
fibroblasts, facilitate the stay of eosinophils in tissues, and prolong
the effect of its function (Asakura et al., 2002). In addition, studies
have shown that gal-9 not only has eosinophilic chemotactic
activity, but also has several unique effects on eosinophils, such
as eosinophile activation, superoxide production, and prevention
of eosinophile apoptosis (Matsumoto et al., 2002). It was found
that gal-9 inhibited eosinophilic apoptosis in patients with
hypereosinophilic disease, while promoting eosinophilic
apoptosis in healthy volunteers (Saita et al., 2002). Conversely,
gal-9 accelerated Fas induced apoptosis of both types of
eosinophils (Saita et al., 2002). These data suggest that gal-9
may have a heterogeneous effect on eosinophils (Figure 2).

3 Gal-9 and adaptive immune cells

3.1 Gal-9 and B cells

B cells are pluripotent stem cells derived from bone marrow.
Stimulated by antigens, B cells will proliferate and differentiate into a
large number of plasma cells, which can synthesize and secrete
antibodies and circulate in the blood to play the function of humoral
immunity. Gal-9 is considered to be an suppressor of B cell
proliferation and activation (Smith et al., 2021; Ungerer et al.,
2014). Gal-9 was shown to directly regulate BCR and different
TLRs by binding to IgM-BCR and CD5 on the surface of B-1a
cells, as well as TLR4 and the regulatory molecule CD180, and
inhibit signal transduction through altering their nanoscale co-
distribution (Smith et al., 2021). In the absence of gal-9, the
activation of B-1a cells is enhanced. However, this enhanced
activation of B-1a cells is harmful because it can promote the
transfer of autoantigens to secondary lymphatic organs and
exacerbate autoimmunity, thereby exacerbating the autoimmune
response (Smith et al., 2021). After Epstein-Barr virus (EBV)
infection of primary B cells, the expression of gal-9 continues to
increase from the early stage of infection to the mature
lymphoblastoid cell line (LCL) stage (Xu et al., 2023).
Upregulation of gal-9 expression promoted the formation of
EBV-positive B-cell lymphoma (BCL), which was associated with
inhibition of STING signaling. Moreover, gal-9 level was positively
correlated with disease stage and EBV nuclear antigen 1 (EBNA1)
expression in BCL patients (Xu et al., 2023).

3.2 Gal-9 and T cells

T cells are derived from bone marrow hematopoietic stem cells
in the embryonic period and grow and mature in the thymus. When
external pathogens invade the body, T cells play a role in the process
of fighting pathogens. T cells can be divided into helper T cells (Th),
cytotoxic T lymphocyte (CTL) and regulatory T (Treg) cells
according to their function, which play different roles in the
adaptive immune system. Gal-9 has an inhibitory effect on the
function and proliferation of T cells. By binding to Tim-3, gal-9 can
interact to inhibit Th1 production by inhibiting the expression of
IFN-c and IL-2 (Kuchroo et al., 2006). Activation of the gal-9/Tim-
3 signaling pathway can regulate the dynamic balance of immune
cells and their inflammatory response, inhibit CD4+ and CD8+

T cells, and in the process generate inhibitory signals and induce
apoptosis of Th1 cells (Wang et al., 2008). Currently, gal-9 may
regulates the inflammatory response of Th1 cells in two ways. One of
the regulation modes is the activation of caspase-1 by gal-9, leading
to inflammatory apoptosis of caspase-1 (Kashio et al., 2003).
Another way is that gal-9/Tim-3 regulates T cell death by
inhibiting CD11b+Ly-6G+ produce (Dardalhon et al., 2010).

