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The incidence of liver disease continues to rise, encompassing a spectrum from
simple steatosis or non-alcoholic fatty liver disease (NAFLD) to non-alcoholic
steatohepatitis (NASH), cirrhosis and liver cancer. Dietary habits in individuals with
liver disease may significantly impact the treatment and prevention of these
conditions. This article examines the role of chili peppers, a common dietary
component, in this context, focusing on capsaicin, the active ingredient in chili
peppers. Capsaicin is an agonist of the transient receptor potential vanilloid
subfamily 1 (TRPV1) and has been shown to exert protective effects on liver
diseases, including liver injury, NAFLD, liver fibrosis and liver cancer. These
protective effects are attributed to capsaicin’s anti-oxidant, anti-inflammatory,
anti-steatosis and anti-fibrosis effects. This article reviewed the different
molecular mechanisms of the protective effect of capsaicin on liver diseases.
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1 Introduction

The liver plays a vital role in energy metabolism, bile acid secretion, drug metabolism,
detoxification, among other functions (Luo et al., 2022). Liver disease causes 2 million
deaths each year, accounting for 4 percent of all deaths, and about two-thirds of liver-related
deaths occur in men (Devarbhavi et al., 2023). The incidence of liver disease continues to
increase (Yu Y. et al., 2014), encompassing conditions ranging from simple steatosis and
non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH),
cirrhosis and liver cancer (Li et al., 2019). Therefore, it is crucial to find effective means
to prevent the occurrence of liver diseases.

In recent years, capsaicin has attracted attention for its potential in the prevention and
treatment of many diseases (Radhakrishna et al., 2024). Capsaicin (trans-8-methyl-
N-vanillyl-6-nonenamide), a naturally occurring alkaloid, is the active component in
Capsicum plants and serves as an agonist of transient receptor potential vanilloid
subfamily 1 (TRPV1). This spicy substance in red chili peppers features a long
hydrophobic carbon end with a polar amide group and a benzene ring (Li et al., 2020).
Capsaicin exhibits numerous beneficial properties, including protection against liver
damage (Fukuta et al., 2020), anti-diabetic (Wang et al., 2012), anti-obesity (Li et al.,
2020), anti-liver fibrosis (Sheng et al., 2020), anti-liver cancer (Ates et al., 2022), relieve pain
(Caprodossi et al., 2011) and anti-oxidant (Chen et al., 2015) and so on. This article
reviewed the protective effects of capsaicin on liver diseases through various mechanisms of
action. A better understanding of the specific role of capsaicin in liver pathogenesis may
provide new directions for the treatment and prevention of liver diseases.
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2 Capsaicin

Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is the main
compound responsible for the spicy flavor of Capsicum plants (Santos
et al., 2023). It is insoluble in water and contains a vanillyl group (the
head), an amide group (the neck), and a fatty acid chain (the tail)
(Musolino et al., 2024). Capsaicin functions through both TRPV1-
dependent and TRPV1-independent pathways, with evidence
suggesting that its biological effects may be mediated by either
mechanism (Sánchez et al., 2022; Zhang et al., 2020). Capsaicin is a
high affinity agonist for the TRPV1 (Li et al., 2021). The affinity between
capsaicin and TRPV1 channels is highly selective and potent. TRPV1 is
a non-selective cation channel that responses to pH, temperature, and
endogenous lipids (Alawi and Keeble, 2010). It is activated directly or
indirectly by various neuroinflammatory mediators and endogenous
inflammatory mediators, such as calcitonin gene-related peptide
(CGRP) or substance P (SP). TRPV1 is also involved in various
physiological and pathological processes in the body, including
cough, pain, inflammation, hearing, taste, gastrointestinal movement,
blood pressure regulation, apoptosis, fat metabolism, pruritus and
tumor pathologic processes (Li and Wang, 2021). Activation of
TRPV1 led to the opening of Ca2+ channels, an influx of Ca2+, and
increased Ca2+ concentration in the cytoplasm, thus promoting the
release of neuropeptides, vasoactive intestinal peptides and excitatory
amino acids by neurons and their fibers. This depletes and inhibits their
formation, and blocking the pain conduction pathway from peripheral
nerve to central nerve (Sharma et al., 2013). After activating TRPV1,
capsaicin induces pain afferent neurons to release SP. Continuous
activation leads to SP exhaustion, eventually preventing the
perception and transmission of pain, thus exerting a pain-relieving
effect (Caprodossi et al., 2011).While capsaicin exertsmany of its effects
through TRPV1 activation, some studies have reported capsaicin-
induced effects that occur independently of TRPV1. In addition to
activating TRPV1, capsaicin also regulates the production of reactive
oxygen species (ROS) (Wu et al., 2022), the flux of other ions across cell
membranes (Reilly et al., 2012), and the fluidity of cell membranes,
impacting various cellular functions (Prakash and Srinivasan, 2010).
Consequently, it has also been extensively studied as a powerful anti-
oxidant and anti-inflammatory agent (Braga Ferreira et al., 2020).
Capsaicin alleviates inflammatory responses and the Warburg effect
in a TRPV1-independent manner by targeting PKM2, LDHA and
COX-2 (ZhangQ. et al., 2022).Moreover, capsaicin induces AMPK and
p53 activation and triggers cell death in a TRPV1-independent manner
(Bao et al., 2019). Overall, capsaicin’s ability to act through both
TRPV1-dependent and independent pathways highlights its
therapeutic potential. This dual action allows capsaicin to modulate
a wide range of biological processes, making it a valuable compound for
further research and clinical applications.

