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Licorice, derived from the root of Glycyrrhiza uralensis Fisch, is a key Traditional
Chinese Medicine known for its detoxifying, spleen-nourishing, and qi-
replenishing properties. Licochalcone A (Lico A), a significant component of
licorice, has garnered interest due to its molecular versatility and receptor-
binding affinity. This review explores the specific roles of Lico A in various
diseases, providing new insights into its characteristics and guiding the rational
use of licorice. Comprehensive literature searches using terms such as “licorice
application” and “pharmacological activity of Lico A” were conducted across
databases including CNKI, PubMed, andGoogle Scholar to gather relevant studies
on Lico A’s pharmacological activities and mechanisms. Lico A, a representative
chalcone in licorice, targets specific mechanisms in anti-cancer and anti-
inflammatory activities. It also plays a role in post-transcriptional regulation.
This review delineates the similarities and differences in the anti-cancer and
anti-inflammatory mechanisms of Lico A, concluding that its effects on non-
coding RNA through post-transcriptional mechanisms deserve further
exploration.

KEYWORDS

Licochalcone A, licorice, anti-cancer, anti-inflammatory, targets

1 Introduction

The root of G. inflata Batal has been a valuable medicinal resource for licorice widely
used in Asia and worldwide. Licocalcone A (Lico A) is one of the characteristic component
of the root of Glycyrrhiza inflata. The application of licorice dates back to ancient
civilizations such as Greece and Rome (Armanini et al., 2002). Today, licorice is widely
incorporated into food, medicinal products, health supplements, and cosmetics, recognized
for its safety and efficacy. In Traditional Chinese Medicine, licorice is prized for its
harmonizing properties, and it has also become popular in dietary applications for its
health benefits (Herrera et al., 2009). Modern applications extend to food additives, tobacco
flavoring, and skin depigmentation products (Rizzato et al., 2017). Its safety has been
affirmed by the U.S. Flavor and Extract Manufacturers Association (Pastorino et al., 2018),
solidifying its reputable status and prompting increased research into its pharmacological
activities and applications (Pastorino et al., 2018).

Flavonoids, common in nature (Perezvizcaino and Fraga, 2018), typically form
glycosides in plants or exist in their free form (Vukics and Guttman, 2008). This
structural diversity translates to varied pharmacological activities, including free radical
scavenging, especially in flavonoids with catechol structures (Yang et al., 2000; Mukne et al.,
2011; Cheng et al., 2019). Chalcones, a specific class of flavonoids, have a 1,3-
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diphenylpropenone skeleton. Among these, Lico A (Figure 1) stands
out with its distinct structure and potent anti-inflammatory
potential (Cui et al., 2008; Siddiqui et al., 2011; Kumar et al.,
2014; Silva et al., 2018; Zhang et al., 2019).

Inflammation, a complex defense response to tissue injury,
involves the vascular system and is triggered by inflammatory
cytokines and mediators (Gabriele and Pucci, 2017; Huang et al.,
2017). Studies show that Lico A mitigates LPS-induced effects by
inhibiting inflammatory cytokine production and NO through NF-
κB pathway suppression. Additionally, Lico A enhances the activity
of antioxidant enzymes and protects against oxidative damage and
cell death via ERK and Akt pathways (Hu and Liu, 2016).
Furthermore, Lico A exhibits significant anti-tumor effects (Kang
et al., 2017; Wu et al., 2017; Chen et al., 2018a), including the
induction of apoptosis in cancer cells, regulation of the cell cycle,
inhibition of tumor invasion and metastasis, and suppression of
tumor angiogenesis (Hao et al., 2015; Lv et al., 2015).

Beyond its anti-inflammatory and anti-tumor properties, Lico A
also demonstrates bacteriostatic, anti-parasitic, and osteogenic
activities. This review summarizes the pharmacological actions and
mechanisms of Lico A over the past five years, aiming to deepen the
understanding of its bioavailability and inform further research.

