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The 2020 FDA drug-drug interaction (DDI) guidance includes a consideration for
metabolites with structural alerts for potential mechanism-based inhibition (MBI)
and describes how this information may be used to determine whether in vitro
studies need to be conducted to evaluate the inhibitory potential of a metabolite
on CYP enzymes. To facilitate identification of structural alerts, an extensive
literature search was performed and alerts for mechanism-based inhibition of
cytochrome P450 enzymes (CYP) were collected. Furthermore, five quantitative
structure-activity relationship (QSAR) models were developed to predict not only
time-dependent inhibition of CYP3A4, an enzyme that metabolizes
approximately 50% of all marketed drugs, but also reversible inhibition of 3A4,
2C9, 2C19 and 2D6. The non-proprietary training database for the QSAR models
contains data for 10,129 chemicals harvested from FDA drug approval packages
and published literature. The cross-validation performance statistics for the new
CYP QSAR models range from 78% to 84% sensitivity and 79%–84% normalized
negative predictivity. Additionally, the performance of the newly developedQSAR
models was assessed using external validation sets. Overall performance statistics
showed up to 75% in sensitivity and up to 80% in normalized negative predictivity.
The newly developed models will provide a faster and more effective evaluation
of potential drug-drug interaction caused by metabolites.
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1 Introduction

Cytochrome P450 (CYP) enzymes are a family of heme containing enzymes that
catalyze the oxidative metabolism of drugs, chemical carcinogens, steroids, and fatty acids
(Guengerich, 2001). Drugs and other xenobiotics may inhibit or induce CYP enzymes, and
therefore alter the metabolism of co-administered drugs. This phenomenon makes up the
majority of drug-drug interaction (DDI) (Hansten et al., 2010). DDI has led to withdrawal
of drugs such as mibefradil, terfenadine, bromfenac, cisapride, cerivastatin, etc., from the
market (Wienkers and Heath, 2005; Giacomini et al., 2007; O Nettleton and J Einolf, 2011).
Adverse drug reactions from DDIs are also the fourth leading cause of death in the US
(Borda et al., 1968; Costa, 1991).
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There are at least 57 human CYP enzymes among which 12 have
been reported to be involved in drug metabolism (Lewis and Ito,
2010). It was reported that 52% of small molecule drugs approved by
the U.S. FDA in 2015–2020 were metabolized by CYP3A4, making it
the major CYP subtype (Guengerich, 2022). CYP enzyme inhibition
is generally categorized as reversible or irreversible. Mechanism-
based inhibition (MBI) is a sub-category of irreversible inhibition,
while reversible inhibition (RI) usually occurs when two or more
molecules compete for binding to active or allosteric sites of a CYP
enzyme. RI can also be non-competitive, where the inhibitor the
inhibitor alters the active site of the enzyme so that the enzyme loses
affinity for its substrate (Deodhar et al., 2020). MBI typically
involves the conversion of a drug to a reactive metabolite(s),
which may react with components of cellular proteins, DNA, and
may even lead to enzyme destruction (Zhang and Tang, 2018). The
MBI mechanism leads to a change in potency of CYP inhibitors that
depends on in vitro incubation time or dosing period in vivo, and
this change is referred to as time-dependent inhibition (TDI) (Riley
et al., 2007). As a result, CYP inhibition presents a great risk in drug
development process.

In 2020, FDA finalized a guidance to assist drug developers
with evaluating the DDI potential of investigational drugs (www.
fda.gov/media/134582/download). Specifically, the guidance
provides a framework for conducting and interpreting in vitro
studies for new drugs. Furthermore, the guidance states that in
vivo DDI caused by metabolites may be possible even if the
in vitro studies suggest that the parent drug alone will not inhibit
any major CYP enzymes (www.fda.gov) (Sudsakorn et al., 2020).
Therefore, the guidance recommends that drug developers
consider evaluating metabolites in vitro for their inhibitory
effects on a panel of CYP enzymes. Specifically, an in vitro
CYP enzyme inhibition study is recommended “if the
metabolite is (1) less polar than the parent drug and the area
under the plasma concentration-time curve (AUC) of a
metabolite is ≥25% of AUC of the parent or (2) if the
metabolite is more polar than the parent drug and the AUC of
metabolite is ≥ AUC of the parent drug”. In addition, a “lower
cut-off value for the metabolite-to-parent AUC ratio may also be
considered if a metabolite contains a structural alert for potential
MBI” of CYP enzymes, since such inhibition carries a higher risk
of causing drug interaction due to their prolonged
inhibition effect.