3 Liver injury and capsaicin

3.1 Liver injury

Liver injury is a major threat to human health worldwide, with
causes including viral hepatitis, autoimmune liver disease, liver
ischemia, and drug toxicity (Stravitz and Lee, 2019). The recent
increase in the use of newly developed drugs and herbal or dietary

supplements has increased the risk of liver damage. Drug-induced
liver injury (DILI) is a rare but significant condition that can appear
after exposure to various drugs, herbs, and dietary supplements. The
severity of DILI varies, and severe liver damage can progress to acute
liver failure, potentially resulting in death within days of onset or
liver transplantation (Hassan and Fontana, 2019). Excessive alcohol
consumption is another major cause of liver damage and liver failure
globally (Koneru et al., 2018). The rapid progression of alcoholic
liver disease (ALD) lead to liver fibrosis and cirrhosis. Alcohol
metabolism produces toxic metabolites that cause tissue and
organ damage through an inflammatory cascade involving
numerous cytokines, chemokines, and ROS (Dukić et al., 2023).
Currently, effective strategies for treating liver injury are lacking.
Therefore, there is an urgent need to develop new therapeutic agents
to inhibit liver damage and reduce the risk of severe liver failure in
affected patients.

3.2 Roles of capsaicin in the treatment of
liver injury

3.2.1 Drug-induced liver injury
Capsaicin has demonstrated a protective effect on liver injury

(Table 1). Studies have shown that carbon tetrachloride (CCl4) can
significantly increase the levels of aspartate aminotransferase (AST)
and alanine aminotransferase (ALT) in the rat model. However, the
combined of liposomes encapsulating astaxanthin (Asx)-R (Asx-R-
Lipo) and liposomes encapsulating capsaicin (Cap) (Cap-Lipo)
significantly reduced CCL4-induced elevation of AST and ALT
(Fukuta et al., 2020). Additionally, both the Asx-R-Lipo and Cap-
Lipo treatment groups showed a reduction in ALT levels, with Cap-
Lipo exhibiting a more pronounced decrease. Capsaicin has also
shown a protective effect against N-acetyl-para-aminophenol
(APAP)-induced acute liver injury (ALI). This beneficial effect
might be attributed to capsaicin’s ability to inhibit the high
mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4)/
nuclear factor κB (NF-κB) signaling pathway, reduce the release
of pro-inflammatory cytokines, diminish hepatic oxidative stress
induced by APAP and alleviate hepatocyte apoptosis (Zhan et al.,
2020). Cyclophosphamide disrupts the anti-oxidant system by
producing ROS and led to liver injury. Capsaicin’s
hepatoprotective effect in this context is due to its ability to
reduce ROS production, inhibit inflammation and suppress the
expression of apoptosis protein Caspase-3 (Alam et al., 2023).
Moreover, studies have also demonstrated that capsaicin, when
used in combination with other therapeutic approaches, enhances
its protective effects against liver diseases. Capsaicin and
cannabinoids improved liver pathology and liver function
following thioacetamide-induced acute injury in mice (Avraham
et al., 2008).