In addition, gal-9 plays a favorable role in some T-cell-related
immune diseases. For example, gal-9 inhibits the development of a
mouse collagen-induced arthritis (CIA) model by inducing Treg cell
production while inhibiting Th17 cell production, suggesting that
gal-9 improves autoimmune arthritis by regulating Treg/
Th17 differentiation and Th1/Th2 imbalance (Seki et al., 2008).
The balance of these types of T cells affects the development of
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autoimmune diseases. The cytokines secreted by Th17 cells have
pro-inflammatory effects, and the cytokines secreted by Treg cells
have anti-inflammatory effects. The increase of Th17 cells and the
decrease of Treg cells can lead to the destruction of articular cartilage
and bone, leading to rheumatoid arthritis (RA) (Lee, 2018). In a
recent study, knockdown of gal-9 inhibited TNF-α activation via
affecting PI3K/AKT/mTOR pathway, thereby alleviating RA (Jia
et al., 2024). In experimental antiglomerular basement membrane
glomerulonephritis (anti-GBM GN), Tim-3 was observed to be
upregulated in the kidneys and lymph nodes, and blocking Tim-
3 enhanced T-cell-mediated immunity and aggravated nephritis
(Schroll et al., 2010). In addition, treatment of gal-9 reduced
urinary protein excretion and crescent cell formation in rat
nephrotoxic serum nephritis. These benefits were associated with
apoptosis of activated CD8+ T cells in the spleen, but not CD4+
T cells (Tsuchiyama et al., 2000). Treatment of gal-9 reduced the
proportion of CD4+Tim-3+T cells in the spleen and kidneys, and
transferred Th1 to Th2, thereby reducing the immune response in
anti-GBM GN (Zhang et al., 2014). A recent study shows that
exogenous gal-9 can reverse Treg and effector T cell imbalance by
inhibiting the PI3K/AKT signaling pathway, thereby alleviating
acute graft-versus-host diseasea (GVHD) (Pang et al., 2024).
Therefore, gal-9 may be a potential immunotherapeutic target for
the treatment of T-cell-associated immune diseases (Figure 3).

Gal-9 can aggravate pathogen infection and tumor
progression through its immunosuppressive effect. It was
found that blocking the gal-9/Tim-3 signaling pathway can

significantly reduce the suppressor effect on Th1 cells and
increase the levels of inflammatory factors such as IFN-γ,
TNF-α, IL-2 and IL-22, thereby enhancing the body’s
resistance to tuberculosis (Kang et al., 2020). Blocking gal-9/
Tim-3 can increase the number of effector and memory CD8+

T cells, thereby more effectively controlling virus infection
(Sehrawat et al., 2010). In hepatitis B virus (HBV)-associated
hepatocellular carcinoma (HCC), Tim-3+ CD4+ T cells express
aging markers and their proliferative capacity and effector
function are decreased compared with Tim-3− T cells (Li
et al., 2012). Tim-3/gal-9 signaling pathway mediates
functional inhibition and senescence of T cells in HBV-
associated HCC patients and predicts poor prognosis. In the
chronic lymphocytic leukemia (CLL) tumor microenvironment,
gal-9 binds to Tim-3 on the surface of Th1 and Treg cells, leading
to Th1 cell depletion. At the same time, it causes excessive
proliferation and activation of Treg cells, and secretes a large
amount of IL-10, inhibits the ability of Th1 cells to secrete IFN-γ
and TNF-α, and finally promotes the progression of CLL (Pang
et al., 2021). In acute lymphoblastic leukemia (ALL), gal-9
induced apoptosis in ALL cells in a concentration-dependent
manner through mechanisms associated with Bax/Bcl-
2 expression and caspase-3 activation (Zargar Balajam et al.,
2021). Gal-9 can induce CD8+ T cells depletion by binding with
Tim-3, and promote the immune escape of diffuse large B-cell
lymphoma (DLBCL) (Zhu et al., 2024). These data indicate that
the gal-9 expression is related to tumor progression.

FIGURE 3
Schematic diagram illustrating the effects of gal-9 on the function of the CD4+ T cell subsets. In the presence of gal-9, the balance of the number of
Th1, Th2, Th17 and Treg cells changes. Gal-9 can promote apoptosis of Th1 cells by up-regulating caspase-1 and down-regulating CD11b+Ly-6G+. The
reduction of Th1 cells leads to reduced IFN-γ and TNF-α release, which in turn exacerbates pathogen infection and tumor progression. Gal-9 promotes
the release of large amounts of IL-10 by Treg cells, which can further inhibit Th1 activation, as well as alleviate autoimmune diseases. Gal-9 can also
reduce the IL-17 release by inhibiting the activation of Th17 cells, which alleviates autoimmune disease. The thickness of the line represents the strength
of the promoting or inhibiting effect.
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4 Targeted therapy for gal-9

As the expression of gal-9 can affect the progression of many
autoimmune diseases by regulating the immune system. Therefore,
targeted therapy against gal-9 may be a new strategy for the
treatment of immune diseases. To date, many researchers have
made efforts to develop ideal drugs to change the expression of
gal-9 or inhibit the gal-9/Tim-3 signaling pathway, thereby
improving immune diseases. The effects of several inducers or
inhibitors of gal-9 on immune diseases are shown in Table 1.