Various computational approaches have been developed to
assist with prioritization of drug candidates that have a low
propensity for CYP inhibition. Most of QSAR models for enzyme
inhibition are ligand-based in silico methods that predict the
biological activities of drugs based on their 2D or 3D structures
without knowing the 3D structure of the target protein or enzyme.
Early QSARmodels related reversible CYP inhibition of compounds
to molecular properties such as octanol-water partition coefficient,
polarizability, Taft steric parameter, and molecular volume (Hansch
and Zhang, 1993; Gao and Hansch, 1996; Lewis et al., 2001; Hansch
et al., 2004). However, subsequent 2D and 3D QSAR models
included chemical structural descriptors. Examples of these
models include CYP2D6 inhibition models using
26 aryloxypropanolamine compounds and CYP3A4 inhibition
models (Roy and Roy, 2009). A similar approach was employed
by Didziapetris et al. where baseline global QSAR models and local

similarity-based corrections for over 800 compounds from various
literature sources were used to predict CYP3A4 inhibition
(Didziapetris et al., 2010). These models provide accuracies of
80%–83% for the internal test set and 75%–77% for the external
test set. Among the most interesting findings from this study was
that the presence of hydrophobic residues in a compound favored
CYP3A4 inhibition while strong acidic or basic groups reduced
inhibition probability. Another noticeable model was built by Cheng
et al. (2011), using a combination of classifiers to predict direct
inhibition of 5 CYP enzymes. Although the dataset included over
24,700 compounds, compounds with IC50 values in the range of
10–57 µM have been classified as equivocal and were excluded to
avoid uncertainty during model development, leaving
15,744 compounds for the training set. More recently, a model to
predict inhibition or induction of 5 common CYP enzymes has been
made available by Rudik et al. (2022). These models calculated pIC50

values (negative log of the IC50 value) and the largest training set
consists of 16,997 compounds (5,702 positive). However, these
models do not discriminate between RI and MBI.

In addition to traditional QSAR models, experimental screening
methods have been employed to gain insight into CYP inhibition
mechanisms. In a report by Gonzalez et al. (2021),
~5,000 compounds were screened for inhibition of CYP2C9,
CYP2D6, and CYP3A4 using a luminescence-based cytochrome
P450 assay. The resulting data were stratified in random forest and
multi-task deep neural networks to construct QSAR models. A
balanced accuracy of approximately 0.7 was achieved using the
best model. Additionally, Veith et al., have screened
17,143 compounds against five recombinant CYP isozymes (1A2,
2C9, 2C19, 2D6 and 3A4) using an in vitro bioluminescent assay
(Veith et al., 2009). Experimental data were used to interrogate
inhibition activities of functional groups and molecular features.
Finally, there have been molecular docking simulations, homology
modeling, and molecular dynamics simulations of CYP enzymes
that are outside of the scope of the current study.

Earlier QSAR models that relate CYP enzyme inhibition to
molecular properties of inhibitors often use relatively small training
sets which limits their applicability in a regulatory setting. More
recent neural network models use larger datasets and offer higher
accuracies compared to traditional models. However, they use a
“black box” approach and therefore, identification of structural
features responsible for the enzyme inhibition is challenging, if
not impossible. As mentioned earlier, another critical
shortcoming of most of the previous models is that they do not
discriminate between RI and TDI. In addition, 3D-QSARmodels are
usually constructed under the assumption that the enzyme binding
mode for all compounds is the same which may not be true (Ekins
et al., 1999; Wang et al., 2000; Lu et al., 2001; Galetin et al., 2003;
Ekroos and Sjögren, 2006). Furthermore, some of QSAR models are
proprietary and therefore cannot be assessed or reproduced due to
unavailability of the training set data.

Due to these limitations, the present study focused on
developing QSAR models using publicly available and chemically
diverse data sets for TDI of CYP3A4 and RI of CYP3A4, CYP2C9,
CYP2C19, and CYP2D6 enzymes. In addition, structural features
that are responsible for enzyme inhibition have been identified.
Overall, the newly constructed models can be used to identify
molecular fragments that are responsible for CYP inhibition.
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2 Materials and methods

2.1 QSAR model database

All training set data used to construct CYP inhibition QSAR
models were comprised of non-proprietary data harvested from
public data sources including BindingDB (www.bindingdb.org),
Google Scholar, PubMed, and US Patents. All references are
provided in the Supplementary Table S1. RI data were collected
for the four most common CYP enzymes, 3A4, 2C9, 2C19 and
2D6 and TDI data was harvested for 3A4. Although RI data were
collected for CYP1A2, CYP2B6, and CYP2C8 as well as TDI data for
CYP1A2, CYP2B6, CYP2C8, CYP2C9, and CYP2C19, the databases
were small and did not yield viable models (data not shown).

The RI potential of a drug was measured using the concentration
of the drug required to reduce the enzymatic activity of the enzyme
towards its known substrate to half of its normal value, IC50, or RI
constant, Ki. However, the current FDA guidance recommends
assessment of R1 using the following Equation 1:

R1 � 1 + Imax ,u

Ki,u
(1)

where Imax ,u is the maximal unbound plasma concentration of the
interacting drug at steady state and Ki,u is the unbound inhibition
constant determined in vitro (www.fda.gov/media/134582/
download). In the present study, RI data were collected for IC50,
Ki, and R1 measurements, where available.

