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The latest breakthroughs in information technology and biotechnology have
catalyzed a revolutionary shift within the modern healthcare landscape, with
notable impacts from artificial intelligence (AI) and deep learning (DL). Particularly
noteworthy is the adept application of large language models (LLMs), which
enable seamless and efficient communication between scientific researchers and
AI systems. These models capitalize on neural network (NN) architectures that
demonstrate proficiency in natural language processing, thereby enhancing
interactions. This comprehensive review outlines the cutting-edge
advancements in the application of LLMs within the pharmaceutical industry,
particularly in drug development. It offers a detailed exploration of the core
mechanisms that drive thesemodels and zeroes in on the practical applications of
several models that show great promise in this domain. Additionally, this review
delves into the pivotal technical and ethical challenges that arisewith the practical
implementation of LLMs. There is an expectation that LLMs will assume a more
pivotal role in the development of innovative drugs and will ultimately contribute
to the accelerated development of revolutionary pharmaceuticals.
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1 Introduction

During the past few decades, the field of drug discovery has undergone a
transformative revolution, largely due to the rapid advancements in information
technology and modern biotechnology, such as artificial intelligence (AI), machine
learning (ML), structural revolution (crystallography), and synthetic biology
(Sadybekov and Katritch, 2023; Murray et al., 2023; Cova et al., 2022; Roggia et al.,
2024). A notable paradigm shift is evident in contemporary drug discovery, where
emerging technologies have streamlined the drug development process, consequently
reducing associated costs (Pandey et al., 2022). Among them, computational
approaches guided by molecular modeling techniques with AI for “hit
identification” and “lead optimization” have garnered significant interest from
biotech firms and research institutions (Jayatunga et al., 2022; Chakraborty et al.,
2023). “Hit identification” is the process of screening large compound libraries to
discover molecules that exhibit initial biological activity against a specific target, serving
as potential starting points for drug development. “Lead optimization” is the systematic
process of refining and enhancing the potency, selectivity, and pharmacokinetic
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properties of a promising drug candidate to improve its
therapeutic potential and reduce side effects. Nowadays, the
strategic application of AI in drug discovery has significantly
hastened the development timeline and diminished both the cost
and duration of early-stage drug discovery phases (Chakraborty
et al., 2023; Lamberti et al., 2019).

LLMs are cutting-edge AI systems crafted on the foundation
of neural network architectures and refined through exposure to
human language from a plethora of sources, including articles,
books, and news reports. Consequently, LLMs are capable of
capture the complicated associative relationships between words
in a text-based training dataset, harnessing the capabilities of
deep learning (Thirunavukarasu et al., 2023). These models have
been effectively integrated into numerous fields, demonstrating a
versatility that encompasses dialogue and beyond. In particular,
the recent surge in advancements within LLMs have paved the
way for their integration into healthcare and biotechnological
pharmaceutics (Liu et al., 2023a). Boasting the capacity to execute
a multitude of language-centric tasks, LLMs capitalize on neural
networks and are trained on vast repositories of text generated by
humans, thus transforming them into invaluable assets for
information retrieval and the delivery of biomedical insights.
Consequently, they can serve as valuable tools for retrieving
information and providing biomedical solutions
(Thirunavukarasu et al., 2023; Eggmann et al., 2023). Among
the vanguard of AI-powered LLMs, ChatGPT stands as a notable
example, which was instrumental in streamlining the drug
discovery process (De Angelis et al., 2023). Typically, LLMs in
drug development could be utilized for understanding disease
mechanisms, designing and optimizing drug molecules,
predicting efficacy and safety, integrating with AI tools,
translating between molecules and indications, and exploring
federated learning for enhanced data utilization and task
generalization. Especially, LLMs can be integrated with other
AI technologies like machine learning and computational biology
tools to synergistically accelerate drug discovery. For example,
machine learning algorithms can analyze vast databases to
identify intricate patterns, leading to the discovery of novel
therapeutic targets and prediction of potential drug candidates
with better accuracy and speed. Quantitative structure-activity
relationship (QSAR) modeling and molecular docking
simulations are AI-driven predictive techniques that provide
insights into predicting the biological activity of novel
compounds with great accuracy.

There is a strong belief that the rapid evolution and widespread
adoption of AI are defining trends of our time. In this review, the
recent development of LLMs was highlighted, including their
architectural frameworks and operational mechanisms.
Furthermore, the manuscript has placed a special emphasis on
the practical applications of Large Language Models (LLMs) in
the biopharmaceutical sector. Several successful case studies were
detailed to highlight the strengths and limitations of these models.
Each case study includes an in-depth analysis and critical evaluation
of the respective models. It is especially crucial to diligently evaluate
and address the associated concerns, risks, and potential pitfalls
(Borji, 2023). It is believed that the integration of LLMs in drug
discovery would greatly facilitate the acceleration of the drug
discovery pipeline.

2 Designing an artificial intelligence-
driven platform

2.1 Large language models (LLMs) for drug
development

Armed with the capabilities of natural language processing
(NLP) and machine learning technologies, chatbots have
demonstrated significant potential and have made substantial
contributions across several fields (Haque and Rubya, 2023; Xu
et al., 2021; Suppadungsuk et al., 2023). In particular, the emergence
of ChatGPT, with its harnessing of generative models, has
heightened global awareness of the vast of generative AI (Sallam,
2023). As this technology continues to evolve, this section aims to
offer a comprehensive of the recent advances in LLMs within the
realm of biotechnological pharmaceutics.

2.1.1 ChatGPT
The chat generative pretrained transformer (ChatGPT),

developed by OpenAI, stands at the forefront of language model-
based chatbots, renowned for its conversational interactivity
(https://openai.com/blog/chatgpt). On 14 March 2023, an
upgraded version, GPT-4, was launched, which boasts improved
capabilities for addressing complex issues with heightened precision
and rationality. Furthering its progression, on 6 November 2023, the
state-of-the-art model, GPT-4 Turbo, was introduced. This iteration
is marked by its superior performance, an updated knowledge cutoff
date of April 2023, and the introduction of a 128k context window,
equating to the processing capacity of approximately 300 pages of
text within a single prompt. Utilizing a neural network to process
natural language, it is adept at generating contextually relevant
responses and delivering nuanced, sophisticated answers through
advanced modeling techniques (Brown et al., 2020).

Generally, ChatGPT can be harnessed in the following
capacities. Primarily, ChatGPT serves as an intuitive interface a
that facilitates more straightforward interactions between users and
various AI systems, offering an alternative to traditional knowledge
graph navigation. Indeed, it has emerged as a leading example of
sophisticated human–computer interaction (HCI). Secondly,
ChatGPT can be specifically applied for drug discovery,
functioning as an advanced search engine tailored to the nuances
of biological science in different ways (Savage, 2023). For rational
drug design, ChatGPT could be used to generate innovative
chemical structures with a high potential for clinical success and
predict the absorption, distribution, metabolism, excretion, and
toxicity (ADMET) profiles of the identified compounds (Savage,
2023; Zhao and Wu, 2023). Within this domain, efficient screening
can be performed with ultra-large virtual libraries (greatly expanded
drug-like chemical spaces), which would significantly amplify the
drug-like chemical spaces and enhancing the probability of hit
identification and lead discovery. Thirdly, ChatGPT holds
promise in the generation of new protein targets for drug
development. When equipped with extensive unlabeled data (e.g.,
the nearly 250 million protein sequences contained in the UniProt
database and 1.28 million protein sequences contained in the PDB
database), ChatGPT can autonomously deduce the intricate
relationships between molecular building blocks on its own. In
this field, its functionality mirrors that of AlphaFold, which
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FIGURE 1
Schematic representation of the ChatGPT-assisted drug addiction research process. (This process initiates with grasping the roles of AI in drug
addiction research and generating drug-likemolecules. It advances by refining the GNCmodel to produce leads targeting DAT, NET, and SERT receptors.
Optimization is driven by the Langevin equation and an enhancedGNCmodel, prioritizing binding affinity predictions, which led to 15 potential drug leads
pinpointed. ChatGPT supports this process by offering creative input, methodological insights, and coding aid, from debugging to interpretation).