2 Lico A exerts anticancer activity

Traditional Chinese herbal medicine, with its extensive history
in treating tumors, continues to be a significant source of anti-tumor
medications. Zhou et al. (2019). For example, Lico A is renowned for
its potent anti-tumor activity (Daniell et al., 2000; Chen et al., 2017).
Lico A’s anticancer effects manifest through various mechanisms,
including inducing apoptosis in tumor cells, regulating the cell cycle
to inhibit proliferation, curtailing tumor invasion and metastasis,
and suppressing tumor angiogenesis by modulating related protein
expression and signaling pathways (Yang et al., 2014; Kim et al.,
2015; Park et al., 2015; Tsai et al., 2015; Yang et al., 2016; Kojima
et al., 2017). Recent studies have highlighted Lico A’s cytostatic
effects on human nasopharyngeal carcinoma cells mediated through
apoptosis targeting the JNK/p38 pathway (Chuang et al., 2019).

Invasion and metastasis, key traits of malignant tumors, involve
tumor cells detaching from the primary lesion, invading surrounding
tissues or distant organs, and proliferating to form metastases. Lico A
acts to inhibit this process by restraining cell migration, modulating
E-cadherin and vimentin expression, and blocking MAPK and AKT
signaling pathways (Mazzucchelli and Brambilla, 2000; Huang et al.,
2019a). This multifaceted approach significantly reduces migratory and
invasive capabilities of cells such as SCC-25. Additionally, tumor blood
vessels, vital for supplying oxygen, nutrients, and growth factors, are
also targeted by Lico A. Studies by Kim et al. (2010) demonstrated Lico
A’s ability to inhibit neovascularization both in vitro and in vivo by
suppressing angiogenesis factors such as IL-6, IL-8, and the VEGFR-2
signaling pathway. The effect of Lico A on different tumors and the
specific mechanism of action is shown in Table 1.

In recent years, research into Lico A’s anti-cancer activity has
deepened, broadening its scope of anti-cancer effects. Novel
advancements have been made in understanding Lico A’s role
against oral and nasopharyngeal cancers (Kim et al., 2010; Chuang
et al., 2019). Cancer cells’ inherent ability to sustain growth signals and
perpetually proliferate underscores the significance of inhibiting their
proliferation in cancer treatment. Through an examination of anti-
cancer mechanisms and targets, it is evident that Lico A primarily
exerts its anti-cancer effect by inducing apoptosis and impeding the
cell cycle. The mitochondrial apoptotic pathway is a central conduit
through which Lico A induces apoptosis.

3 Lico A exerts anti-
inflammatory activity

Inflammation is a common and significant pathological response
that underlies many conditions, including surface infections and
organ-specific ailments such as pneumonia, hepatitis, and
nephritis. It involves a delicate balance between proinflammatory
factors and the body’s defense mechanisms, which influences the
onset, progression, and resolution of inflammation. The NF-κB and
Nrf2 pathways play crucial roles in the development of inflammation,
and the unique structure of Lico A provides strong anti-inflammatory
activity by modulating these pathways.

FIGURE 1
Origin and structure of Licochalcone A.

Frontiers in Pharmacology frontiersin.org02

Liu et al. 10.3389/fphar.2024.1453426

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1453426


3.1 Lico A achieves anti-inflammatory effects
by regulating NF-κB pathway

NF-κB, a nuclear transcription factor widely distributed in
various cell types, orchestrates the transcription and expression
of genes involved in processes such as cell proliferation,
differentiation, and immune response (Maracle et al., 2017;

Wang et al., 2018). The NF-κB signaling pathway consists of NF-
κB, Inhibitor of NF-κB (IκB), and IκB kinases (IKK). In an inactive
state, the NF-κB dimer is bound to IκB. Cellular stimulation leads to
IKK activation, promoting the phosphorylation and ubiquitination
of IκB, followed by its degradation, freeing the NF-κB dimer to bind
to target genes and regulate their expression (Napetschnig and Wu,
2013). Activation of the NF-κB pathway is linked to apoptosis and

TABLE 1 The type and mechanism of action of Lico A against cancer.

Type Cell line Dosage
(μM)

Mechanism Ref

Nasopharyngeal
carcinoma

HONE-1, NPC-39, and
NPC-BM

20–80 Target the JNK/p38 pathway and exerts a cytostatic effect Chuang et al. (2019)

Breast Cancer MDA-MB-231 10–100 Cell migration and invasion are inhibited by MAPK and AKT signaling Huang et al. (2019b)

MCF-7 20–100 Activate the LC3-II signaling pathway while suppressing the PI3K/Akt/
mTOR/signaling pathway

Xue et al. (2017)

3T3/MCF-7 IC50 = 27.57 Endogenous pathway-mediated apoptosis Bortolotto et al. (2017)

