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Background: Multiple sclerosis (MS), a chronic autoimmune disorder marked by
demyelination in the central nervous system, is exceptionally uncommon in
China, and remains poorly understood in terms of its peripheral blood
manifestations.

Methods: We conducted a cohort study comprising 39 MS patients and
40 normal controls (NC). High-dimensional mass cytometry, protein arrays,
and targeted metabolomics were utilized to profile immune subsets, proteins,
and metabolites in blood. Differences in multi-omics signatures were scrutinized
across varying MS subtypes.

Results: Immune profiling demonstrated an elevation in various B cell subsets and
monocytes, alongside a reduction in dendritic cells among MS patients.
Proteomic data revealed a downregulation in neurotrophic and tissue repair
proteins. Metabolomic assessment showed a noted decrease in anti-
inflammatory molecules and sphingolipids. Integrated analysis identified
distinct molecular patterns distinguishing MS from controls. Additionally,
multi-omics differences among different MS subtypes were uncovered.
Notably, hippuric acid levels was consistently lower in MS subgroups with
greater disease severity.

Conclusion: This study represents the pioneering exploration of multi-omics in
Chinese MS patients, presenting a comprehensive view of the peripheral blood
changes in MS. Our study underscores the robust capability of multi-omics
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assessments in identifying peripheral blood biomarkers that delineate the varied
clinical presentation, and facilitates future development of biomarkers and targeted
therapeutic interventions in MS.

KEYWORDS

multiple sclerosis, multi-omics, blood immune phenotyping, proteomic, metabolomic,
clinically isolated syndrome, secondary progressive MS

1 Introduction

Multiple sclerosis (MS) stands as a persistent autoimmune
affliction of the central nervous system, persisting without an
established etiology. Within China, MS is considered a relatively
uncommon condition, with the age- and sex-adjusted incidence of

0.235 per 100,000 person-years (Tian et al., 2020; Zhou et al., 2022).
MS is characterized by a wide range of clinical presentations and an
erratic progression, complicating the establishment of therapeutic
strategies and prognostic assessments. Although significant strides
have been made in molecular research, the exact processes that drive
the advancement ofMS are still not fully understood. Although there

FIGURE 1
The study design and changes of blood immune subsets in MS. (A) The study flowchart. (B) PCA analysis of immune cells subsets between NC and
MS. (C) Heatmap of differential expressed immune cell subsets (p < 0.05) in two groups (NC and MS). (D–O) Box plot of significantly differential immune
cell subsets in MS compared to NC. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, using Wilcox test.
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have been some indicators to monitor disease progression, a
definitive clinical indicator is yet to be developed (Zhang et al.,
2021; Zhou et al., 2022). This heterogeneity in clinical
manifestations hinders both the prediction of disease outcomes
and the formulation of treatment plans.

In the realm ofmedical practice, mostMS cases initially manifest
as clinically isolated syndrome (CIS), where symptoms suggestive of
MS arise but a conclusive diagnosis often remains elusive (Koubiyr
et al., 2020). While relapsing-remitting MS (RRMS) represents the
most frequent clinical subtype of MS, the lack of effective control
over relapses can result in patients advancing to secondary
progressive MS (SPMS), for which treatments are notably scarce
(Du et al., 2023). Nevertheless, clear-cut distinctions among CIS,
RRMS, and SPMS have yet to be definitively delineated.

Over the past 10 years, “omics” methodologies have emerged as a
powerful means for quantifying differentially expressed molecular
entities. Their integration into MS research is anticipated to deepen
our comprehension of the disease. To date,most omics investigations into
MS have concentrated on cerebrospinal fluid (CSF) studies (Bhargava
and Calabresi, 2016; Lorefice et al., 2023). While CSF may offer greater
tissue specificity, obtaining a sample requires a lumbar puncture, which is
uncomfortable and invasive. Moreover, prior researches into MS omics
have primarily leveraged single omics methods, lacking an integrated
understanding of the complex attributes of the disease (Singh et al., 2019c;
Reinke et al., 2014). Plasma presents a compelling alternative due to its
more accessible sampling and considerable promise in the identification
of biomarkers that encapsulate the global expression profile frommultiple
tissues and cell types.