3.2.2 Sepsis-induced acute liver injury
Capsaicin is known for its anti-oxidant and anti-inflammatory

effects. It has demonstrated beneficial effects on apoptosis and
mitochondrial function in acute liver injury (ALI) associated with
sepsis. High doses of capsaicin have been shown to reduce serum
levels of ALT and AST, reverse and/or improved the expression of
apoptosis-related proteins, and regulate mitochondrial and
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metabolic regulators, as well as inflammation-related molecules.
These findings suggest that capsaicin protects the liver during
ALI in sepsis, likely due to its ability to downregulate oxidation
and inflammatory processes and potentially alleviate mitochondrial
dysfunction and apoptosis (Ghorbanpour et al., 2023).

3.2.3 Alcoholic liver injury
Studies have shown that a diet rich in capsaicin can be used as an

adjunct treatment for liver damage or disease caused by alcohol
consumption (Koneru et al., 2018; Pyun et al., 2014). In an earlier
study, it has shown that a diet containing capsaicin reduces acute
ethanol-induced lipid accumulation in the liver of rats (Sambaiah
and Satyanarayana, 1989). Capsaicin inhibits Cytochrome P450 2E1
(CYP2E1) and reduces ROS production. This inhibition lead to a
decrease in free radical formation and oxidative stress, restoration of
the MMP/TIMP balance, reducing liver injury (Koneru et al., 2018).
Furthermore, studies have also demonstrated that capsaicin could be
used in combination with dietary modifications enhances its
protective effects against liver diseases. Dietary curcumin and
capsaicin has been shown to prevent loss of alcohol-induced
body, liver, and brain weights and inhibit alcohol-induced
oxidative stress in BALB/c mice (Pyun et al., 2014).

4 Non-alcoholic fatty liver disease
and capsaicin

4.1 Non-alcoholic fatty liver disease

NAFLD affects 25% of the world’s population and is the most
prevalent liver disease. It presents a diverse phenotype, ranging from
simple steatosis to NASH, fibrosis, cirrhosis, and hepatocellular
carcinoma (HCC) (Diehl and Day, 2017). NAFLD is a complex
systemic disease characterized by liver lipid accumulation,
lipotoxicity, insulin resistance, intestinal dysbiosis, and
inflammation (Tilg et al., 2021). The primary driver of NAFLD is
excess nutrition, leading to the expansion of the fat pool and the
accumulation of ectopic fat (Kragh Petersen et al., 2020). In this case,
macrophage infiltration in the visceral adipose tissue produces a
pro-inflammatory state that promotes insulin resistance. In insulin

resistance, inappropriate lipolysis results in the continuous delivery
of fatty acids to the liver, which, along with increased de novo
lipogenesis, disrupts liver metabolism (Powell et al., 2021).
Imbalances in lipid metabolism lead to the formation of lipotoxic
lipids, promoting oxidative stress, inflammasome activation and
apoptosis, and subsequently stimulate inflammation, tissue
regeneration and fibrosis (Friedman et al., 2018; Sanyal, 2019).
The multiple parallel hits theory explained the progression of
NAFLD (Tilg and Moschen, 2010). Multiple hits induced
adipokine secretion, oxidative stress at the endoplasmic reticulum
and cellular levels, and subsequently induced hepatic steatosis
(Takaki et al., 2013). This phenomenon made the liver vulnerable
to multiple effects, including inflammation, mitochondrial
dysfunction, lipocytokine imbalances, apoptosis dysregulation,
oxidative stress, intestinal dysbiosis, HSCs activation, and
production of pro-fibrotic factors, ultimately leading to NASH
and cirrhosis (Takai and Jin, 2018). Studies have shown that
capsaicin may have a role in improving NAFLD. Capsaicin has
been found to reduce liver lipid accumulation, mitigate oxidative
stress, and decrease inflammation. These effects suggest that
capsaicin could be a potential therapeutic agent for managing
NAFLD and its progression to more severe liver diseases.