For irreversible inhibition, IC50 from direct inhibition is usually
compared to the IC50 after preincubation of the enzyme with a
cofactor. A decrease in IC50 upon preincubation indicates TDI (i.e.,
IC50 shift). Other common constants used in assessment of TDI
were the maximal inactivation rate constant (kinact), inactivator
concentration that yields half of the maximum inactivation rate
(KI), and the first order rate constants for loss of CYP activity (kobs)
defined by the following Equation 2 (Orr et al., 2012):

kobs � kobs, I[ ]�0 + kinact I[ ]
KI + I[ ] (2)

where kobs,[I]�0 is kobs in the absence of the substrate, and [I] is the
concentration of the inactivator. In addition, the FDA guidance
recommends assessment of R2, which is defined as Equations 3, 4:

R2 � kobs + kdeg
kdeg

(3)

where

kobs � kinact × 50 × Imax ,u

KI,u + 50 × Imax ,u
(4)

and kdeg is the apparent first-order degradation rate constant of the
affected enzyme.

A binary scoring system was used for modeling purposes where
a score of “1” was assigned to all chemicals classified as inhibitors or
inactivators and “0” was used to denote non-inhibitor or non-
inactivator. The experimental criteria used to classify CYP
inhibition is presented below, in Table 1. The thresholds used to
define reversible inhibition were obtained from available literature
(Rao et al., 2000; Rudik et al., 2022), while the thresholds used for R1,
IC50 fold shift and R2 were obtained from the FDA DDI guidance.

Curated datasets are available in Supplementary Table S1. Overall,
there are 10,129 unique chemicals in the training sets.

2.2 Chemical structure curation

The chemical structures were obtained from BindingDB,
SciFinder®, and PubChem databases in structure data file (SDF)
format. Inorganic chemicals, noble gases, mixtures, single atoms,
metals, and high molecular weight compounds (MW ≥ 1800) were
excluded from the training set. For salts, the neutralized free forms
were used. Manual inspection was performed to ensure the
chemicals, their associated data and references were
accurately recorded.

2.3 SAR profiler literature curation

Structural features that are susceptible to bioactivation have
been outlined in the literature, where collections of such features
have been discussed and reviewed. In the present work, key
publications (Table 2) have been analyzed to collate a set of
structural features associated with bioactivation potentially
leading to MBI of CYP enzymes. More specifically, a list of
structural alerts associated with the formation of reactive
metabolites was compiled together with the information on
available evidence on their association with MBI including
annotations on the proposed mechanisms underlying
bioactivation and examples. These alerts were encoded into a
Leadscope alert set to profile potential CYP inhibition and is
referred to as the Structure-Activity Relationship (SAR) Profiler.

The analysis was also enriched with an additional literature
search to complement the collected information especially on
underlying bioactivation mechanisms (Bolleddula et al., 2014;
Claesson and Minidis, 2018; Cerny et al., 2020; Kalgutkar and
Driscoll, 2020; Zhang et al., 2020).

2.4 Leadscope software

Leadscope Enterprise (LS) version 3.9 (Instem Inc., USA) was
used to construct binary QSAR models. LS is a data mining,
visualization, and advanced informatics application with the
capability to build and apply 2D QSAR models. The software
program was acquired and used under Research Collaboration
Agreements between FDA/CDER and the software provider. All
training set structures were imported into LS and fingerprinted
using a set of 27,142 pre-defined medicinal chemistry structural
features. A small predictive subset of these features was used to
construct the model. Structural scaffolds were generated for the CYP
inhibition models using the following criteria: 1) a minimum of
three compounds per scaffold; 2) a minimum of six atoms per
scaffold; 3) no restriction on the maximum number of rotatable
bonds; and 4) a minimum absolute difference between the mean
activity of the subset of compounds having that feature and the
mean activity of the full set (Roberts et al., 2000). Molecular
properties such as molecular weight, number of rotatable bonds,
number of hydrogen bond donors, number of hydrogen bond
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acceptors, Lipinski score, AlogP (logarithm of 1-octanol/water
partition coefficient), polar surface area, and atom count were
calculated and used for building models.

Highly predictive features and the corresponding helper features
were identified in the feature editor for retention while weakly
predicted features were removed using Z-score, frequency,
precision and mean activity as discriminating parameters
(Roberts et al., 2000). Additional inspection was manually
performed, and redundant or highly correlated features
were removed.

For eachmodel, cross-validation was performed 10 times using a
10% × 10% leave-many-out (LMO) method. This method randomly
selects 10% of the training set for testing and reconstructs a reduced
model using the remaining 90% of the compounds and recalculates
the descriptor weights. This process was repeated 10 times to ensure
that all the compounds present in the training set were predicted ten
times. The average predicted values were used to generate a classic
2 × 2 contingency table containing counts of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) and to

evaluate predictive performance. Statistics such as sensitivity [TP/
(TP + FN)], specificity [TN/(TN + FP)], positive predictivity [TP/
(TP + FP)], negative predictivity [TN/(TN-FN)], and accuracy
[(TP + TN)/(TP + TN + FP + FN)] were calculated as described
by Cooper et al., 1979. Chemicals classified as out-of-domain (OOD)
and equivocal were excluded from Cooper statistic calculations.
Coverage was calculated as the percentage of all chemicals screened
for which a prediction could bemade (OOD results do not constitute
a prediction).