FIGURE 2
Schematic of a GRU-enhanced autoencoder for drug design: from SMILES encoding to cocaine addiction treatment leads. (The molecular
generation pipeline uses a GRU-based autoencoder to encode and decode SMILES strings, and the stochastic generator was used to create novel
molecules. The process starts from input SMILES through latent space manipulation to generated SMILES. Subsequently ADMET screening and binding
affinity prediction were achieved for the identification of potential cocaine addiction treatment leads).
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depends heavily on (new) big data analytics and artificial intelligence
for its operations.

In a study by Wang et al. (2023a), ChatGPT was successfully
applied for the discovery of an anti-cocaine-addiction drug, which
functions as a virtual guide offering strategic and methodological
insights, as well as generative models for optimal drug-like
molecules with desired properties (Figure 1). With the aid of
ChatGPT, a novel platform named the Stochastic Generative
Network Complex (SGNC) was developed. With this project,
ChatGPT primarily serves for idea generation, methodology
clarification, and coding assistance (Figure 2). For idea
generation, ChatGPT was augmented with three plugins
(WebPilot, ScholarAI, and AskYourPDF), which improves its
capacity to comprehend the research background of anti-cocaine-
addiction drug development, providing up-to-date available sources
and accessing insights from previous works. For methodology
clarification, plugins (WebPilot, Link Reader and Wolfram) were
used to significantly improve the mathematical and statistical
capabilities of ChatGPT. In terms of coding assistance, WebPilot,
ChatwithGit, and Prompt Perfect were leveraged to refine coding
skills and craft perfect prompts.

ChatGPT has been instrumental in successful identification of
15 promising drug leads capable of targeting the dopamine
transporter (DAT), norepinephrine transporter (NET), and
serotonin transporter (SERT). It was clearly indicated that the
“cognitive abilities” of ChatGPT have the potentials to
significantly streamline the development of modern
pharmaceuticals offering potential promising avenues for drug
discovery. However, it was also noted that the application of
ChatGPT for drug development still faces many challenges due
to the inherent limitations of generative AI. For example, it is still
susceptible to generate false narratives and spread misinformation.
Consequently, it is recommended that the information generated by
ChatGPT-4 undergo rigorous and consistent verification to ensure
its accuracy and reliability.

Mondal et al. explored the proficiency of ChatGPT in predicting
and elucidating common drug-drug interactions (DDIs) (Figure 3)
(Juhi et al., 2023). Initially, a curated set of 40 pairs of previously
listed DDIs were selected for analysis via ChatGPT through a two-
tiered questioning approach. The outcomes showed that for the

initial query, one response was incorrect, while of the correct
responses, 19 were definitive and 20 remained ambiguous. For
the second question, one answer was deemed incorrect, with
17 correct answers being definitive and 22 being inconclusive.
These results suggest that ChatGPT serves as a moderately
effective instrument for assessing DDIs; however, it occasionally
falls short in offering comprehensive guidance, indicating the
necessity for further refinements to enhance its accuracy and
reliability.

Zhang et al. investigated the competencies of ChatGPT in the
realms of question-answering, knowledge discovery, and knowledge
reasoning within the biomedical field, specifically its ability to
establish connections between pairs of proposed entities. The
performance of ChatGPT was then compared with existing
biomedical knowledge graphs (BKGs) (Hou et al., 2023). The
findings indicated that ChatGPT-4.0 outperformed BKGs in
terms of providing existing knowledge, although BKGs had a
higher confidence level and demonstrated higher reliability in
terms of information accuracy. Moreover, compared with BKGs,
ChatGPT demonstrated a limited ability to perform novel
discoveries based on the existing information and to provide
reasoning for knowledge discovery. Therefore, the study
proposed that strategies integrating LLMs (like ChatGPT) and
BKGs could be promising to enhance task performance and
mitigate potential risks.

Xu et al. delved into the prowess and promise of ChatGPT
within the realm of biomedical information retrieval, with a
particular focus on its ability to discern associations between
drugs and diseases (Gao et al., 2023). Their findings showed that
ChatGPT achieved an impressive accuracy range of 74.6%–83.5% in
identifying drug-disease associations and an even more remarkable
96.2%–97.6% for true and false pairs under varying prompt designs.
This revealed that ChatGPT could serve as a valuable “assistant” in
unearthing knowledge related to biotechnological and
pharmaceutical advancements, with a level of reliability that is
quite satisfactory. Nevertheless, it was also emphasized that the
insights gleaned from ChatGPT should undergo thorough
verification before being integrated into clinical practice. In a
separate study, ChatGPT was employed to meticulously annotate
single-cell RNA sequencing data, successfully correlating rare cell
types with their functions and uncovering several distinct
differentiation pathways of cell subtypes that had previously
eluded detection (Zehua and Du, 2023).

Blatz et al. demonstrated the transformative potential of
ChatGPT and other LLMs in the field of dental medicine
(Eggmann et al., 2023). It was concluded that LLMs (e.g.,
ChatGPT) could be instrumental in several areas (Sadybekov
and Katritch, 2023): revolutionizing dental practice by
streamlining administrative tasks (Murray et al., 2023);
enhancing dental telemedicine through real-time language
translation services, thereby making consultations more
accessible and scalable, particularly in underserved regions
(Cova et al., 2022); bolstering clinical decision support by
swiftly summarizing voluminous medical records or
aggregating evidence-based medical findings (Roggia et al.,
2024); expediting administrative tasks such as routine
correspondence and record-keeping (Pandey et al., 2022);
enriching patient education with credible health advice and

FIGURE 3
The study flowchart to predict and explain drug-drug
interactions with ChatGPT.
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guidance (Jayatunga et al., 2022); advancing dental education
through the creation and administration of multiple-choice
exams, practical assessments, and supervised patient
treatments; and (Chakraborty et al., 2023) refining scientific
writing, making it more coherent for non-native English
speakers. In addition, the study underscored the imperative to
address several critical challenges effectively (Sadybekov and
Katritch, 2023): ensuring robust cybersecurity measures to
safeguard patient data and medical information against
malware attacks (Murray et al., 2023); implementing stringent
patient data privacy protections to maintain confidentiality and
security; and (Cova et al., 2022) conducting thorough scientific
evaluations and verifications of LLM-generated responses to
maintain accuracy and reliability.

As highlighted in numerous studies, ChatGPT is poised to exert
profound influences on various aspects of natural science and social
science in the near future. On the one hand, it is imperative to
recognize that at present, ChatGPT might not be a fully-fledged
“sage” capable of providing responses replete with adequate
reasoning and evidence-based justifications (Heck, 2023).
Consequently, robust quality control protocols must be
established to safeguard the accuracy, credibility, privacy, and
cybersecurity of the swift and beneficial information dispensed by
ChatGPT. On the other hand, there remains a critical need to
improve the “intelligence” of ChatGPT, thereby transforming it
into an indispensable asset for researchers.