4.2 Roles of capsaicin in the treatment of
non-alcoholic fatty liver disease

4.2.1 Anti-steatosis
Capsaicin exhibits anti-steatosis effect (Table 2). It reduces lipid

accumulation and also decreased glucose and fatty acid uptake in
HepG2 (Hochkogler et al., 2018). Studies have shown that
capsaicin and hesperidin prevent hepatic steatosis and other
metabolic syndrome-related changes in rats fed a western diet
(Mosqueda-Solís et al., 2018a). Additionally, topical capsaicin
cream combined with moderate exercise has been shown to
prevent hepatic steatosis, dyslipidemia and elevated blood pressure
in hypoestrogenic obese rats (de Lourdes Medina-Contreras et al.,
2020). Dietary capsaicin reduces liver steatosis and insulin resistance
in obese mice fed a high-fat diet (HFD) (Kang et al., 2010). Capsaicin
has been shown to improve lipid metabolism in the liver (Kang et al.,

TABLE 1 Effects of capsaicin on liver injury.

Model Capsaicin dosage Main functions Reference

CCl4-induced liver injury model rat 0.5 µmol Asx/kg and 1 µmol
capsaicin/kg

↓ALT, AST Fukuta et al. (2020)

Alcohol-induced acute liver injury in mice 10 and 20 mg/kg ↓ALT, AST Koneru et al. (2018)

Acetaminophen-induced acute liver injury in
mice

1 mg/kg ↓IL-6, IL-1β, TNF-α, MDA; ↑SOD, GSH Zhan et al. (2020)

Cyclophosphamide-induced liver injury
in rat

10 mg and 20 mg/kg ↓serum liver markers (AST, ALT, ALP, BLI), IL-1β, TNFα,
caspase-3

Alam et al. (2023)

Thioacetamide-induced acute injury in mice 1.25 μg/kg ↓AST, ALT, ammonia, and bilirubin Avraham et al. (2008)

Septic acute liver injury in mice 5 or 20 mg/kg ↓ALT, AST, MDA, ROS, NF-kB, TLR4, IL-1β, TNF-α,
caspase 3
↑sirtuin1, Nrf2, SOD, HO-1

Ghorbanpour et al.
(2023)

Alcohol-induced liver injury in mice 0.014% ↑body, liver, and brain weights Pyun et al. (2014)
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2011). It stimulates the expression of carnitine palmitoyl transferase
(CPT)-1 and CD36, enzymes involved in β-oxidation and hepatic
fatty acid inflow. Conversely, capsaicin decreases the expression of
key enzymes involved in fatty acid synthesis, such as acetyl Co-A
carboxylase (ACC) and fatty acid synthase (FAS) (Shin et al., 2020).
These changes suggest that capsaicin not only helps in reducing fat
accumulation but also improves overall lipid metabolism in the liver,
making it a potential therapeutic agent for managing hepatic
steatosis and related metabolic disorders.

4.2.2 Anti-obesity
The anti-obesity effect of capsaicin has been confirmed through

various models, ranging from cells to animals and humans (Li et al.,
2020). Capsaicin promotes weight loss by increasing energy
expenditure and increasing satiety (Elmas and Gezer, 2022),
inhibiting the production of white adipose tissue (WAT) and
activating the activity of brown adipose tissue (BAT) (Kaur et al.,
2022). It also improves the gut microbiota (Wang et al., 2020;
Baboota et al., 2014a) and other pathways mediated.

TABLE 2 Effects of capsaicin on non-alcoholic fatty liver disease.

Model Capsaicin dosage Main functions Reference

3T3-L1 and
HepG2 cells

3T3-L1:6.91%; HepG2:100 μM ↓mitochondrial oxygen consumption and reduced
glucose and fatty acid uptake

Hochkogler et al. (2018)

Western diet in rats 4 mg/kg ↓hepatic lipid accumulation Mosqueda-Solís et al.
(2018a)

High fat diet in mice 0.015% ↑PPAR-α Kang et al. (2010)

High fat diet in
KKAy mice

0.015% ↓fasting glucose/insulin and triglyceride,
inflammatory adipocytokine genes

Kang et al. (2011)

High-fat diet in
mice

0.075% ↑CPT-1 and CD36
↓ACC and FAS

Shin et al. (2020)

High-fat diet in
mice

capsaicin 0.4 mg/kg, menthol 20 mg/kg, and cinnamaldehyde 2 mg/kg ↓weight gain, lipid accumulation and insulin
resistance
↑brown adipose tissue activation

Kaur et al. (2022)