A classification threshold was determined by varying the
positive cutoff probability thresholds for equivocal results and
analyzing the resulting Cooper statistics. The optimal probability
range for indeterminate predictions for the models were identified to
be 0.4 to 0.6. Predictions that are above the 0.6 probability cutoff
were classified as positive, while predictions below 0.4 were classified
as negative. A chemical was treated as OOD if it did not contain any
structural model features or showed a lack of similarity to the
training set compounds (at least 30% similarity to a single
training set compound was required).

TABLE 1 Thresholds for identification of reversible and time-dependent inhibitors.

Inhibition type

Classification

Parameter Inhibitor (scored as “1”) Non- inhibitor (scored as “0”)

Reversible Inhibition (RI) IC5o (µM) ≤10 >10

Ki (µM) ≤10 >10

R1 ≥1.02 <1.02

Time dependent Inhibition (TDI) IC50 fold shift ≥1.5 <1.5

Change in inhibition (%) ≥20 <20

kobs (min-1) ≥0.01 <0.01

R2 ≥1.25 <1.25

TABLE 2 Key publications that have been analyzed to collate structural alerts associated with bioactivation potentially leading to MBI of CYP enzymes.

Publication details References

Common substructures causing mechanism-based inactivation of cytochromes P450 (e.g., furans and thiophenes, dichloro- and trichloro-
ethylenes)

Fontana et al. (2005)

Diverse functional motifs used in drug-design that potentially undergo bioactivation Kalgutkar et al. (2005)

Cytochrome P450 inhibition by different chemical classes Correia (2005)

Bioactivation potential of organic functional groups Kalgutkar and Soglia (2005)

Known structure-activity relationships for P450 inactivation Kalgutkar et al. (2007)

List of organic functional groups susceptible to bioactivation Kalgutkar (2008)

Analysis of drugs based on known structural alerts associated with bioactivation Stepan et al. (2011)

Well-known toxicophores associated with bioactivation leading to reactive metabolite formation Kalgutkar et al. (2012)

Functional groups associated with mechanism-based inactivation of CYP enzymes Orr et al. (2012)

Analysis of structural alerts associated with reactive metabolite formation Kalgutkar and Dalvie (2015)

Structural alerts for P450 inactivation Yu et al. (2015)

Analysis of the structural alert/reactive metabolite concept Kalgutkar (2020)
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Additionally, structural features associated with MBI as
proposed in the key publications (Table 2) were encoded in a
preliminary version of a computerized expert-rule based
profiler. Whereas the literature-based structural alerts are in
general broadly defined and often liable to different
interpretations, the computerized expert system had to
specify all the details of the chemical environment associated
with a given alerting chemical feature. A set of initial structural
alerts were encoded and then subjected to a fingerprinting
analysis. This methodology was developed to identify SAR
knowledge across a series of proprietary chemicals databases
containing relevant data without revealing any potentially
confidential information on the individual chemicals
(Ahlberg et al., 2016; Amberg et al., 2019). More specifically,
the encoded structural alerts preliminarily defined from the

literature curation were complemented with additional probing
structural features (i.e., chemical features covering additional
chemical space as implemented by Leadscope (Ahlberg et al.,
2016)). The alerts and the additional features were matched
against a proprietary database of chemicals where it was known
whether a given chemical record was a CYP3A4 mechanism-based
inhibitor or not. Such proprietary datasets were assembled by
industry and made available to Leadscope through the
fingerprinting analysis without disclosing the structures of the
chemicals. Counts of the number of positive and negative hits
(i.e., chemicals which are mechanism-based inhibitors and
chemicals which are not mechanism-based inhibitors,
respectively) from the proprietary database matching each
substructure (i.e., the alerts and the additional features) were
calculated using the Leadscope software. Each chemical feature

FIGURE 1
Database overview (A) Number of non-proprietary chemicals in each database. (B) Number of chemicals tested in one or more CYP enzyme. (C)
Number of overlapping chemicals in the CYP3A4 (RI) and CYP3A4 (TDI) databases.

FIGURE 2
External validation database overview (A)Number of chemicals in each database. (B)Number of structurally similar (blue) and dissimilar (red) drugs in
the external validation set when compared to the training set.
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(i.e., substructure) was then associated with a count of positives
and negatives.

The results of the fingerprinting analysis were used to manually
refine the structural alerts that were initially encoded from literature
curation. This means that the resulting refined computerized expert-
rule based profiler included a set of MBI alerts where the chemical
environment of the alerts was manually revised based on the
fingerprinting exercise as compared to the very general features
defined in the literature. These alerts were then qualified using the
3A4 TDI dataset of 620 compounds. More specifically, each MBI
alert was marked as predictive or indeterminate based on
available evidence; an alert was marked as indeterminate if
there were 3 or less examples from the CYP3A4 TDI dataset
(i.e., chemicals from the CYP3A4 TDI dataset matching the alert
of interest), or alert was evaluated not to be statistically
significant (i.e., binomial distribution probability greater than
0.85). Expert review of the assignment was also carried out to
revise it based on visual inspection of the chemicals in the
CYP3A4 TDI dataset bearing the specific alert.