In this study, we presented the pioneering exploration of multi-
omics in Chinese patients with MS (Figure 1A). We employed a
multi-omics framework, analyzing immune cell phenotypes, and
levels of proteins and metabolites in peripheral blood samples from
MS patients and normal controls (NC). And integrative analysis was
used to identify peripheral signatures discriminate MS from NC.
Comparative analyses were used differing MS clinical subtypes to
identify markers reflective of disease activity and progression. The
identified biomarkers bear potential for improving diagnostic
accuracy, framing prognosis, and informing therapeutic
approaches for individuals afflicted with MS.

2 Materials and methods

2.1 Participants

A cohort of 39 MS patients and 40 NC were recruited from
Ruijin Hospital and Huashan Hospital, Shanghai, China. The study
was approved by the Ethics Committee of Ruijin Hospital and
Huashan Hospital and conducted in accordance with the
principles of the Helsinki Declaration. All participants provided
written informed consent.

All the MS patient fulfilled the international consensus
diagnostic criteria for MS (Thompson et al., 2018). CIS is defined
as a monophasic clinical episode characterized by patient-reported
symptoms and objective findings that reflect a focal or multifocal
inflammatory demyelinating event in CNS. This event develops
acutely or subacutely, lasting for a minimum of 24 h, with or without
recovery, and occurs in the absence of fever or infection. It is

comparable to a typical multiple sclerosis relapse but occurs in a
patient not known to havemultiple sclerosis. In addition, all enrolled
patients with CIS tested negative for oligoclonal bands. SPMS has a
progressive course following an initial relapsing-remitting course
(Oh et al., 2019). The progressive course is characterized by steadily
increasing objectively documented neurological disability
independent of relapses. The exclusion criteria were: 1)
cardiovascular and/or metabolic diseases; 2) psychiatric disorders
and/or neurologic disease other than MS; 3) body mass index
(weight/height2) higher than 30; or 4) pregnancy.

2.2 Mass cytometry analysis of blood
immune cells

Blood samples were collected from both MS patients and NC
individuals in K2 EDTA tubes provided by BD (Part #366643). Post-
centrifugation at 350 g for a duration of 10 min, the plasma obtained
from the upper fraction was stored at −80°C for later analysis. The cell
fraction at the bottom underwent lysis of red blood cells for 10 min at
ambient temperature. These cells were subsequently rinsed twice with
phosphate-buffered saline (PBS) and labeled using theHuman Immune
Monitoring Panel Kit from Fluidigm (Catalogue #201324). Initial
staining with Cisplatin from Fluidigm (Catalogue #201064) was
conducted at a concentration of 0.1 μM, followed by surface marker
staining for 4 min. Fc receptors were blocked by a 10-min incubation
with Cell Staining Buffer at room temperature. A blend of surface
antibodies was introduced to the cells for half an hour while kept on ice.
The cells were then washed using the staining buffer and fixed using
paraformaldehyde (1.6% solution, Thermo Fisher, Catalogue #28908)
for 10 min at ambient temperature. Cells were resuspended in Ir-
Interchelator solution from Fluidigm (Catalogue #201192B) within Fix/
Perm buffer (Fluidigm, Catalogue #201067) and incubated overnight
within a temperature range of 2°C–8°C. Subsequently, cells were
resuspended in the Fluidigm Cell Acquisition Solution (Catalogue
#201237) amended with EQ Four Element Calibration beads at a 1:
10 ratio (Fluidigm, Catalogue #201078) and passed through a 35 μm
nylon mesh filtration cap (Corning, No. #352235). Acquisition of the
cells was performed on a Helios Mass Cytometer (Fluidigm) at a
collection rate of 200–300 events per second. Data from the mass
cytometry were then transferred and processed using the Cytobank
analysis platform, employing CD45highCD66-gating to remove
granulocytes from the analysis.

2.3 Human Cytokine Antibody Array analysis

Protein detection in the plasma samples was performed by
RayBiotech (Guangzhou, China), utilizing the Quantibody®
Human Cytokine Antibody Array 440 kit (RayBiotech, Inc.,
Catalog # QAH-CAA-440). The protocol was conducted in
accordance with the guidelines provided by the manufacturer.
Concisely, slide wells were prepped by adding 100 μL of sample
diluent to each and allowing a 30-min incubation at ambient
temperature to block non-specific binding sites. Subsequently,
100 μL of either the plasma samples or standard proteins were
dispensed into the wells and permitted to incubate for 2 h at room
temperature. The wells were then subjected to a series of
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washes—five times with Wash Buffer I and twice with Wash Buffer
II, using 150 μL of each buffer for 5 min per wash, all at room
temperature. Following the washes, each well received 80 μL of a
detection antibody cocktail for a 2-h incubation at room
temperature. Post-washing, wells were incubated with 80 μL of
Cy3-equivalent dye labeled streptavidin for 1 h at room
temperature. Following a final wash, the signal was captured via
a laser scanning device.