2.1.2 Google bard and microsoft bing
Bard AI, a cutting-edge large language model developed by

Google, signifies a new frontier in the field of AI-powered chatbots
(Pichai, 2023). Propelled by the Language Model for Dialogue
Applications (LaMDA, a state-of-the-art transformer-based
neural language model), Bard is honed on an expansive dataset,
ensuring its proficiency in conversational AI. Sharing a repertoire of
capabilities with ChatGPT, Google Bard has demonstrated its
efficacy across a spectrum of scientific applications, marking it as
a formidable contender in the landscape of advanced AI
technologies.

Sulaiman et al. conducted a study to assess proficiency of Google
Bard in critically evaluating DDI screening, and it was subsequently
compared with the authorized Lexicomp® Online™ database
(Sulaiman et al., 2023). The interrater reliability analysis revealed
a minimal concordance between Lexicomp and Google Bard in
assessing DDI risk, with a Cohen’s kappa (κ) value of 0.01; similarly,
a slight agreement between was observed in their severity ratings
(κ = 0.02). However, there was a lack of consensus regarding the
reliability rate, reflected by a κ value of −0.02. In a parallel study, AI
platforms (ChatGPT, Bard, and Bing) were applied for DDI the
prediction, and the sensitivity, specificity, and accuracy of each
model were subsequently evaluated (Al-Ashwal et al., 2023).
Notably, Microsoft Bing emerged as the top performer in terms
of specificity (0.769) and accuracy (0.788). Furthermore, ChatGPT-
3.5 and ChatGPT-4 exhibited the greatest variability in the
consistency of their accuracy, highlighting the nuances in their
predictive capabilities.

Cheungpasitporn et al. conducted a comparative analysis of
the performance of various AI models (ChatGPT 3.5, ChatGPT 4,
Bard AI, and Bing Chat) in identifying potassium and

phosphorus content in foods (Qarajeh et al., 2023). The study
revealed that ChatGPT 4 outperformed others in determining
potassium content, achieving an overall accuracy of 81%, with
specific rates of 60% for low-potassium foods and an impressive
99% for high-potassium foods. Comparatively, ChatGPT 3.5,
Bard AI and Bing Chat showed accuracies of 66%, 79% and
81% accuracy, respectively. In the realm of phosphorus content
identification, Bard AI stood out with a perfect 100% accuracy
rate; in contrast, ChatGPT 3.5, ChatGPT 4 and Bing Chat
managed to correctly identify high-phosphorus foods only
85%, 77% and 89% of the time, respectively. These findings
illustrate the promising potential of AI-powered models in
supporting renal diet management, particularly as adjunct
tools for enhancing nutritional education and counseling.
Nonetheless, it is evident that further enhancements are
essential to achieve the desired levels of precision and reliability.

Tham et al. evaluated the proficiency of ChatGPT-3.5,
ChatGPT-4.0, and Google Bard in generating accurate responses
to inquiries concerning myopia (Beutel et al., 2023). Frequently
asked myopia care-related questions were categorized into six
different domains and allocated to the AI models. The responses
generated were subsequently reviewed independently by three
expert ophthalmologists, who graded them as poor, borderline, or
good. A consensus approach was then used to establish the final
assessment of each reply. The results showed that ChatGPT-
4.0 outperformed in terms of accuracy, with 80.6% of the
responses deemed ‘good’, surpassing 54.8% for Google Bard
(Google Bard: 4.35 and ChatGPT-4.0: 4.23). All the models
showed high average comprehensiveness scores and significant
self-correction capabilities (66.7% for ChatGPT-4.0% and 60%
for Google Bard). This highlighted the potential of ChatGPT-
4.0 and Google Bard to deliver essential answers to myopia-
related queries, although it is clear that their accuracy requires
further enhancement and rigorous evaluation.

In a recent investigation, the capacity of ChatGPT and Google
Bard to generate professional-quality responses to inquiries
regarding ocular symptoms were systematically examined
(Pushpanathan et al., 2023). The answers procured were
meticulously appraised and graded by ophthalmologists at the
consultant level, based on criteria of accuracy,
comprehensiveness, and self-awareness. ChatGPT-4.0 achieved an
impressive ‘good’ rating of 89.2%, significantly outperforming
Google Bard, which registered at 40.5%. Although all the models
garnered high mean comprehensiveness scores, they were
concurrently found to display inadequate self-awareness
capabilities. Parallel results were also observed in the accuracy of
ChatGPT and Google Bard when addressing clinical radiology
challenges on the Japan Radiology Board Examination (JRBE)
(Toyama et al., 2023).

Therefore, although ChatGPT-4.0 demonstrated a distinct
advantage in providing logical answers to a broad spectrum of
inquiries, rigorous validation remains essential to ensure
reliability and accuracy. In the context of research writing and
data collection, it is worth noting that while Bard represents a
modest improvement over ChatGPT (ChatGPT3.5) in analyzing the
diversity of manuscript bibliographies, it still falls short of reference
identification capabilities, even with its integration with Google
search (King, 2023).
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2.1.3 Med-PaLM
Recently, Google and DeepMind introduced MultiMedQA,

which is a comprehensive collection of seven medical question-
answering datasets (Figure 4), including LiveQA, MedQA,
MedMCQA, MedicationQA, PubMedQA, HealthSearchQA,
and MMLU clinical topics (Singhal et al., 2023). Utilizing
MultiMedQA as a foundation, both the pathway language
model (PaLM) (Chowdhery et al., 2022) and its instruction-
tuned derivative, Flan-PaLM, were subjected to rigorous
examination (Chung et al., 2022). The results showed that
Flan-PaLM excelled in achieving the highest historical
accuracy on the aforementioned datasets. Notably, Flan-PaLM
scored an impressive 67.6% accuracy on MedQA (US Medical
Licensing Exam-style questions), surpassing the previous state of
the art by over 17%. These results prompted the implementation
of prompt tuning to further specialize Flan-PaLM for the medical
domain, resulting in the Med-PaLM model. Med-PaLM was
capable of providing more favorable answers to the medical
queries than clinicians, although its overall performance was
still somewhat inferior to that of medical professionals. This
demonstrated the effectiveness of instruction prompt tuning in
improving the performance of Med-PaLM.

However, the study also identified limitations and proposed
future research direction. These include expanding MultiMedQA to
better mirror real-world clinical workflows, developing key LLM
capabilities for numerous clinically significant applications, refining
human evaluation, and addressing issues of fairness, equity, and
ethical considerations.

2.1.4 DrugChat
In a cutting-edge study, a pharmaceutical domain-specific LLM

prototype, DrugChat, was developed to utilize ChatGPT-like
capabilities for the analysis of drug compounds and the provision
of insights on drug–molecule graphs (Liang et al., 2023). Like
ChatGPT, DrugChat engages in multi-turn, interactive dialogues
to address inquiries about uploaded compound molecule graphs. It
is composed of three core components: a graph neural network
(GNN), a large language model (LLM), and an adaptor, all of which
are trained in an end-to-end fashion.

The GNN is tasked with interpreting the input compound
molecule graph and extracting a meaningful representation. The

adaptor then converts this graph representation into a format that is
compatible with LLM. The LLM processes the transformed
compound representation alongside the questions posed about
the compound, ultimately generating answers.