2.5 External validation

The predictive performance of the CYP models was assessed
using external validation sets comprised of approved drugs
harvested from proprietary FDA applications and publicly
available data sources including BindingDB (www.bindingdb.org),
Google Scholar, PubMed, and US Patents. Similar to the training
sets, the criteria in Table 1 were used to classify the compounds in
the validation sets. For consensus predictions using the SAR profiler
and QSAR models, a positive prediction from the SAR profiler was
used to justify an overall positive prediction when QSAR prediction
was equivocal only.

3 Results

3.1 Database overview

The final QSAR modeling database set contains 10,129 unique
chemicals compiled from public sources. The number of chemicals
in each individual set is shown in Figure 1A. Each training set
contains less inhibitors as compared to non-inhibitors with 38%,
34%, 28%, 32%, and 49% positive chemicals in CYP3A4 (RI),
CYP2C9, CYP2C19, CYP2D6, and CYP3A4 (TDI), respectively.
Figure 1B shows the number of chemicals present in one or more
reversible CYP inhibition training sets. Overall, there are
151,058 chemicals present in all four RI datasets. Of these
chemicals, 983 exhibit the same effect on all four CYP enzymes
(with only 78 being inhibitors), reflecting the diversity of the binding
sites of those enzymes. In addition, a total of 343 compounds were
found to be in common between CYP3A4 RI and CYP3A4 TDI
training sets (Figure 1), showing 59% concordance.

Additionally, proprietary data for CYP inhibition were
harvested for a total of 231 approved drugs and 33 non-
proprietary chemicals to use for external validation. The number
of chemicals in each individual set is presented in Figure 2A. A
structure similarity analysis between the training and validation sets
revealed that the external validation sets are 83%–98% dissimilar
when a similarity threshold of 70% is applied (Figure 2B).

3.2 Molecular descriptor analysis

The relationship between molecular descriptors and RI
databases is presented in Figure 3. As seen in previous studies
(Lewis and Ito, 2010), CYP3A4 may be inhibited by large molecules,
due to its large cavity size, when compared to other CYP enzymes as

FIGURE 3
Relationship between molecular descriptors and reversible CYP inhibition. (A, D) Normalized histograms for molecular weight of CYP inhibitors. (B,
E) Molecular weight of CYP3A4 inhibitors (positives) compared to non-inhibitors (negatives). (C, F) Polar surface area (PSA) of reversible CYP inhibitors
divided by their molecular weight. Panels A, B and C were generated using training sets and D, E, and F were generated using validation sets.
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shown Figure 3A. The molecular weight distribution of
CYP3A4 inhibitors (positives) is also slightly higher than non-
inhibitors (negatives, Figure 3B). Another interesting finding is
that CYP2D6 inhibitors are on average less polar than the rest of
the enzymes, specifically CYP3A4 (Figure 3C). Docking studies
identify a hydrophobic binding pocket for CYP2D6
(VandenBrink et al., 2012), which is consistent with lower polar
surface area (PSA) of its substrates (Figure 3C). Similar trends were
observed for validation sets, despite their small size (Figures 3D–F).

3.3 Development of QSAR models

In the present study, two modeling approaches were utilized to
construct RI and TDI QSAR models. The CYP3A4 TDI models were
constructed using a single model approach, while reversible CYP
inhibition models were constructed using average-modeling approach
to obtain an optimal active-to-inactive ratio. For the average-modeling

approach, submodels were created using subsets of the training set
with optimal active-to-inactive ratio such that all of the
compounds are present in at least one submodel. When the
average model is applied, each submodel predicts a value, and
the average of all of the predicted values is reported. The final
models contained a total of 524, 545, 682, 592 and 361 features in
the CYP3A4 (RI), CYP2C9, CYP2C19, CYP2D6, and CYP3A4
(TDI), respectively. The structural features with highest Z-scores
for each individual model is presented in Table 3.

3.4 Development of SAR profiler for MBI

The literature analysis and the fingerprinting exercise led to the
definition of 58MBI structural alerts (see Supplementary Table S2 for the
complete list of alerts). Each alert is built using different rules covering a
specific chemical environment to identify potential reactive metabolites
leading to the irreversible (or quasi-irreversible) inhibition of CYPs.

TABLE 3 Top structural features for CYP inhibition.

CYP3A4

toluene

N-ethyllformamide
Amino arylmethane

N-phenethylformamide carbamate

Z-Score 13 13 13 12 12

Frequency 3,185 311 1,561 288 204

CYP2C9

aryl-arylamino ethane
sulfonylbenzene Aminomethyl-benzene

Aryl-aminomethyl-benzene

sulfonyl

Z-Score 11 10 9 8 7

Frequency 200 586 476 133 799

CYP2C19

aryl-arylamino ethane

3-vinyl-1H-indazole
6-alkyl-1H-indazole

alkylperoxide amino arylmethane

Z-Score 9 8 8 8 7

Frequency 137 27 24 25 546

CYP2D6

Aminomethyl-
benzene

secondary alkylamine
Amino-arylethane secondary amine

Alkyl-aminomethyl-benzene

Z-Score 18 16 13 13 13

Frequency 864 1,143 312 1,324 673

CYP3A4 TDI

alkyl halobenzene

Alkoxy-4-alkylbenzene

Alkoxy-4-(oxopropyl)-benzene

1,2-diphenoxyethane N-cyclopropyl-N-methylforamide

Z-Score 8 6 6 6 5

Frequency 114 83 41 33 57
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TABLE 4 MBI alerts qualified as statistically significant and predictive (based on the number of examples matching the alert).