2.4 MxP
®
Quant 500 kit metabolite

measurements

Targeted metabolomic profiling was conducted utilizing the
MxP® Quant 500 kit by BIOCRATES Life Sciences AG,
Innsbruck, Austria, in conjunction with an advanced ultra-
performance liquid chromatography/tandem mass spectrometry
(UPLC-MS/MS) system comprising an ExionLC UPLC (Sciex)
coupled with a QTRAP 6500+ triple quadrupole/linear ion trap
MS/MS (Sciex) (Xie et al., 2024). This integrated system enables the
quantitative and/or semiquantitative assessment of up to
630 endogenous and microbiota-related metabolites. Aligned with
regulatory benchmarks set forth by the United States Food and Drug
Administration (FDA) and the European Medicines Agency (EMA)
for bioanalytical method validation, the MxP® Quant 500 kit is
specifically tailored and verified for use in human plasma analysis,
incorporating internal and calibration standards to guarantee
accurate quantification and consistent reproducibility within the
analytical results.

2.5 Statistical analysis

To prepare the data for subsequent analysis, we excluded blood-
borne immune cells, plasma cytokines, and metabolites with ≥30%
missing values, followed by K-nearest neighbor (KNN) imputation
of missing values.

The samples were from two cohorts: NC and MS. PCA
(principal component analysis) is an unconstrained ordination
method for dimension reduction. PCA could determinate PCs
(principal component) which explain the most variance for data.
Therefore, PCA projects high dimensional data on 2-dimensional
scatterplot which enable the assessment of sample grouping. We
used Wilcox to assess the associations of blood-borne immune cells,
plasma, and cytokines with MS. We selected differential features
based on Benjamini Hochberg adjusted p-values, with
p-values <0.05 considered statistically significant. Heatmap was
used to visualize the differential features profiles with
ComplexHeatmap R package. Bar plots were made to visualize
the change of differential features between MS and NC, CIS,
RRMS and SPMS, acute phase and remitting phase, EDSS-H and
EDSS-L, T2 and T1 by ggpubr R package.

2.6 Integrative multi-omics analysis

To identify important signatures that highly correlated among
multi-omics and potentially discriminative for MS and NC, we

performed Data Integration Analysis for Biomarker discovery
using Latent Component (DIABLO) on omics data of the
immune cells, the plasma proteins and metabolites (LC-MS).
DIABLO is based on PLS-DA and aims to integrate multi-omics
data by maximizing covariance between all pairs of datasets (Singh
et al., 2019a). Prior to DIABLO, multi-omics data was log
transformed. As discrimination is prioritized, the design matrix
was set to 0.1. DIABLO performed 10 times repeat of 10-fold cross
validation by block.splsda and tune.block.splsda functions in
mixomics, to tune successively model hyperparameters for a final
model which minimize classification error rate.

The first 2 components from the final model are considered
and demonstrated in scatterplot using plotIndiv function for
samples and plotVar function for features. Clustering of
samples by group (NC/MS) and features by omics dataset was
assessed. The mixomics package also provides loadingplot
function and cim function to reveal important features (selected
by DIABLO) for each omics dataset and combined in a heatmap,
respectively. Heatmap that computed by cim function added a
dendrogram with hierarchical clustering (Euclidean distance and
complete linkage). The model performance was visualized by ROC
curve calculated by auroc function also in mixomics. Only the
importance features selected in component 1 of each omics dataset
were assessed. DIABLO circles plot displayed the relationships
between multiple sets of variables (correlation cut-off: r = 0.5) from
component 1 and 2 that measured across the samples, which is
useful in understanding how different types of biological data
interact or correlate with each other.

3 Results

3.1 Characteristics of participants

The study enrolled 40 normal controls (NC group, 13 males and
27 females) and 39 MS patients (MS group, 11 males and
28 females). The average age for NC and MS groups was 35.3 ±
14.2 and 35.0 ± 14.5 years, respectively. Based on disease
progression, the MS patients were further categorized into CIS
(n = 14), RRMS (n =17), and SPMS (n = 8) groups. Within the
MS group, a total of 33 patients were subjected to a blood immune
cell subset analysis, 28 patients had their plasma protein levels
assessed, and 30 patients underwent a plasma metabolomics
profile analysis. The MS group had an average EDSS score of
2.0 ± 1.2, with an average disease duration of 22.8 ± 24.4 months
(Supplementary Table S1).