5 Conclusion

Immune cells play a role in immune surveillance, immune
defense and immune homeostasis in the body, and their quantity
and quality are closely related to human health. Gal-9 is
characterized as a multifunctional protein that is widely
distributed in the cells of the innate and adaptive immune
system. Gal-9 can directly or indirectly involved in many
biological processes during the progression of immune diseases.
In different immune cells, gal-9 plays different roles. In the innate
immune cells, gal-9 mainly plays an active role in preventing the
invasion of pathogenic microorganisms and anti-tumor. However,
in adaptive immune cells, gal-9 mainly plays an inhibitory role,
which is conducive to the invasion of pathogenic microorganisms
and immune escape of tumor cells. Additionally, the regulation of
gal-9 on the same immune cell may be beneficial or disadvantageous
in different immune diseases. For example, gal-9 can promote
immune evasion in HBV-associated HCC cells by inhibiting the
immune function of T cells, but improves autoimmune arthritis by
regulating Th1/Th2 imbalance.

Therefore, it is of interest to find drugs that can affect the action
of gal-9 for the treatment of immune diseases. At present, the
inducers or inhibitors of gal-9 inhibitors have been found to

regulate the immune function of immune cells by regulating the
expression of gal-9, inhibiting the effect of gal-9 by directly binding
to CRD, or blocking the binding of gal-9 to Tim-3. These inducers or
inhibitors have been shown to be effective in treating some
autoimmune diseases in vivo.

In conclusion, this review systematically detailed the role of gal-9
in the regulation of different immune cells in innate and adaptive
immunity, as well as enumerating several inhibitors and promoters of
gal-9. Gal-9 may be a potential target for the treatment of various
immune diseases. Even so, the effect of immune cells on the
expression of gal-9 and the specific mechanism of gal-9 on
autoimmune diseases still need to be further studied. Further study
for more effective agents targeting gal-9 may provide new ideas for
early diagnosis and precise treatment of autoimmune diseases.
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TABLE 1 Several inducers or inhibitors of gal-9 for immune diseases.

Name Regulatory
mechanism

Disease model Outcomes Ref

Fucoidan Increase gal-9 expression Allergy model in mice Inhibition of the decrease in rectal temperature induced by mast cell
activation

Mizuno et al.
(2020)

GF/Bb Increase gal-9 expression Allergy model in mice Reduction of mast cell degranulation de Kivit et al.
(2012)

IFN-α Increase gal-9 expression Hepatoma cell line infected with
the HCV JFH1 genome

IFNα-NKs secrete high levels of gal-9 neutralizing virus Carreca et al.
(2022)

Recombinant
gal-9

Supplement of gal-9 Arthritis model in mice Regulating FcγR expression on macrophages to inhibit IC-induced
inflammation

Arikawa et al.
(2009)

T7-Exo/siGal-9 Decrease gal-9 expression GBM model in mice Promotion of macrophage repolarization and restricts the
immunosuppression of GBM

Li et al. (2023)

P4D2 mAb Bind the C-terminal CRD
of gal-9

MM model in mice Tumor growth was inhibited and the infiltration of tumor-associated
M2 macrophages was reduced

Bertino et al.
(2019)

α-lactose Blockade of gal-9/Tim-
3 signaling

Hsv-infected mice Effector and memory CD8(+) T cell numbers were increased,
resulting in a marked increase in viral control efficiency

Sehrawat et al.
(2010)

Anti-gal-
9 antibody

Neutralization of gal-9 Tumor model in mice Synergized with ATM inhibition to induce potent antitumor
immunity

Zheng et al.
(2023)
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