For the instruction tuning phase, datasets comprising
10,834 drug compounds and 143,517 question-answer pairs were
curated to train DrugChat. In this process, a pretrained GNN and a
pre-trained Vicuna-13b model were utilized, with the weight
parameters for the GNN and LLMs being fixed. However, the
weight parameters for the adapter were continuously refined. The
results demonstrated the proficiency of DrugChat in responding to
various questions about the input compounds, such as “What makes
this compound unique?” and “What diseases might this compound
be able to treat?”, even when evaluated on the drug compound
graphs not present in the training data.

However, as highlighted, the most significant challenge for
DrugChat could be the phenomenon of “artificial (molecular)
hallucinations” stemming from the implanted LLMs. The
generation of unreliable answers and descriptions could seriously
impede its practical application in drug discovery, potentially
leading to undesirable consequences.

2.1.5 MolReGPT
Recently, a groundbreaking LLM-based system known as

MolReGPT has been developed, which showcases the ability to
translating molecule captions into natural language (Li et al., 2023).
This system employs a retrieval-based prompt paradigm through in-
context learning for both molecule captioning and text-based
molecule generation. This could potentially revolutionize
molecule discovery with MolReGPT without the need for fine-
tuning. MolReGPT is structured around four principal
components (Figure 5), including molecule caption retrieval
(identifying the n most analogous examples), prompt
management (constructing the system prompt), in-context few-
shot molecule learning (translating molecule caption), and
generation calibration (assessing validity). For the task of
molecule caption retrieval, MolReGPT leverages Morgan
fingerprints for molecule captioning and BM25 for text-based
molecule generation. Prompt management encompasses four key
steps: role identification, task description, example generation, and
instruction output.

FIGURE 4
T Overview of the benchmark MultiMedQA, PaLM and Med-PaLM. (Various medical question-answering datasets are integrated into a multimodal
framework, which would improve the performance of PaLM through prompting and instruction tuning for clinical applications).
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The results indicated thatMolReGPT surpasses the performance
of the tested fine-tuned models (e.g., MolT5-base) without any
additional fine-tuning, achieving Text2Mol scores of 0.560 for
molecule captioning and 0.571 for molecule generation. In terms
of molecule understanding and text-based molecule generation,
MolReGPT is comparable to the fine-tuned model MolT5-large.
These findings suggest that MolReGPT could provide an innovative
and adaptable platform for harnessing the potential of LLMs to
advance molecule discovery through in-context learning, which
might greatly reduce the cost associated with domain transfer.

2.1.6 Chemformer
To tackle the resource-intensive challenge and multitasking

demands in cheminformatics, a transformer-based model named
Chemformer has been introduced, leveraging SMILES notation
(Irwin et al., 2022). Chemformer, which is based on the BART
language model, is versatile and can be readily applied to diverse
tasks, such as sequence-to-sequence (e.g., reaction prediction and
molecular optimization) and discriminative cheminformatics (e.g.,
property prediction) tasks, with the encoder stack alone being
sufficient for many of these applications.

The training of Chemformer primarily consists of two stages
(Figure 6): self-supervised pretraining and downstream fine-tuning.
In the pretraining phase, extensive unlabeled SMILES datasets are
used for model training through three different self-supervised
pretraining tasks (masking, augmentation and a combination of
masking and augmentation). During the fine-tuning phase, the
pretrained Chemformer is tailored to a specific downstream task
and further refined. A multitask learning strategy is utilized in this
process to optimize multiple tasks concurrently, such as
multiproperty prediction and multigene activity prediction. In
particular, Chemformer has achieved the highest accuracy
available on benchmark datasets for direct synthesis and
retrosynthesis prediction.

The outcomes for chemical reaction prediction, molecular
optimization and property prediction demonstrate the
adaptability of Chemformer to various downstream tasks. The
convergence rate and performance of Chemformer on
downstream tasks could be improved by self-supervised
pretraining. When training time is limited, the synergy of
transfer learning and the innovative augmentation strategy can
produce state-of-the-art results across all the tested downstream

FIGURE 5
Theworkflowof MolReGPT. (This figure illustrates a four-step process for generatingmolecular captions and text-basedmolecular designs. Initially,
it retrieves examples from a database using molecular information. Subsequently, it curates prompts with system instructions for tasks like molecular
captioning and generation. In the third phase, it uses a few examples to facilitate a language model learn and generate responses. Finally, it calibrates the
generation to ensure the responses are accurate and in the correct format for tasks like Mol2Cap, where it describes molecules).
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Seq2seq tasks, including chemical reaction prediction and molecular
optimization.

2.1.7 MolGPT
To develop a generative pretraining (GPT) model adept at

generating chemical structures with tailored properties or
synthesizing drug-like molecules, a transformer-decoder-based
generative model named MolGPT has been proposed (Bagal
et al., 2022). MolGPT is comprised of three principal
components (Figure 7): the input encoder, transformer-decoder
model, and output decoder. The input encoder translates target
molecules represented in the Simplified Molecular Input Line Entry
System (SMILES) notation into a string of characters. The
transformer-decoder model is comprised of multiple transformer
modules and a single decoder module. Each transformer module
features a multi-head masked self-attention mechanism calculated
by the “Scaled Dot Product Attention”, and a feed-forward network
designed to capture contextual information of the input sequence.

The decoder module employs both self-attention and an encoder-
decoder attention mechanism to generate the subsequent SMILES
token. The output decoder then translates the generated SMILES
string into a molecular structure. In this process, the resultant
molecules can be generated based on desired single or multiple
properties, a specified scaffold, or a combination of both.

Benchmarking experiments for training and evaluation
demonstrated that MolGPT boasts exceptionally high validity and
uniqueness scores, along with commendable Frechet ChemNet
Distance (FCD) and KL divergence scores for the MOSES and
GuacaMol datasets. Moreover, in terms of validity and novelty,
MolGPT outperformed all the other tested methods for the
GuacaMol dataset. In addition, MolGPT was found to acquire
higher-level chemical representations through molecular property
control, enabling the generation of molecules with intriguing
properties or specified scaffolds. Based on these results, MolGPT
is poised to play a critical role in the realm of rational drug design.

In a recent advancement, a conditional generative pretrained
transformer model, cMolGPT, was designed for the autoregressive
generation of target-specific de novo molecules using natural
language processing (NLP) techniques (Wang et al., 2023b). This
model was initially pretrained on an extensive SMILES dataset,
enabling it to learn the parametric probabilistic distribution of drug-
like properties (e.g., LogP and molecular weight), across the SMILES
vocabulary space in an unsupervised manner. The cMolGPT model
incorporates a of key-value pairs within the transformer
architecture, which is further enforced by target-specific
embeddings to facilitate the conditional generation of multihead
attention for drug-like compounds. The findings revealed that
cMolGPT is adept at generating SMILES strings that represent
both drug-like and active compounds. In addition, the generated

FIGURE 6
The workflow of Chemformer. (It shows a two-step process for training a molecular model. In Step 1, the model is pre-trained on 100 million
molecules, where it learns to encode and decode molecular structures. In Step 2, the model is fine-tuned for specific tasks, such as predicting reactions,
optimizingmolecules, and estimatingmolecular properties. Each task uses an encoder to understand themolecule and a decoder to generate the result).

FIGURE 7
The architectural structure of MolGPT.
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compounds not only closely resemble the chemical space of actual
target-specific molecules but also encompass a significant portion of
novel compounds. To assess the performance in generating target-
specific compounds, evaluations were conducted on three target-
biased datasets: EGFR, HTR1A, and S1PR1. The compounds
generated by cMolGPT were predicted to exhibit higher activity
compared to those generated by the tested conditional RNNmodels.
This suggests that cMolGPT is a promising tool in the field of drug
discovery, capable of expanding the chemical space of potential
therapeutic agents.