3.2 Alterations of blood immune cell subsets
in MS

To meticulously detail the variations in blood immune cell
subclasses associated with MS, our study employed mass
spectrometry to quantify 27 distinct immune cell subtypes
(Supplementary Figure S1A). PCA revealed distinctive patterns of
blood immune subsets in MS compared to the NC group
(Figure 1B). We subsequently performed a comparative analysis
of immune cell subtypes between the MS and NC cohorts.

Frontiers in Pharmacology frontiersin.org04

Zhou et al. 10.3389/fphar.2024.1458046

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1458046


Notably, both the general B cell population and specific
subsets—naïve B cells, memory B cells, as well as IgD + memory
B cells—alongside monocytes and classical monocytes, were found in
increased numbers in the MS group relative to the NC group
(Figures 1C–I).

Conversely, our analysis revealed a significant decrease in the levels
of regulatory T cells (Tregs), dendritic cells (DCs), specifically both
plasmacytoid DCs (pDCs) and myeloid DCs (mDCs), as well as CD16+

natural killer (NK) cells, T cells, and various T cell subsets, including
CD4+ T cells, Th1, Th17, memory CD8+ T cells, CD28+ T cells, CD28+

CD4+ T cells, and CD28+ CD8+ T cells, within the MS group when
compared to NC (Figures 1J–O; Supplementary Figures S1B–H).

3.3 Alterations of plasma proteins in MS

We initiated a protein array analysis targeting the expression levels
of 440 plasma proteins. PCA analysis showed that the plasma protein
expression patterns in MS were similar to those observed in the NC
group (Figure 2A). Subsequent differential analysis revealed a broad
spectrum of plasma proteins that were changed in MS (Figure 2B).

Notably, our findings demonstrate a significant reduction in the
expression of neurotrophic factors within the MS group, specifically
persephin, neurotrophin-3 (NT-3), and brain-derived neurotrophic
factor (BDNF) (Figures 2C–E). In addition, there was a discernible
decrease in the levels of insulin-like growth factor-binding protein 2

(IGFBP-2), insulin-like growth factor-binding protein 1 (IGFBP-1),
and epidermal growth factor (EGF) in theMS group (Figures 2F–H).
Some molecules linked with immune surveillance [C-X-C motif
chemokine 16 (CXCL16) and interferon-gamma (IFN-γ)],
urokinase-type plasminogen activator (uPA) and albumin were
also found to be reduced in MS (Figures 2I–L).

3.4 Alterations of plasma metabolites in MS

Targeted metabolomics assessed the presence of 630 plasma
metabolites to delineate differences between the MS and NC groups.
We employed liquid chromatography-mass spectrometry (LC-MS)
for the detection of small molecular metabolites and flow injection
analysis (FIA) for large molecular lipids. The distinct profiles
between MS and NC were observed in the PCA plots generated
from LC-MS data (Figure 3A).

Comparative analysis of the small molecular metabolites uncovered
numerous metabolites that were significantly altered in MS, (Figure 3B;
Supplementary Figure S2A).Notably, themost dramatic declines for the
MS groupwere observed for dehydroepiandrosterone sulfate (DHEAS),
3-methylhistidine (3-Met-His), trans-4-hydroxyproline (t4-OH-Pro),
arginine (Arg), tryptophan (Trp), and cortisol (Figure 3C). In contrast,
the most pronounced increases were found in lactate (Lac), ornithine
(Orn), hypoxanthine, choline, aspartic acid (Asp), and glutamic acid
(Glu) within the MS cohort (Figure 3D).