Name General representation of the structural alert Description

Benzodioxoles
(methylenedioxyphenyl

compounds)

No substitution in C8

The benzodioxole moiety is included in the literature list of the main substructures causing MBI of cytochrome P450 (Correia,
2005; Fontana et al., 2005; Kalgutkar et al., 2007; Orr et al., 2012; Yu et al., 2015)
Time-dependent inhibition of P450 by benzodioxole derivatives is proposed to involve P450 oxidation of the methylenedioxy ring
carbon to a carbene intermediate (Kalgutkar and Soglia, 2005; Kalgutkar et al., 2012). This reactive metabolite may inhibit the
enzyme by strongly coordinating to heme iron in the active site of P450 (Kalgutkar et al., 2005). An alternative pathway leading to
MBI may also involve the formation of the o-quinone intermediates then binding to the P450 active site residues (Kalgutkar et al.,
2012; Orr et al., 2012)

Furans The furan moiety is included in the literature list of the main substructures causing MBI of cytochrome P450 (Fontana et al., 2005;
Kalgutkar et al., 2007; Orr et al., 2012; Yu et al., 2015). MBI is associated with the formation of an epoxide intermediate that is
susceptible to nucleophilic attack by nitrogen atoms of the CYP’s protein residues or of the CYP’s heme group. Formation of a
covalent bond between the reactive metabolite and P450 results in inactivation of the enzyme (Fontana et al., 2005)

Terminal (omega and
omega-1) alkynes

or

(R = carbon substitution)

Alkynes are in general included in the list of the main substructures causing MBI of cytochrome P450 (Correia, 2005; Fontana
et al., 2005; Kalgutkar et al., 2007; Orr et al., 2012; Yu et al., 2015). The omega and omega-1 alkynes (terminal) are also specifically
discussed as MBI structural alerts (36). The position of the triple bond seems to affect the bioactivation pathway and the type of
reactive metabolites that may alkylate the heme prosthetic group or the apoprotein (Correia, 2005; Kalgutkar et al., 2005; Kalgutkar
et al., 2007). It was noted that terminal acetylenes (RC≡H) form covalent adducts with the P450 heme group (Correia, 2005)

Primary amines (non-
aromatic)

R = alkyl carbon (No additional substituents bound to N)

Primary amines are known to be quasi-irreversible CYP inactivators (Orr et al., 2012). In general, alkyl amines may cause MBI of
cytochrome P450 and they are responsible for the majority of clinical drug-drug interactions (Yu et al., 2015). More specifically,
amines can be oxidized and coordinate the heme iron inhibiting P450 (Correia, 2005; Kalgutkar et al., 2007). It is suggested that
primary amines are first hydroxylated to hydroxylamines, and these can undergo further oxidation to a nitroso species, which can
then coordinate the heme iron (Correia, 2005; Kalgutkar et al., 2007)

Secondary cyclic amines
(non-aromatic)

R1, R2 = alkyl carbon
R1-N-R2 are part of a cycle

In general, alkyl amines may cause MBI of cytochrome P450 (Yu et al., 2015). More specifically, amines can form intermediates
following oxidation and after this they can coordinate the heme iron and inhibit P450 (Correia, 2005; Kalgutkar et al., 2007).
However, primary amines are required for the formation of the metal complex causing quasi-irreversible inhibition of P450
(Correia, 2005; Kalgutkar et al., 2007). Indeed, secondary cyclic amines are considered to alert for the formation of reactive
metabolites via a nitroxide radical (Kalgutkar et al., 2005)

Cyclopropylamines

R1, R2 = H or carbon with no heteroatom attachement

Cyclopropylamines are well-known substructures causing MBI of cytochrome P450 (Kalgutkar et al., 2005; Yu et al., 2015). A
bioactivation pathway of cyclopropylamines has not been fully elucidated. MBI is proposed to occur via covalent binding to the
P450 active site or apoprotein (Kalgutkar et al., 2005; Orr et al., 2012). Cyclopropylamines with or without an abstractable alpha-
carbon hydrogen can inactivate P450; cyclopropylanilines are reported not to inhibit P450 activity (Kalgutkar et al., 2005;
Kalgutkar et al., 2007)

(Continued on following page)
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TABLE 4 (Continued) MBI alerts qualified as statistically significant and predictive (based on the number of examples matching the alert).