To encapsulate the findings, it is evident that a transformer-
decoder-based generative model could achieve state-of-the-art
performance in the rational design and discovery of desired
chemical structures. Consequently, such a model is regarded as
an invaluable asset in the realm of de novo drug design, showcasing
its potential to revolutionize the way we approach the development
of novel therapeutics.

2.1.8 MOLGEN
To synthesize molecules with specific desired attributes,

MOLGEN, a sophisticated pretrained molecular language model,
has been recently introduced (Fang et al., 2023b). This system
encompasses two pivotal stages (Figure 8): (Sadybekov and
Katritch, 2023) a two-stage domain-agnostic molecular
pretraining and (Murray et al., 2023) a self-feedback mechanism
designed to mitigate the occurrence of “molecular hallucinations”.
During the initial phase, the system reconstructs over 100 million
molecules using SELFIES, a highly robust molecular language. This
approach is complemented by the introduction of the domain-
agnostic molecular prefix, which improves the transferability of
the knowledge across diverse domains. The subsequent stage
introduces a self-feedback paradigm, which is instrumental in
fine-tuning the model’s parameters in accordance with generative
probabilities, thereby incrementally refining the optimization of the
generated molecules. This mechanism is pivotal in enabling

MOLGEN to produce molecules with desired properties while
circumventing the pitfalls of “molecular hallucinations”.

The efficacy of MOLGEN was subjected to a rigorous evaluation
through extensive testing on established benchmarks. The
assessments focused on its ability to accurately capture molecular
distributions, generate diverse and realistic molecules, pinpoint
targeted molecules and refine molecules under constraints.
Across the domains of natural products and synthetic molecules,
MOLGEN has consistently its proficiency in generating molecules
that align with desired chemical preferences (e.g., logP
(octanol–water partition coefficient), QED (quantitative estimate
of drug likeness). Moreover, it has demonstrated a notable potential
for identifying essential molecular substructures and navigating the
chemical space, highlighting its value in the realm of molecular
design and drug discovery.

2.1.9 KV-PLM
Recognizing the limitations of current machine reading

models, which tend to handle various data types separately, a
significant divide often emerges between the nuanced
interpretation of molecular structures and the absorption of
knowledge from biomedical literature. To address this,
Recently, a groundbreaking machine reading system known as
KV-PLM has been introduced. It is designed to seamlessly
integrate molecular structure data with biomedical text within
a single deep learning architecture (Figure 9) (Zeng et al., 2022).
The KV-PLM leverages the pretrained language model
BERT12 as its foundational component. It employs the
simplified molecular-input line-entry system (SMILES) to
encode molecular structures into a format compatible with the
byte pair encoding (BPE) algorithm. This encoding process
transforms SMILES strings into a series of substring patterns.
These patterns are then integrated into a comprehensive
biomedical data and subjected to pretraining under a unified
language modeling framework. The culmination of this process is

FIGURE 8
The architectural structure of MOLGEN. (In Step 1, the model learns molecular language syntax and meaning by encoding and decoding molecular
structures. In Step 2, themodel is fine-tunedwith domain-agnosticmolecular prefixes to improve the capability of understandingmolecular structures. In
this process, a self-feedback paradigm was included, where the model is capable of generating candidates, evaluating them based on properties, and
learns from the feedback to enhance the performance for generating synthetic and natural product molecules).
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the acquisition of meta-knowledge through a self-supervised
language model, which can be efficiently adapted through fine-
tuning for specific application within the biomedical domain.

To evaluate the efficacy of KV-PLM, a range of mono-source
biomedical tasks were conducted, encompassing both molecular
structure-related and biomedical text-related tasks. The system’s
performance was benchmarked on MoleculeNet for SMILES
property classification across datasets such as BBBP, SIDER,
TOX21, and HIV, as well as for chemical reaction classification
was evaluated on USPTO 1k TPL dataset. Additionally, the system
was evaluated on biomedical named entity recognition (NER) and
the relation extraction (RE) task using BC5CDR and ChemProt. The
results indicated that KV-PLM model not only outperformed other
model in these tasks but also demonstrated an ability to engage in
knowledgeable and versatile reading.

Moreover, the system’s proficiency in versatile reading tasks
involving “cross-information retrieval”, “match judging”, and
“human professional performance” was confirmed. KV-PLM
excelled in these versatile tasks, notably in facilitating effective
cross retrieval between substances and property descriptions.
These capabilities highlight the immense potential of KV-PLM in
the realms of novel drug discovery and molecular property
prediction, offering researchers a tool to gain a holistic and in-
depth comprehension of molecular entities.

2.1.10 MolT5
To facilitate efficient communication between molecules

structures and natural language, and to address challenge of
limited data, Molecular T5 (MolT5), a self-supervised learning
framework, was developed (Edwards et al., 2022). This

FIGURE 9
The architectural structure of KV-PLM. (The workflow of KV-PLM starts with internal molecular structure serialization into SMILES format, then the
Meta-knowledge mapping is utilized to correlates molecular features to human intelligence. External biomedical text would subsequently be fused with
molecular data. The language model pre-training would empower the model with the ability to predict molecular properties. It enables knowledgeable
machine reading across different molecular properties (e.g., molecular structure, chemical properties, natural language documentation, and
structured biomedical knowledge), which would facilitate tasks like description generation, property prediction, and knowledge extraction).
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framework employs a transformer-based architecture (Figure 10),
leveraging the T5 that has been pretrained text-to-text model,
enabling the simultaneous processing of vast amounts of
unlabeled natural language text and molecular string data for
pre-training purposes. In pursuit of this objective, two new tasks
were introduced and formalized: molecular language tasks,
specifically molecule captioning, and text-guided de novo
molecule generation. Although these molecule–language tasks
share similarities with vision–language tasks, there present
distinct challenges, particularly the increased complexity of
molecular captioning due to the diverse range of possible
languages used for captioning. The performance of MolT5 was
rigorously assessed using a suite of evaluation metrics, including
BLEU, ROUGE, and METEOR, as well as a newly developed cross-
modal retrieval similarity metric, the Text2Mol metric. When
evaluated against the ChEBI-20 dataset using both the Text2Mol
metric and BLEU metric, MolT5 achieved superior scores and
outperformed RNNs and transformers in the two newly defined
tasks. Notably, the performance of MolT5 further improved as the
language model size increased.

MolT5 pretrains models on single-modal data, effectively
mitigating the issue of data scarcity within the chemical domain.
Furthermore, a variety metrics were also adopted including a new
cross-modal embedding-based metric, to evaluate the performance
of molecule captioning and text-based molecule generation. Results
show that MolT5-based models are capable of generating high-
quality outputs, encompassing both molecules and captions, in
numerous instances.

As previously mentioned, the effective deployment of
MolT5 poised to bolster the application of molecular AI,
empowering researchers to uncover potential drug candidates
by engaging with AI through natural language interactions and

acquiring target chemical structures with specific functional
attributes rather than relying solely on their properties.
However, it is imperative to pay close attention to the
potential biases introduced by the training dataset, the
SMILES strings utilized, and the authenticity of the
compounds listed in ChEBI-20.