MCF-7 and MDA-
MB-231

10–30 passed intracellular mitochondrial apoptosis pathway Kang et al. (2017)

Glioma M059K/U-251 MG/
GBM8901

20–30 Induced ADAM9 expression and inhibits cell invasion activity through
the MEK-ERK signaling pathway

Huang et al. (2018)

U87 20–40 Inhibit the growth of cells by inducing cell cycle arrest in G0/G1 phase
and G2/M phase

Lu et al. (2018)

GSC 5–7.5 Caused mitochondrial fragmentation and reduced the membrane
potential and ATP production

Kuramoto et al. (2017)

Lung cancer H292 10–80 Overexpression of mir-144–3p induced upregulation of Nrf2 to
promote apoptosis

Chen et al. (2018b)

A549/H460 20–80 Blocked cell cycles progression of the G2/M transition and inducing
apoptosis

Qiu et al. (2017)

A549/H1299 5–20 Activated CHOP pathway Tang et al. (2016)

A549/WI-38 10–20 Inhibition of Akt signaling pathway and expression of downstream
transcription factor Sp1

Huang et al. (2014)

MLE-12 10 Reverse lung injury caused by NNK through the mir-144 and MAPK
pathways

Li et al. (2020)

Hepatoma HepG2 10–80 Attenuat p38/JNK/ERK signaling pathway Chen et al. (2017), Wang
et al. (2018)

HuH7/HepG2 50 Autophagy induced by ULK1/Atg13 and ROS pathways Niu et al. (2018)

Malignant pleural
mesothelioma

MSTO-211H/H28 10–40 Apoptosis was regulated by down-regulating the expression of Sp1 Kim et al. (2015)

Gastric cancer MKN45/SGC7901/
GES-1

15–60 Blocked the Akt/HK2 pathway Wu et al. (2017)

BGC-823 20–100 Caused activation of ERK, JNK and p38 MAPK Hao et al. (2015)

Oral cancer HSC4/HN22 10–40 Downregulation of Sp1 expression induces apoptotic cell death in
OSCC cells

Cho et al. (2014)

SCC-25 25–100a Decreased the expression of mesenchymal markers N-cadherin Shen et al. (2014)

Bladder cancer T24/5637 20–60 Induced ROS-dependent G2/M phases arrest and apoptosis Jiang et al. (2014), Hong
et al. (2019)

Cervical cancer FaDu 25–125 Induced TRAIL expression was mediated in part by anMAPK signaling
pathway involving ERK1/2 and p38

Park et al. (2015)

Lymphoma T24 20–80 Induce mitochondrial dysfunction, decreased mitochondrial
membrane potential

Wang et al. (2015), Yang
et al. (2016)

aμg/mL.
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chronic inflammatory diseases such as rheumatoid arthritis,
inflammatory bowel disease, and asthma (Su et al., 2018).

Studies have shown that Lico A can inhibit TNF-α-induced NF-
κB transcriptional activity, possibly by suppressing IKK activation and
IκB degradation (Tsai et al., 2014). Lico A also inhibits the secretion of
IL-1β, IL-6, and TNF-α inflammatory cytokines by down-regulating
TLR-4 expression and inhibiting the TLR-4/NF-κB inflammatory
signaling pathway (Lv et al., 2019). Moreover, Lico A has shown
significant inhibition in LPS-induced microglial cell line BV-2
phosphorylation, suggesting a neuroprotective pharmacological
activity (Huang et al., 2017).

3.2 Lico A achieves anti-inflammatory
effects by regulating Nrf2 pathway

Nrf2, part of the Cap-n-Collar (CNC) regulatory protein family, is a
critical transcription factor for cellular antioxidant stress (Moi et al.,
1994). Under normal conditions, it remains inactive, bound to Keap1 in
the cytoplasm. External stimuli or oxidative stress trigger Nrf2’s
dissociation from Keap1, followed by phosphorylation and nuclear
transfer. Nrf2 then binds to the antioxidant response element (ARE),
initiating the expression of phase II metabolic enzymes and antioxidants,
thereby enhancing the body’s resistance to oxidative stress (Tu et al.,
2019). The anti-inflammatory impact of the Nrf2 pathway mainly stems
from Nrf2 antioxidant pathway activation, which reduces NF-κB’s
stress-sensitive expression by lowering IκB phosphorylation and
subsequently diminishing inflammation (Chen et al., 2006). Nrf2 and
NF-κB pathways mutually inhibit each other (Pedruzzi et al., 2012).