FIGURE 2
Changes of plasma proteins in MS. (A) PCA analysis of proteins between NC andMS. (B)Heatmap of differential proteins (p < 0.05) in two groups (NC
and MS). (C–L) Box plot of significantly differential expressed plasma proteins in MS compared to NC. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001,
using Wilcox test.
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FIGURE 3
Changes of plasma metabolites in MS. (A) PCA analysis of plasma small molecular metabolites (LC-MS) in MS compared to NC. (B) Bar plot of
significantly differential metabolites between NC and MS, P < 0.05. (C) Box plot of significantly decreased plasmametabolites in MS compared to NC. (D)
Box plot of significantly increased plasmametabolites in MS compared to NC. (E) PCA analysis of plasma lipids (FIA) in MS compared to NC. (F–J) Box plot
of significantly decreased plasma sphingolipids in MS compared to NC. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, using Wilcox test.
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FIGURE 4
Integrative analysis revealed discriminative features between MS and NC. The highly correlated multi-omics signatures that discriminate NC and MS
were identified from supervised model using DIABLO. (A) The scatterplot of samples using PlotIndiv on first 2 component for each block (immune cell
subsets, proteins, small molecular metabolites). (B) Loading plot of component 1 from supervised model for each block, important signatures obtained
fromDIABLOwere ordered by absolute importance (x-axis), colors indicated the class for which themedian expression value is the highest for each
feature. (C) ROC curve based on component 1 of each block (omics). ROC predictionmodels based on 70% of the samples and using 30% of the samples
for prediction. (D)Heatmap of features selected by DIABLO. Dendrograms of features show the hierarchical relationship of the selected features based on
Euclidean distance and complete linkage clustering. Samples on the x-axis are grouped by diagnosis (NC and MS). (E) DIABLO circle plot. Correlations
between each feature from components 1 and 2 are plotted as a circle plot, and features with correlations above 0.5 (absolute value) were selected.
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Regarding lipid metabolites, MS and NC groups were
distinguishable as evidenced by the PCA plots (Figure 3E).
Subsequent differential analysis between the MS and NC cohorts
unmasked a multitude of lipid alterations (Supplementary Figure
S2B). Crucially, our analysis underscored a pronounced reduction in
sphingolipids within the MS group, including sphingomyelins
(Figures 3F, G; Supplementary Figures S3A, B), ceramides
(Figure 3H; Supplementary Figures S3C), hexosylceramides
(Figure 3I), and dihexosylceramides (Figure 3J). Besides, we also
identified a significant array of alterations in other lipid classes such
as phosphatidylcholines (PCs), triglycerides (TGs), and cholesterol
esters (CEs) (Supplementary Table S2).

3.5 Integrative features for discriminatingMS
from NC

We conducted a DIABLO approach to identify a highly
interrelated multi-omics signature that effectively differentiates
MS from NC. Each aspect—immune subsets, proteins, and
metabolites—displayed distinct profiles between MS and NC
(Figure 4A). The immunity-related discrepancies consisted of
augmented proportions of monocytes and classical monocytes in
MS, in contrast to the higher proportions of DCs, myeloid dendritic
cells (mDCs), and CD28+ T cells in NC. Within the proteomic
landscape, NC demonstrated higher levels of CXCL16, follistatin-
like 1, and persephin amongst other proteins; whilst metabolically,
MS was characterized by higher levels of Lac, Orn, and choline,
alongside diminished levels of DHEAS, cortisol, and Trp
(Figure 4B). Employing these distinguishing features, we
developed receiver operating characteristic (ROC) prediction
models by training on 70% of the sample population and
validating on the remaining 30%. This analysis demonstrated
robust differentiation between MS and NC, with computed area
under the curve (AUC) values of 0.98 for immune cell subtypes,
0.94 for proteins, and 0.99 for metabolites (Figure 4C).

Furthermore, DIABLO analysis revealed a pronounced
correlation among monocytes, classical monocytes, and multiple
metabolites (e.g., glycocholic acid [GCA], taurodeoxycholic acid
[TDCA], glycolithocholic acid [GLCA], glycolithocholic acid sulfate
[GLCAS], probetaine, symmetric dimethylarginine [SDMA], etc.),
which were predominantly present in the MS group. There was also
a tight correlation and lower representation of CXCL16, follistatin-
like 1, fractalkine, programmed cell death 1 ligand 1 (B7-H1),
interleukin-17E (IL-17E), Persephin, and uPA in MS.
Additionally, another community featuring mDC, DC, cortisol,
macrophage migration inhibitory factor (MIF), IGFBP-2,
DHEAS, and others was closely correlated and underrepresented
in MS (Figure 4D). Circus plot analysis further visualized the highly
correlated variables (r > 0.5), showcasing the interconnectedness of
these variables (Figure 4E).

3.6 Differences in peripheral signatures
between different clinical subgroups

We categorized MS patients into distinct clinical subgroups
based on various clinical parameters, such as disease stage,

severity, phase, and disease duration. Our subsequent analysis
aimed to elucidate differences in peripheral biomarkers among
these diverse clinical subgroups.