Name General representation of the structural alert Description

Hydroquinone (ortho
and para) derivatives

R1, R2 = H or saturated carbon

Phenols are generally included in the list of the main substructures causing MBI of cytochrome P450 (Orr et al., 2012; Yu et al.,
2015). Following bioactivation of phenols, quinone intermediates and/or epoxides may be formed which are likely associated with
MBI (Kalgutkar et al., 2007)

Epoxides The epoxide moiety is included in the list of the main substructures causing MBI of cytochrome P450 (Fontana et al., 2005). They
are electrophilic functional groups that can then directly react with nucleophiles contained in the biological macromolecules
(Kalgutkar et al., 2012)

Piperazines (tertiary
amines)

Piperazines are not explicitly mentioned in the literature as alerts forMBI of cytochrome P450. Bioactivation of the piperazine ring
is mediated by P450 or monoamine oxidase, which catalyze reactions such as N-dealkylation, ring hydroxylation, N-oxygenation,
and ring opening (Bolleddula et al., 2014). Bioactivation is proposed to involve hydroxylation at the alpha- or beta- carbon atom
forming an unstable carbinolamine intermediate; This then leads to the formation of amino aldehyde and an iminium ion/imine
that are reactive electrophile intermediates and that can covalently bind to nucleophiles contained in biological macromolecules
(Bolleddula et al., 2014). For compounds containing the phenyl piperazine system, bioactivation may also occur via formation of a
quinone-imine intermediate. This is formed following hydroxylation of the phenyl ring (Bolleddula et al., 2014)

Alkylphenols (ortho-
and para), quinone-
methide precursors

R1, R2, R3: H or C

In general, the phenol moiety is included in the list of the main substructures causingMBI of cytochrome P450 (Orr et al., 2012; Yu
et al., 2015). Bioactivation of alkylphenols may lead to the formation of the reactive quinone-methide species (Kalgutkar and
Soglia, 2005) causing apoprotein arylation in P450 (Orr et al., 2012)
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TABLE 4 (Continued) MBI alerts qualified as statistically significant and predictive (based on the number of examples matching the alert).

Name General representation of the structural alert Description

Alkylaromatic ethers
(ortho- and para),
quinone-methide
precursors

R1, R2: saturated carbon

Alkylaromatic ethers are not explicitly mentioned in the literature as alerts for MBI of cytochrome P450. Notably, the P450-
mediated oxidativeO-dealkylation reactions of o- or p-alkylaromatic ethers may form the corresponding phenols (Kalgutkar et al.,
2005). Formation of reactive quinone-methide species can then occur (Kalgutkar and Soglia, 2005) causing apoprotein arylation in
P450 (Orr et al., 2012)

Reactive arenes

R1, R2 = H or C

C9: no heteroatom attachment
C7: saturated carbon

Arenes may potentially lead to reactive metabolites (i.e., arene oxides) upon epoxidation (Kalgutkar et al., 2005; Kalgutkar and
Soglia, 2005). This specific alert identifies specific chemical environments containing the arene substructure and other moieties
that are mentioned in the literature as being associated with MBI: alkyl amines (Correia, 2005; Kalgutkar et al., 2007; Orr et al.,
2012; Yu et al., 2015) and alkenes (Correia, 2005; Orr et al., 2012; Yu et al., 2015)

Arenes (miscellaneous)

Bonds in the heteroaromatic rings can be of various types (e.g., single, double)

Arenes may potentially lead to reactive metabolites (i.e., arene oxides) upon epoxidation (Kalgutkar et al., 2005; Kalgutkar and
Soglia, 2005). This specific alert identifies benzopyran analogues
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The qualification of the structural alerts was conducted using the
3A4 TDI dataset and the statistical analysis (see Methods section,
Structural alerts) led to the definition of a selection of alerts as being
predictive. These alerts are listed in Table 4.

3.5 Predictive performance of QSAR models
and SAR profiler

The predictive performance statistics of CYP inhibition models
using cross validation experiments and external validation
experiments are presented in Table 5. Overall, the models offer
78%–84% sensitivity and 79%–84% negative predictivity in cross-
validation. Concordance of the cross-validation and the external
validation of the models range from 79% to 83% and from 66 to 86,
respectively. Unlike training sets, the external validation sets are
almost exclusively made of drugs. The difference in chemical space
between the two databases (Figure 2 External validation database
overview (A) Number of chemicals in each database. (B)) may
explain relatively lower sensitivities for external validations.
Additional validation studies were carried out to determine the
optimal approach to combine CYP3A4 (MBI) predictions from SAR
profiler and QSAR. Table 5 shows the performance statistics when a
SAR profiler prediction is used to justify an overall positive or
negative prediction only in cases where a QSAR prediction
was equivocal.

4 Discussion

(Q)SAR models have been proven to be particularly useful for
rapid screening of drug candidates during drug development.
Additionally, they are used in a regulatory environment to
provide rapid assessment of toxicological and
pharmacological properties. Models that generate
interpretable predictions are more desirable by regulators as
supporting evidence on the relevance of a prediction can be
more easily interrogated. Furthermore, application of
complementary models has been proven to be successful in
supporting the International Council on Harmonization (ICH)
M7 guidance (Landry et al., 2019). In the present study, two
modeling techniques have been utilized to construct CYP
inhibition models. These models can facilitate identification
of structural alerts and help determine whether a metabolite is
to be investigated in reversible and time-dependent in vitro
studies under the DDI guidance (Sudsakorn et al., 2020).