Research has uncovered that Lico A’s anti-arthritis effects depend
on the activation of the Keap1-Nrf2 signaling pathway through

p62 phosphorylation at the Ser349 site (Su et al., 2018). In the
context of neuroinflammation, Lico A protects OGD/R-stimulated
rat primary cortical neurons, and counters oxidative stress-induced
neuronal damage, and inflammatory reactions by activating the SIRT1/
Nrf2 signaling pathway and inhibiting its downstreamNF-κB signaling
pathway (Liu D. et al., 2018a). Table 2 illustrates the effect of Lico A on
different inflammations and the specific mechanisms of action.

4 Other pharmacological activities of
Lico A

4.1 Improve obesity and lower
blood glucose

Obesity, a significant risk factor for chronic diseases including
cardiovascular ailments, hypertension, osteoarthritis, specific
cancers, and diabetes, is increasingly prevalent worldwide (Tang
et al., 2017). It also contributes to nonalcoholic fatty liver disease
(NAFLD) and hepatic steatosis (Reccia et al., 2017). Research has
shown that Lico A treatment in high-fat diet (HFD)-induced obese
mice reduces body weight and decreases inguinal and epididymal
adipose tissue compared to HFD-treated mice. Additionally, Lico A
improves hepatic steatosis, regulates serum triglycerides, low-
density lipoproteins, free fatty acids, and lowers fasting blood
glucose levels (Luo et al., 2019). Lico A’s specific lipid-lowering
mechanism involves activating the SIRT1/AMPK pathway, reducing
fatty acid synthesis, and enhancing lipolysis and beta-oxidation in
hepatocytes (Liou et al., 2019).

Inducing the browning of white adipose tissue (WAT)
represents a promising strategy for obesity treatment (Kajimura

TABLE 2 The type and mechanism of action of Lico A against inflammation.

Type Cell model Animal model Mechanism Ref

Asthma TNF-α and IL-4 induced BEAS-2B BALB/c mice were sensitized
with ovalbumin

Inhibited Th2-associated cytokines Huang et al.
(2019a)

Liver injury - LPS/GalN-induced C57BL/
6 mice

Inhibition of TLR4-MAPK and NF-κB and Txnip-NLRP3
signaling pathways

Lv et al. (2019)

Mastitis LPS induced mMEC LPS perfused BALB/c mice Inhibited the MAPK and AKT/NF-κB signaling pathways Guo et al. (2019)

Neuroinflammation LPS induced RAW 264.7 and BV-2 - Protect neurons from Aβ- and LPS/IFN-γ-induced toxicity
and apoptosis

Lu et al. (2018)

Primary cultured rat cortical neurons
were exposed to OGD/R

- Counteracts OGD/R-mediated Downregulation of SIRT1,
Nrf2 and HO-1, and upregulation of p65

Liu et al.
(2018b)

BV-2 cells stimulated with LPS Wister rats was given the
injection of LPS

Blocked the phosphorylation of ERK1/2 and p65 Huang et al.
(2017)

Acne P. acnes induced primary mouse
macrophages and SZ95

P. acnes induces ear swelling
in C57BL/6 mice

Inhibited NLRP3 inflammasome Lee et al. (2018)

Arthritis RASFs Collagen-induced arthritis
model of DBA/1 mice

Activate of Keap1-Nrf2 signaling Su et al. (2018)

Acute kidney injury - C57BL/6 mice model of LPS-
induced AKI

Inhibited LPS-induced NF-κB activation Hu and Liu
(2016)

Ulcerative colitis - DSS -induced ulcerative
colitis

Downregulation of NF-κB pathway and upregulation of
nuclear factor Nrf2 pathway

Liu et al.
(2018a)

Skin inflammation HT1080/HDF post-shave irritation model Decreased NF-κB and PGE2 secretion Sulzberger et al.
(2016)

Frontiers in Pharmacology frontiersin.org04

Liu et al. 10.3389/fphar.2024.1453426

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1453426


et al., 2010; Bartelt et al., 2011). Lico A enhances the expression of
brown fat markers, reducing obesity and restoring metabolic
equilibrium (Lee et al., 2018).