Firstly, we assessed variances among the clinical stages of CIS,
RRMS, and SPMS. Our investigation into immune cell population
differences among these subgroups yielded no significant variances.
However, notable differences emerged in protein and metabolites
levels (Figures 5A–J; Supplementary Figures S4A–T). Notably,
pentraxin-3 displayed a considerable reduction in RRMS
compared to CIS, while tumor necrosis factor-related apoptosis-
inducing ligand 3 (TRAIL-R3), dickkopf-3 (DKK-3), follistatin-like
1, hippuric acid (HipAcid), Hex3Cer(d18:1/20:0), and PC.ae.C36:
2 exhibited decreased levels in both RRMS and SPMS relative to CIS
(Figures 5A–G). Tissue inhibitors of metalloproteinases 2 (TIMP-2)
and (SM) (OH).C22:1 were lower in SPMS compared to CIS or
RRMS (Figures 5H, I). The level of Hex2Cer(d18:1/14:0) was higher
in SPMS relative to CIS and RRMS (Figure 5J).

Secondly, patients in the acute phase had a greater proportion of
B cells and naïve B cells alongside lower levels of monocytes, classical
and non-classical monocytes, and mDCs (Figure 6A). Concomitantly,
the acute phase was associated with elevated concentrations of various
proteins such as interleukin-17F (IL-17F), macrophage inflammatory
protein-3 alpha (MIP3a), and follistatin-like 1 (Figure 6B). Additionally,
analysis of the acute phase showed diminished levels of several bile acids
[taurocholic acid (TCA), GCA, TDCA] relative to the remitting
phase (Figure 6C).

Thirdly, we stratified patients according to the Expanded
Disability Status Scale (EDSS). As compared to the EDSS-L
group (EDSS<3), the EDSS-H group (EDSS ≥3) had an increased
presence of IgD + memory B cells (Figure 6D), increased level of
albumin and reduced levels of several proteins [lectin-like oxidized
low-density lipoprotein receptor 1 (LOX-1), urokinase plasminogen
activator receptor (uPAR), nerve growth factor receptor (NGF-R),
etc.] (Figure 6E), the increased level of serotonin, and lower levels of
several plasma metabolites (Asp, HipAcid, etc.) (Figure 6F).

Finally, MS patients were categorized based on disease duration
into T1 (≤12 months) and T2 groups (>12 months). In comparison
to T1 group, T2 group exhibited a higher ratio of CD8+ T cells
(Figure 6G), lower concentrations of several proteins (leptin, AFP,
B7-H3, etc.), higher level of delta-like ligand 1 (DLL1) (Figure 6H),
and reduced levels of HipAcid (Figure 6I).

In addition, our study discerned substantial differential
expression profiles of various lipid classes, including
phospholipids, triglycerides, diglycerides, and sphingolipids,
across distinct clinical subgroups of MS patients (Supplementary
Figures S5A–C).

4 Discussion

In our current research, we conducted a comparative analysis of
peripheral blood immune subsets, proteomic profiles, and
metabolomic data between MS patients and healthy controls.
This comparison identified distinct peripheral biomarkers that
differentiate MS patients from NC and to examine the
interrelationships among these biomarkers, as well as the
peripheral difference in different subgroups of MS based on
clinical classification.
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FIGURE 5
Differential peripheral features among CIS, RRMS, and SPMS. (A–J) Box plot showing the expression levels of proteins andmetabolites among three
groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, using Kruskal-Wallis test.

FIGURE 6
Difference in peripheral features between different clinical subgroups. (A–C) Bar plot of significantly differential expressed immune subset, proteins,
metabolites (P < 0.05) between acute phase and remitting phase subgroups. (D) Box plot of IgD+ memory B cells in EDSS-H and EDSS-L subgroups. (E, F)
Bar plot of significantly differential expressed proteins and metabolites (P < 0.05) between EDSS-H and EDSS-L subgroups. (G) Box plot of CD8T cells in
T1 and T2 subgroups. (H) Bar plot of significantly differential expressed proteins (P < 0.05) between T2 and T1 subgroups. (I) Box plot of HipAcid in
T1 and T2 subgroups. *P < 0.05, **P < 0.01, using Wilcox test.
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4.1 Multi-omics offered a comprehensive
depiction of the alterations in
peripheral blood

In this study, substantial variations were detected in peripheral
blood immune cell populations. Particularly noteworthy were the
elevated levels of B cell and monocyte subsets, crucial for antibody
synthesis and the mediation of inflammatory responses. Concurrently,
Tregs, known for their immunosuppressive functions, were found to be
depleted in MS, underscoring the central role of immune dysregulation
in the disease’s pathogenesis. Additionally, a coordinated decline in DC
and T cell subpopulations was identified inMS patients. These cell types
are vital in immune surveillance, and their reduced numbers could
increase the vulnerability to pathogens like viruses, which are potential
etiological factors in MS(Tarlinton et al., 2020).