4.1 Interpretability of structural alerts

In contrast to “black box” models, the current work identifies
molecular features responsible for CYP enzyme inhibition of drugs
and other small molecules. As seen in Table 3, planar aromatic rings
and secondary amines are among the top reversible inhibitory alerts
for all CYPs. Earlier studies found that strong binding properties of
amines and nitrogen-containing, heterocyclic derivatives intensify
their inhibitory activities (Testa and Jenner, 1981). In addition,
scaffolds containing oxygen or sulfur atoms attract iron cation ofT
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cytochrome P-450 through electronic interactions, resulting in 6-
coordinated complexes (Testa and Jenner, 1981).

The presence of aromatic rings among top structural alerts for
CYP3A4 inhibition may be due to pi–pi stacking interactions
between those rings and phenylalanine residues uniquely present
in the CYP3A4 (Beck et al., 2021). Also, the presence of flexible
backbones allows a ligand to better fit into the active site of CYP3A4
(Kaur et al., 2016). That may explain the top linear structural alerts
for CYP3A4 inhibition.

All top features for CYP2D6 have amine groups, in agreement
with previous findings (Sridhar et al., 2012). The active site of
CYP2D6 contains two carboxylic acids from Q216 and D301 that
are involved in substrate recognition and binding (de Groot et al.,
2009; Wang et al., 2009). These acidic residues interact with primary
and secondary amines present in the inhibitors (Beck et al., 2021).
The presence of a basic nitrogen atom and a planar aromatic ring in
many of CYP2D6 substrates has been reported before (Yu et al.,
2004; Gay et al., 2010). Furthermore, aromatic rings in inhibitors
may interact with F120 and F483 through pi–pi stacking (Beck
et al., 2021).

The presence of an amine residue has been proposed to favor
substrate binding to CYP2C9 through electrostatic interactions
(Jones et al., 1996). Heterocycles and heterocyclic nitrogen atoms
that are frequently seen in CYP2C19 inhibitors coordinate with
Heme-501 (Beck et al., 2021). Also, numerous pi–pi stacking
interactions occur between small-molecule arylene groups and
F114 and F476 in CYP2C19 (Beck et al., 2021). Similar pi–pi
stacking interactions are observed in CYP2C9.

On the other hand, tertiary aromatic amines such as pyridine are
among features with lowest Z-scores for all models. Carboxylic acid
is in the bottom of the list for CYP3A4 (both RI and TDI)
and CYP2D6.

Among structural features for CYP3A4 TDI, cyclopropylamine
is reported to cause mechanism-based inhibition of CYP enzymes
through heme alkylation (Orr et al., 2012; Hoemann et al., 2016; Xu
et al., 2022). Experiments show that pyridine is a weak inactivator of
CYP3A4 due to the weak ligation of its nitrogen to the heme iron
(Kaur et al., 2016).

Among 58 MBI alerts obtained from literature, 24 alerts are
similar to, or exact matches of the alerts identified by the QSAR
model. Cyclopropyl amines, hydroquinone derivatives, alkoxy
benzenes, and heteroaromatic rings are the overlapping alerts
that cover the largest subset of compounds in the TDI training
set with up to 253 common compounds in the training set.

These results suggest that the two modeling techniques can be
used in combination to obtain additional weight of evidence for the
MBI predictions.

4.2 Practical application

An external validation set was used to evaluate the predictive
performance of the RI QSAR models and to determine the optimal
approach for combining predictions from the current SAR profiler
for MBI and QSAR model for CYP3A4 TDI. Previous studies
showed that using multiple (Q)SAR models in combination can
increase the sensitivity when a positive prediction from any one
system is used to justify an overall positive prediction (Hillebrecht

et al., 2011; Contrera, 2013; Sutter et al., 2013; Faramarzi et al., 2022).
However, it should be noted that the SAR profiler has been
constructed to provide information on potential mechanisms of
inhibition for all CYP enzymes while the QSAR model and the
external validation set are both based only on the CYP3A4 TDI data.
As such, the rules for using two methodologies in combination have
been adjusted. Overall, it was found that the SAR profiler identified
additional positive signals related to other CYP enzymes and
therefore showed high sensitivity and low specificity in the
external validation. However, in the cases where an equivocal
prediction was generated by the CYP3A4 TDI QSAR model, a
positive prediction from the SAR Profiler provides additional
mechanistic information to determine the relevance of the
positive and negative features obtained from the QSAR model
prediction. Moreover, it was determined that sensitivity can be
increased to 69% (Table 5) without drastically decreasing
specificity when a positive prediction from the SAR profiler is
used to justify an overall positive prediction when the QSAR
prediction was equivocal.

5 Conclusion

In the present study, an extensive literature search was
performed and alerts for mechanism-based inhibition of CYPs
were collected and used to develop a SAR profiler. Furthermore,
five quantitative structure-activity relationship (QSAR) models were
constructed to predict not only time-dependent inhibition of the
major drug-metabolizing enzyme, CYP3A4, but also reversible
inhibition of CYPs 3A4, 2C9, 2C19 and 2D6. Structural alerts
identified by these QSAR models and the SAR profiler were
compared and although some overlap was identified, each model
was found to contain additional information. Lastly, an optimal
method for combining predictions from the different methodologies
was determined. These new models provide a faster and more
effective evaluation of CYP inhibition potential and may be used
to support of DDI structural alert identification.
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