2.1.11 Text + Chem T5
To bridge the gap between human‒machine interactions and

establish a cohesive framework for natural language and chemical
representations, the first multidomain, multitask language model,
Multitask Text and Chemistry T5 (Text + Chem T5 (Figure 11),
https://github.com/GT4SD/gt4sd-core), was developed
(Christofidellis et al., 2023). This model excels in managing both
chemical and natural languages in parallel, outperforming others in
cross-domain tasks across a broad spectrum of NLP-based
evaluation metrics. Moreover, it negates the need for costly
mono-domain pretraining and task-specific models. The
capabilities of Text + Chem T5 was rigorously assessed across a
range of tasks, including the predictions of forward and reverse
chemical reactions, the generation of text-conditional novel
molecules, the captioning of molecules spanning various
domains, and execution of paragraph-to-action tasks within the
linguistic domain. The findings underscored the effectiveness of
Text + Chem T5 as a versatile multidomain and multitask model,
adept at generating precise and enlightening captions (with a BLEU-
2 score of 0.625, a Rouge-1 score of 0.647 and a Rouge-2 score of 0.
498) and adeptly translating between natural language and the
SMILES representation of molecules in both text-to-chemistry
and chemistry-to-text endeavors.

In particular, Text + Chem distinguishes itself by its capacity to
navigate complex drug discovery workflows, such as a hypothetical

FIGURE 10
The workflow of MolT5. (MolT5 is trained in two steps (Sadybekov and Katritch, 2023): in pre-training, it learns from public data such as the chemical
formulas and reactions (Murray et al., 2023). In fine-tuning, it specializes in tasks like creating molecule descriptions and generating new molecules).
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molecular discovery process, with a unified model. In this study,
Text + Chem T5 uniquely succeeded in generating the desired
molecule for the “text-to-SMILES task”, provide a synthetic route
identical to the target reaction for “retrosynthesis”, and conceptually
succeed in identifying and proposing an extremely similar reaction
in a chemistry laboratory for a “paragraphs to actions” task. This
fascinating capability, previously uncharted, positions Text + Chem

T5 as superior even to established models such as ChatGPT and
Galactica 1.3B.

The paramount advantage of Text + Chem T5 lies in its
multifaceted task management. As indicated in this manuscript,
Text + Chem is poised for targeted application across a variety of
fields, such as chemical reaction prediction and retrosynthesis,
significantly and efficiently bolstering modern drug development

FIGURE 11
The pipeline of Text + Chem T5. (Text + Chem T5 is capable of dealing with both text and chemistry information, which has a text encoder and a
chemistry encoder that work together to understand inputs from different domains. The model is capable of understanding a chemical structure and
generate a description for it, or it could receive a description and generate the chemical structure in SMILES format).

FIGURE 12
A four-step process of Mol-Instructions for creating and refining molecular descriptions and data. [(Sadybekov and Katritch, 2023) human and AI
work together to generate task descriptions about molecules (Murray et al., 2023); information about molecules is gathered from data sources and
formatted for AI (Cova et al., 2022); biological data is turned into text using templates, such as description of the functions of a specific protein (Roggia
et al., 2024); the quality of molecules and proteins is checked].
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discovery in the physical sciences. It streamlines these processes by
circumventing the need for task-specific fine-tuning and enhancing
human–model interactions.

2.1.12 Mol-Instructions
Recently, a novel LLM named Mol-Instructions has been

introduced, specifically crafted to address the complexities of
biomacromolecules, particularly those relevant to structural
biology (Fang et al., 2023a). This model encompasses a
comprehensive instruction dataset that is segmented into three
pivotal components (Figure 12). (Sadybekov and Katritch, 2023)
Molecule-oriented instructions, which delve into the inherent
properties and behaviors of small molecules essential for
chemical reactions and molecular design (Murray et al., 2023);
protein-oriented instructions, which are geared towards
predicting the structures, functions, and activities of proteins for
protein design; and (Cova et al., 2022) biomolecular text

instructions, which engage in natural language processing (NLP)
tasks that are integral to the fields of associated with bioinformatics
and cheminformatics.

As shown in Figure 12, Mol-Instructions demonstrates great
potential in biomolecular studies. In particular, Mol-Instructions
could be applied in three major areas (Sadybekov and Katritch,
2023): assessment of cross-modal comprehension, which involves
the integration of different types of data to enhance understanding
of biomolecular systems (Murray et al., 2023). Exploration of deeper
biomolecular design, enabling the development of more
sophisticated and effective molecular structures (Cova et al.,
2022). Tool learning to address complex biological challenges,
leveraging advanced computational methods to address intricate
biological questions. Mol-Instructions stands as a significant
advancement in the integration of computational linguistics and
molecular biology, offering a multifaceted approach to
understanding and manipulating biomacromolecules.

FIGURE 13
Outline of the ConPLex model architecture and training framework (In step (Sadybekov and Katritch, 2023), a pre-trained protein language model
and a circular fingerprint method are used to analyze molecular structures. In step (Murray et al., 2023), embedding layers process the molecular data,
creating a numerical representation. In step (Cova et al., 2022), the model undergoes a series of binary and contrastive epochs to update and refine the
learning rate and margin for improved accuracy in predicting molecular interactions).
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2.1.13 ConPLex (https://ConPLex.csail.mit.edu)
Recently, a sophisticated deep learning model known as

ConPLex has been successfully developed for the sequence-based
prediction of drug-target interactions with remarkable accuracy,
broad adaptivity, and specificity (Singh et al., 2023). ConPLex boasts
a competitive edge due to the innovative integration of pretrained
protein language models (“PLex”, for lexicographic pretraining) and
protein-anchored contrastive coembedding (“Con”, for contrastive
learning) (Figure 13). The “PLex” component is capable of
alleviating challenges posed by limited DTI training data, while
the “Con” aspect effectively maps target proteins and drugs into a
unified latent space, ensuring distinct separation between true
interacting partners. Consequently, ConPLex enables more
accurate predictions of DTIs by leveraging the distance within
the learned representations, even when dealing with massive
compound libraries and the expansive human proteome.

The experimental results have demonstrated the model’s efficacy in
successfully predicting the tested kinase-drug interactions, with 12 out of
19 pairs showing KD values less than 100 nM, including four with
subnanomolar affinity and an efficient EPHB1 inhibitor (PD-166326,
KD = 1.3 nM). Beyond its broad generalizability and high specificity,
ConPLex enhances interpretability, rendering the drug-target
embedding space and the functions of human cell-surface proteins
more transparent. In addition to the in silico screening of small-
molecular-weight compounds, ConPLex holds potential for screening
other drugs types, such as antibodies, and for toxicity prediction.

Given these significant advantages, ConPLex is anticipated to
revolutionize in silico drug screening at the genomic scale and to
accelerate the development of innovative drugs in modern
pharmaceutical research.

2.2 Deep learning for macromolecular drugs
(protein structure prediction)

Protein structures are traditionally elucidated through experimental
techniques such as by X-ray crystallography, nuclear magnetic
resonance (NMR) and electron cryomicroscopy (cryo-EM), which
are known for their precision. However, these methods are complex,
time-consuming, and costly, which limits their widespread application.
In light of these constraints and the growing need for novel protein
structures, there has been a surge in interest in innovative strategies,
particularly bioinformatics approaches to obtain novel protein
structures. Despite the promise of these methods, they still
necessitate considerable experimental effort.