Proteomic analysis revealed the downregulation of several
proteins associated with neural repair, including persephin, NT-3,
BDNF, IGFBP-2, IGFBP-1, and EGF in MS patients. In the
metabolomic profile, heightened levels of metabolites associated
with inflammation or vascular injury, such as Lac, TMAO,
choline, hypoxanthine, and cytotoxic bile acids, were noted.
Concurrently, lower levels of anti-inflammatory metabolites such
as DHEAS and cortisol (Rutkowski et al., 2014; Whitehouse, 2011)
were observed. These findings collectively imply a role for peripheral
inflammation and damage in the evolution of MS.

Interestingly, a significant decrease was observed in a few plasma
sphingolipids in MS patients, including sphingomyelins, ceramides,
and hexosylceramides. Since sphingolipids are key constituents of
the myelin sheath and critical to CNS integrity and function,
including cell growth, differentiation, and myelination (Hannun
and Obeid, 2018; Leal et al., 2022; Dasgupta and Hogan, 2001), their
decrement may influence remyelination processes. This result aligns
with a prior study showing the decline of sphingolipids in the blood
of MS patients (Momchilova et al., 2022). The underlying reasons
for the decrease in these sphingolipids remain unclear; one
possibility is increased clearance mediated by anti-sphingolipid
antibodies. This hypothesis is in part supported by literature
demonstrating elevated levels of antibodies against
phosphatidylcholine in the serum of MS patients (Sádaba et al.,
2020; Sánchez-Vera et al., 2023).

4.2 The distinctive features of peripheral
blood changes across different
clinical subtypes

To explore the difference in the pathogenesis among different
clinical subtypes, we conducted comparisons of the immune
subtypes, proteins, and metabolites. In the analysis comparing
CIS, RRMS and SPMS, we found higher levels of TRAIL-R3,
DKK-3, follistatin-like 1 in CIS than both RRMS and SPMS
groups. TRAIL-R3 acts as a decoy receptor, mitigating apoptosis
by sequestering the TRAIL ligand away from pro-apoptotic
receptors (Jong et al., 2022), potentially aiding in cellular survival
by hindering TRAIL-induced apoptotic pathways. DKK-3, a
member of the Dickkopf protein family, regulates the Wnt
signaling pathway, which influences cell fate determination,
proliferation, and migration (Mourtada et al., 2023). Follistatin-

like 1, known for its multifaceted role as a cytokine, exhibits a
spectrum of functions from pro-inflammatory to anti-inflammatory
actions (Mattiotti et al., 2018; Chaly et al., 2014). The observed
decline in TRAIL-R3, DKK-3, and follistatin-like 1, HipAcid,
Hex3Cer(d18:1/20:0) and PC.ae.C36:2 levels as MS progresses
from CIS to RRMS or SPMS may hold implications for disease
advancement.

In clinical practice, predicting the transition from RRMS to SPMS
poses a significant challenge due to the absence of definitive biomarkers.
Identifying early risk factors for SPMS development is crucial, as it
allows for the timely initiation of effective treatment strategies aimed at
mitigating disease progression. Our study revealed the significant
reduction of TIMP-2 in SPMS patients compared to those with
RRMS. TIMP-2, a member of the TIMP family, functions as an
inhibitor of Matrix Metalloproteinase-2 (MMP-2). Previous studies
showed that the presence ofMMP-2 has been hypothesized to be linked
to the chronic progressive phase of MS(Avolio et al., 2005; Fainardi
et al., 2009). The interplay between TIMP-2 and MMP-2 is marked by
TIMP-2’s irreversible inactivation of MMP-2 through its binding to the
enzyme’s catalytic zinc cofactor. Moreover, Avolio et al. discovered that
the serumMMP-2/TIMP-2 ratio was significantly higher in individuals
with SPMS compared to those with RRMS(Avolio et al., 2003). This
finding positions TIMP-2 as a promising candidate for a biomarker
capable of distinguishing between SPMS and RRMS. Furthermore, the
alterations observed in the levels of specific sphingolipids, such as
Hex2Cer(d18:1/14:0) and SM. (OH).C22:1, in SPMS underscore the
critical role these lipids may play in disease progression. The biological
significance and repercussions of these specific variations are yet to be
fully understood and thus represent a focal point for future research to
clarify their impact on disease etiology and progression.