4.2 Anti-bacterial and fungal effects

Salmonellosis, caused by multi-drug-resistant Salmonella
Typhimurium, poses a global public health threat (Behravesh
et al., 2014). Lico A inhibits the growth of S. Typhimurium at
MIC levels of 62.5–1,000 μg/mL, with an MBC value > 1,000 μg/mL
(Hosseinzadeh et al., 2018). Additionally, Lico A exhibits substantial
antifungal activity against Candida albicans, inhibiting biofilm
formation by 35%–60%, and suppressing yeast-hyphal
transformation and protease secretion (Seleem et al., 2016).

4.3 Antiparasitic effect

Toxoplasma gondii, the causative agent of toxoplasmosis, poses
significant public health challenges (Ajzenberg et al., 2016). Lico A
effectively inhibits T. gondii proliferation in a dose- and time-
dependent manner with low cytotoxicity against HFF host cells (Si
et al., 2018). Additionally, Lico A reduces the total number of
Schistosoma mansoni eggs, likely by increasing ROS production and
inducing the death of adult Schistosoma mansoni (Souza et al., 2017).

4.4 Strengthen bone formation and increase
bone mass

Osteoporosis, characterized by loss of bone microstructure, heightens
fracture risk (Smith and Walker, 1976). The role of bone marrow
mesenchymal stem cells (BMSCs) in osteoporosis has drawn increasing
attention. Lico A exerts a potent influence on BMSC osteogenic
differentiation and mineralization by up-regulating FasL, and further
modulating ERK and GSK-3β-catenin. Through the activation of
intraosseous bone formation and partial inhibition of bone resorption
in an acute estrogen deficiency model, Lico A administration restores or
protects bone mass in disease states (Ming et al., 2015).

4.5 Intestinal protective activity

In a recent study, the intestinal protective effect of Lico A was
revealed. It was indicated that Lico A could promote intestinal
epithelial renewal to exert intestinal protective effect. The
mechanism involves regulating T-UCRs (transcripts from ultra-
conserved regions) (Wang et al., 2024).

5 Discussion

Anti-cancer and anti-inflammatory properties are the main
characteristic bioactivities of Lico A, compared with other
pharmacological activities. It has been reported that there is a close
relationship between inflammation and cancer. On one hand, the
persistent inflammatory microenvironment instigates tumors by

initiating specific genetic mutations (Botta et al., 2016). On the other,
a growing body of evidence indicates that tumor-related inflammation
promotes angiogenesis andmetastasis. This loop regulation suggests that
Lico A has great potential in cancer prevention for its action of
mechanism. The NF-κB pathway, recognized as a classical
inflammation pathway, is a key channel through which Lico A
exerts its effects against inflammation conditions such as hepatitis,
neuroinflammation, and mastitis (Sen and Baltimore, 1986). The
MAPK pathway, implicated in both inflammation and cancer, is
another target of Lico A. By influencing these targets, Lico A delivers
either anti-inflammatory or anti-cancer effects.

In addition to anti-inflammation and anti-cancer activities, Lico
A can also elicit other activities like Anti-bacterial and fungal,
Antiparasitic, and intestinal protective effects. However,
investigations on these bioactivities are relatively few and lack
systematic in-depth studies to fully demonstrate the potential of
Lico A, which hindered the further development as a natural
bioactive molecule and becomes the key limitation for current
research of Lico A.

In addition to inflammation and cancer, recent studies showed the
modulatory effect of Lico A on Post-transcriptional regulation. Post-
transcriptional regulation refers to the regulation of gene expression
after RNA transcription and is a characteristic of gene expression in
eukaryotes (Dykes and Emanueli, 2017). The initial transcript must
undergo a series of processes before transforming into a functional
mature mRNA, serving as a template for protein translation
(Masamha and Wagner, 2017). Various mechanisms regulate and
control the type and quantity of gene expression during this process.
Current research focuses on non-coding RNA (ncRNA) such as
miRNA, lncRNA, and circRNA (Tezcan et al., 2019). It is
concluded that Lico A can regulate the Nrf2 and MAPK pathways
by modulating miR-144, indicating that Lico A has the potential to
regulate ncRNA, providing new avenues for studying its
pharmacological mechanisms. Moreover, a recent study shows that
Lico A can modulate T-UCR regulation. As T-UCRs are also non-
coding RNAs and have good conservative characteristics among rats,
mice, and humans, playing a fundamental and primary role in gene
regulation, more research should be performed to explore the effect of
Lico A on posttranscriptional gene regulation.
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