2.2.1 AlphaFold
AlphaFold, developed by DeepMind, has revolutionized protein

structure prediction with unprecedented accuracy and reliability,
harnessing the power of neural networks and homology modeling
for protein model construction (Pandey et al., 2022). To extend the
capabilities to predict protein complexes accurately and efficiently,
AlphaFold-Multimer was introduced, expanding the capabilities of
Alphafold2 to handle multiple chains (Yin et al., 2022). The latest
version, AlphaFold3, has been successfully applied in various fields,
including modeling of conventional protein structures and
structures with novel folds, structural construction of artificial
constructs and prediction of protein‒protein interactions. In

particular, models generated by AlphaFold typically achieve TM-
scores greater above 0.9, suggesting that both the overall fold and the
details of the constructed models are theoretically correct (Skolnick
et al., 2021). To date, AlphaFold DB (AlphaFold DB, https://
alphafold.ebi.ac.uk) has provided open access to more than
214 million protein structure predictions (Varadi et al., 2023).

The exceptional performance of AlphaFold is largely attributed
to the novel neural network architectures and specialized training
regimens that incorporate evolutionary, physical and geometric
constraints inherent to protein structures (Jumper and Hassabis,
2022). Alongside the simultaneous generation of multiple sequence
alignments (MSAs) and pairwise features, two key modules,
Evoformer and the structure module, play critical roles in protein
structure development (Skolnick et al., 2021). Evoformer, a building
block of a novel neural network, approaches predict protein
structures as a graph inference problem, with graph edge defined
by the proximity of residues. It consists of two specialized
transformers for distinct data types: the MSA transformer and
the pair representation transformer. The structure module is
tasked with local side chain packing rearrangements, prioritizing
the orientations of the protein backbone and residues, and
positioning the side chains of different residues.

In a study utilizing the program Accuracy of NMR Structures
Using RCI and Rigidity (ANSURR), the accuracy of AlphaFold-
generated structures was compared to NMR structures (Fowler and
Williamson, 2022). The results revealed that the AlphaFold models
generally surpass NMR ensembles in accuracy, although there are
scenarios, particularly those involving dynamic structures, where
NMR ensembles may be more precise. This suggests that AlphaFold
might display relatively low confidence in predicting dynamic
structures. Consequently, it has been proposed that AlphaFold
could be instrumental in refining NMR structure. Furthermore,
structures generated by AlphaFold and subsequently validated by
ANSURR are likely to satisfy application requirements, potentially
eliminating the need for additional refinement processes.

2.2.2 MULTICOM
To enhance the precision of AlphaFold-Multimer in predicting

complex structure (Zhu et al., 2023), a sophisticated quaternary
structure prediction system (MULTICOM) has been developed (Liu
et al., 2023b). It is capable of optimizing the inputs transformed into
AlphaFold-Multimer, evaluating and refining the resulting outputs.
It employs a dual approach, utilizing traditional sequence alignment
and Foldseek-based structure alignment to generate MSAs and to
identify templates for individual monomers. These MSAs for
monomers are subsequently merged to form MSAs for
multimers. Moreover, the structural predictions generated can be
appraised using a suite of complementary metrics, and the
refinement of structural predictions can be achieved through a
Foldseek-based structure alignment strategy.

The results showed that the average TM-score for the initial
predictions from MULTICOM for CASP15 assembly targets was
~0.76, making a 5.3% increase over the standard AlphaFold-
Multimer. The average TM-score for the top 5 predictions by
MULTICOM was ~0.80, which represents an 8% increase
compared with the standard AlphaFold-Multimer. In addition,
the Foldseek structure alignment-based multimer structure
generation (FSAMG) method outperformed several prevalent
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sequences alignment-based multimer structure generation methods,
such as NBIS-AF2-multimer predictions.

2.2.3 ComplexQA
In a cutting-edge study, a novel model quality assessment

method, ComplexQA, has been introduced. This method
leverages a deep graph neural network-based algorithm designed
to assess the local quality of interfacial residues within protein
complexes (Figure 14) (Zhang et al., 2023). It does so by
analyzing a combination of sequence data, 3D structural
information, and chemical properties. The process begins by
converting the protein complex structures into undirected graphs,
followed by the derivation of feature representation for each graph
node. All the features, including the hidden features, are
concatenated and used for graph learning purposes. To represent
the edges of the graph, residue–residue features are acquired,
primarily through two newly designed matrices: the adjacent
matrix and the edge distance matrix. By integrating these two
representations, the edge embedding features are generated,
which are then employed for the subsequent edge convolution
operations within the graph convolutional network block. This
block further consists of two subblocks: one for edge convolution
and another for node convolution. Finally, the output is transformed
into a 1D convolutional layer, which employs a linear activation
function to produce the final results. This sophisticated approach by
ComplexQA offers a comprehensive evaluation of protein complex
structures, enhancing our ability to understand and predict
their quality.

In comparative evaluations across diverse datasets, ComplexQA
outperformed the other leading algorithms (DProQA, GNN-DOVE,
TRScore, GOAP, and ZRANK2). It also displayed commendable
performance on challenging targets that featured a sparse number of
acceptable models. Furthermore, ComplexQA is capable of
delivering a detailed assessment of each interface residue, offering
a level of precision that is invaluable in the field of protein complex
structure analysis.

2.2.4 ProtGPT2
ProtGPT2 (https://huggingface.co/nferruz/ProtGPT2), a

cutting-edge autoregressive transformer model grounded in

language-based principles, has been engineered to de novo
construct protein structures with high throughput efficiency
(Ferruz et al., 2022). The transformer was trained on an
expansive dataset of ~50 million non-annotated sequences from
the UniRef50 (UR50) database, encompassing the full spectrum of
protein diversity, thereby enabling it to learn and “comprehend” the
intricacies of protein language in an autoregressive manner. In
addition to the standard performance metrics, a suite of extrinsic
tests was meticulously designed to assess the quality of the protein
sequences generated by ProtGPT2.

The findings were compelling that ProtGPT2 demonstrated an
impressive ability to generate sequences that, while remotely related
to natural counterparts, also bore resemblance to known structural
spaces. The generated proteins mirrored the natural amino acid
propensities observed in their naturally occurring counterparts, with
a notable predilection for globular structures, accounting for roughly
80% of the generated proteins. Moreover, sequences generated by
ProtGPT2 were found to be only distantly related to those found in
nature. When these results were integrated with similarity network
analyses, it became evident that ProtGPT2 possesses the unique
capability to explore and sample previously uncharted territories
within the vast protein space.

2.2.5 ProteinMPNN
Recently, a novel deep learning-based protein sequence design

strategy, ProteinMPNN, has emerged, demonstrating significant
advantages in both in silico and experimental tests (Dauparas
et al., 2022). This innovative approach is founded on the
structured transformer framework (Figure 15), incorporating a
message-passing neural network (MPNN) architecture that
encompasses 3 encoder layers, 3 decoder layers and 128 hidden
layers. ProteinMPNN was designed to predict target protein
sequences in an autoregressive manner from the N- to
C-terminus using protein backbone features as input data. The
sequence recovery rate of the baseline model was approximately
41.2%, which was notably increased to more than 50% following a
series of improvements. These enhancements were primarily
focused on the following aspects (Sadybekov and Katritch, 2023):
incorporating additional distance metrics between virtual Cβs
(Murray et al., 2023), introducing an edge update mechanism

FIGURE 14
The model architecture of ComplexQA with the deep graph convolution network. (ComplexQA is capable of molecular analysis that processes
various molecular features through Conv1D blocks and integrates edge information using Conv2D blocks. Then applies graph convolutional networks
(GCNs) with multiple blocks was used for feature aggregation and normalization. Finally, it concludes with the generation of a residue interface score to
assess molecular interactions).
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(Cova et al., 2022), employing random sampling for the decoding
order within the decoder (Roggia et al., 2024), integrating coding
information regarding the relative position and chain number, and
(Pandey et al., 2022) the incorporation of Gaussian noise to enhance
model robustness.