Furthermore, we investigated distinct characteristics across
different levels of disability (EDSS-H vs EDSS-L), disease activity
(acute vs remitting phase), and disease duration (T2 vs T1).
Differential analysis between EDSS-H and EDSS-L groups revealed a
higher abundance of IgD+ memory B cells in the EDSS-H group,
suggesting an association with disease severity. Notably, albumin levels
were significantly higher in the EDSS-H group. In the context ofMS, the
upsurge of albumin in circulation could stimulate the expression of pro-
inflammatory cytokines and impair astrocytic function (LeVine, 2016).
Consistent with previous literatures (Niino et al., 2009; Duddy et al.,
2007; DiSano et al., 2021), our findings highlighted the elevated
presence of B cells and naïve B cells in MS patients during the acute
phase compared to the remission phase, reinforcing the pivotal role of
B cells inMS pathogenesis. In contrast, bothmDCs andmonocyte levels
were lower during the acute phase relative to the remission phase,
possibly reflecting a depletion of innate immune cells during the acute
phase, coinciding with a consistent elevation of plasma cytokines,
indicative of an acute inflammatory response. Additionally, a higher
representation of CD8+T cells was observed in patients with a more
extended disease course, implying their involvement in long-term
disease pathogenesis.

Our analysis revealed a noteworthy trend showing HipAcid
levels to be consistently diminished in MS subgroups. The gradient
observed when comparing CIS, RRMS, and SPMS, as well as among
various subgroups (EDSS-H vs EDSS-L; acute vs. remitting; T2 vs
T1), positions HipAcid as a compelling candidate biomarker for MS.
HipAcid is a derivative of carboxylic acid produced in the liver
through the enzymatic bonding of benzoic acid with glycine, and
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subjects with physical frailty generally exhibit reduced plasma and
urine levels of HipAcid (Ticinesi et al., 2023). The noted reduction in
HipAcid concentrations could be attributed to the frailty of greater
severity subgroups.

Taken together, the discovery of substances potentially
associated with the progression of MS may offer valuable clues
for future research into the mechanisms of disease progression. This
could aid in better identifying MS patients prone to progression,
enabling early intervention, and slowing the progression of
disability.

4.3 The integration analysis revealed a
strong correlation among various categories
of biological molecules

DIABLO is a multivariate analytical technique that integrate
diverse categories of “omics” data to identify biomarkers with
consistent significance across various layers (Singh et al., 2019b).
In the context of our study, the DIABLO method facilitated the
discernment of a clear distinction between MS patients and NC,
enabling us to identify key peripheral signatures. A range of
critical biomarkers emerged as top signatures for discriminating
MS from NC, including mDC, DC, monocytes, CXCL16,
follistatin-like 1, persephin, Lac, Orn, and choline, among
others. Importantly, the study unveiled variables that were
highly intercorrelated across three distinct “omics” analyses.
The comprehensiveness of the DIABLO approach allowed for
the construction of an in-depth profile that not only distinguishes
MS from NC but also elucidates the complex interrelationships
inherent within each group, affording novel insights into their
respective biological processes.

5 Limitation

Firstly, given the relatively low prevalence of MS, the sample size
included in our study was limited, specifically for patients with CIS
or SPMS. Secondly, the research methodology employed was of a
retrospective and cross-sectional nature, which inherently presents
certain limitations in capturing the full longitudinal trajectory of the
disease. Thirdly, the exclusivity of our analysis to MS without
juxtaposition against other neurological disorders may limit the
specificity of our findings to this disease. Lastly, the selected patients
had been subjected to a variety of treatments, including no
treatment, corticosteroids, and various disease-modifying
therapies, making it difficult to rule out the potential interference
on the results of the study.

6 Conclusion

This was the first study of multi-omics in Chinese MS patients,
to elucidate the multi-faceted molecular alterations in the peripheral
blood of MS patients. The study further distinguished multi-omics
signatures among different MS clinical subtypes. The findings
provided a nuanced view of the disease’s systemic impact, and
underscored their relevance for pathogenetic studies, disease

monitoring, and the early detection of progressive MS subtypes.
Future work will focus on validating these findings in a larger cohort,
and elucidating the mechanistic basis of these biomarkers with the
goal of improving patient outcomes.
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