The results were impressive, with ProteinMPNN demonstrating
the ability to design sequences for monomers and cyclic oligomers
with remarkable stability and precision. Most of the proteins
produced by the MPNN were soluble (96 design sequences,
73 soluble). The crystal structures and the electron cloud density
of the core side chain were highly consistent with the intended
design structures. Similar successes were achieved in the design of
proteins with cyclic and internal repeat symmetries as well as those
incorporating polyproline II helix motifs.

ProteinMPNN achieved a sequence recovery rate of 52.4%,
marking a 19.5% increase compared to that of Rosetta for native
protein backbones, and even surpassed AlphaFold in this specific
task. The running time was remarkably swift, averaging
approximately one second. In particular, ProteinMPNN also
enabled the coupling of amino acid sequences at various
positions across single or multiple chains, further expanding its
versatility and applicability in protein sequence design.

3 Concluding remarks

AI has become an indispensable tool for addressing a multitude
of societal challenges. The future of AI in drug development is set to
be a landscape of innovation and efficiency, and it has been seeing a
significant shift towards data-driven approaches, personalized
medicine and clinical trials revolution. Take the AI-driven drug
discovery and personalized medicines for examples. AI is expected
to dominate drug discovery by making more accurate predictions of
drug-target interactions and enhancing our understanding of
disease physiopathology. AI models will be trained on larger

biomedical datasets, including genomics, proteomics, and
metabolomics, to identify novel drug candidates and optimize
drug design. AI will continue to drive the growth of personalized
medicines by leveraging Big Data to tailor treatments to individual
patients. The ability to analyze genetic, environmental, and lifestyle
data will lead to the development of highly personalized treatment
plans. AI has the potential to revolutionize clinical trials by
improving patient recruitment, monitoring, and data analysis.
Advanced algorithms will enable the identification of suitable
candidates based on genetic and phenotypic profiles, ensuring
that trials are conducted with the most appropriate cohort of
participants. Particularly noteworthy is the proliferation of AI
algorithm programs, including DeepMind AlphaFold, Atomwise,
Recursion Pharmaceuticals, BenevolentAI, and Insilico Medicine.
These examples showcase the diverse integration of AI across the
drug development spectrum, from the early stages of drug discovery
to manufacturing processes and post-market surveillance. The
future looks promising, with AI set to play a central role in
making drug development more efficient, targeted, and
personalized.

Nevertheless, the proliferation of LLMs ha as also sparked
significant apprehensions, such as the phenomenon of “artificial
hallucinations” (Beutel et al., 2023; Ji et al., 2022). The dissemination
of AI-generated misinformation, fiction, or unsubstantiated claims
poses a risk of misguiding unsuspecting users. To optimize benefits
and mitigate risks, several key challenges must be surmounted to
harness the full potential of LLMs (Sadybekov and Katritch, 2023).
Transparency concerns. This is paramount for academic discourse
surrounding generative AI. It is recommended that the judicious use
of AI in scientific research be underscored and clearly articulated, as
this could significantly bolster credibility (Tang et al., 2024).
Therefore, tools and techniques that enhance the explain ability
and interpretability of AI models are crucial. Moreover, the
transparency in data governance is essential, providing insight
into the quality and suitability of data used for training and

FIGURE 15
The workflow of ProteinMPNN. (ProteinMPNN is consisted of a backbone encoder that processes protein backbone coordinates and edge
information, and a sequence decoder capable of generating protein sequences. Nodes and edges are updated in the encoder, and through iterative
decoding, it produces a protein sequence with a calculated probability).
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inference in algorithmic decision-making. This includes
documenting the origin of data, collection methods, and any
preprocessing steps, which is crucial for identifying and
mitigating potential biases (Murray et al., 2023). Combating AI
hallucinations. AI hallucinations can occur due to several factors,
including overfitting, training data bias/inaccuracy, and high model
complexity. The foundation of preventing AI hallucinations lies in
using high-quality, diverse training data that represents real-life
scenarios without biases and errors. Moreover, regular validation
using test datasets and human-in-the-Loop verification should also
be instituted to preempt the spread of misinformation and to
counteract biased responses. Finally, risk-based review systems
and retrieval-augmented generation (RAG) might also be helpful
in prioritizing and verifying the review of AI outputs (Cova et al.,
2022). Dataset limitations. Owing to the nature of AI, the quality and
scope of available data are pivotal to the design and practical
application of AI models. There is a pressing need to focus on
the quantity and quality of data, with larger and more diverse
datasets being crucial for enhancing model performance (Roggia
et al., 2024). Building trust in models. Trust is established through a
combination of technical reliability, transparency, and alignment
with user expectations. The factors that foster trust in models
predominantly center on selecting the appropriate neural
network architecture and molecular representations, alongside the
advancement of innovative architectures imbued with inductive
bias. For instance, recurrent neural networks (RNNs) are well-
suited for sequential data due to their ability to maintain a form
of memory. However, the choice extends beyond RNNs to include
other architectures like convolutional neural networks (CNNs),
which are effective for image data, and graph neural networks
(GNNs), which are particularly adept at handling graph-
structured data like molecules. As for molecular representations,
except for SMILES strings, graph representations could capture the
molecular structure more directly, including both topological and
geometrical information, which is essential for tasks like drug
discovery and material science. Moreover, innovative
architectures with inductive bias (e.g., the 3D-CNN architecture
(Skalic et al., 2019)) should be further developed to better address
the nuances of specialized tasks. For example, geodesic 3D
convolutional neural networks (gCNNs) use geodesic
convolutions that consider the intrinsic geometry of the data,
which is particularly useful in medical applications where the
curvature and shape of organs, bones, and tissues are critical.
These architectures can lead to improved model accuracy and
computational efficiency by focusing on the most important
information in the data (Pandey et al., 2022). Data safety and
privacy. The safeguarding of personal information in terms of
security, privacy, and confidentiality is non-negotiable, especially
in the context of research, standards development, and commercial
applications (Jayatunga et al., 2022). Computational complexity
(time complexity, space complexity and scalability). The
challenges posed by the computational demands and intricacies
of contemporary deep learning methods are expected to remain a
significant factor in the near term. For example, to address the
scalability challenge, many AI applications leverage distributed
computing and parallel processing techniques. Reducing the

computational complexity of deep learning models can be
achieved through network compression and acceleration
techniques. Moreover, quantum computing offers a potential
solution to overcoming computational limitations in AI.
Quantum algorithms for machine learning, such as Grover’s
algorithm, can potentially reduce the complexity of certain tasks,
making previously intractable problems solvable. Additionally,
quantum neural networks leveraging qubits could operate with
higher efficiency and improved processing speed.

With unwavering conviction, we are stand atop the pinnacle of
research, an epoch where AI, and especially LLMs, are set to
transcend mere advancement and emerge as vital pillars of
contemporary pharmaceutical innovation. It is imperative to
accentuate the sophisticated and proficient application of AI
throughout the biotechnological pharmaceutical development
continuum, demonstrating its unparalleled ability to catalyze
scientific breakthroughs and augment the efficacy of drug
discovery endeavors.
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