High-fat diet in
mice

2 mg/kg ↓weight gain and food intake, triglyceride,
cholesterol, glucose, and insulin levels

Wang et al. (2020)

High-fat diet in
mice

2 mg/kg ↑BAT associated genes Baboota et al. (2014a)

3T3-L1 cells and
mice

3T3-L1 cells:0.1–100 μM; mice:2 mg/kg Baboota et al. (2014b)

HepG2 cells 200 and 300 µM ↑AMPK and PGC-1α Bort et al. (2019a)

SD rats 30 mg/kg ↓lipid accumulation Wu et al. (2017)

HepG2 cells 200 μM ↑ROS and AMPK Bort et al. (2019b)

Caco-2 cells 0.1–100 µM ↑FATP2, FATP4, IFABP, CD36, PPARα and
PPARγ

Rohm et al. (2015)

Western diet in rats 4 mg/kg ↑UCP1 and CIDEA Mosqueda-Solís et al.
(2018b)

High-fat diet in rats 10 mg/kg ↓vimentin, peroxiredoxins, and NQO1 Joo et al. (2010)

High-fat diet in rats bean powder (15%) plus capsaicin (0.015%) ↓hepatic cholesterol and triglycerides Pande and Srinivasan
(2012)

High-fat diet in rats HCCMS, 3,382 mg/kg/d (containing 30 mg capsaicin); M-CCMS,
1,128 mg/kg/d (10 mg capsaicin); L-CCMS, 367 mg/kg/d (3 mg
capsaicin)

↑PPARα, PPARγ, UCP2, and adiponectin
↓ leptin

Tan et al. (2014)

High-fat diet in rats 0.15 g capsaicin/kg and/or 1.5 g curcumin/kg ↓hepatic fat accumulation and leptin Seyithanoğlu et al.
(2016)

High-fat diet in
mice

0.015% ↑PPAR-α Hu et al. (2017)

High-fat diet in
mice

0.010% ↑Muc2 and Reg3g Shen et al. (2017)

High-fat diet in
mice

16 mg/kg ↑adiponectin
↓leptin, free fatty acid and insulin concentrations

Shanmugham and
Subban (2022)

Overweight women 125 mg green tea, 25 mg capsaicin and 50 mg ginger extracts ↓serum insulin concentrations; ↑quantitative
insulin sensitivity check index and GSH

Taghizadeh et al. (2017)
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In 3T3-L1 cells, capsaicin inhibits adipocyte differentiation by
activating TRPV1, which induces the browning of white adipocyte,
increases heat production, and decreases intracellular lipid content
(Baboota et al., 2014b). Activation of TRPV1 enhances peroxisome
proliferator-activated receptor gamma (PPAR-γ) expression and
deacetylation, promoting the browning of white adipose tissue
(Krishnan et al., 2019). Capsaicin reduces lipid accumulation and
glucose and fatty acid uptake in 3T3-L1 cells (Hochkogler et al.,
2018). Capsaicin activates AMP-activated protein kinase (AMPK)
and inhibits the protein kinase B (AKT)/mammalian target of
rapamycin (mTOR) pathway, a major regulator of liver
adipogenesis. In addition, capsaicin blocks autophagy and
increases peroxisome proliferator-activated receptor gamma
coactivator-1A (PGC-1a) protein, suggesting that capsaicin acts
as an anti-lipogenic compound in HepG2 cells (Bort et al.,
2019a). Studies have indicated that triglyceride content and lipid
droplets in hepatocytes are significantly reduced by capsaicin,
highlighting its potential to inhibit lipid production in
HepG2 cells (Wu et al., 2017). Additionally, capsaicin decreases
basal neutral lipid content and increases TRPV1 levels by activating
AMPK and PPAR-γ pathways in HepG2 cells (Bort et al., 2019b).

In rats, capsaicin reduces body weight, inhibits fat accumulation
and induces heat production (Ludy et al., 2012). Oral administration
of capsaicin for 5 weeks in HFD-fed rats results in increased
UCP1 expression in WAT, along with changes in protein
expression related to thermogenesis, lipid metabolism, redox-
regulation, signal transduction and energy metabolism (Joo et al.,
2010). Capsaicin-loaded nanoemulsion effectively reduces the body
weight gain, serum lipid level and adipose tissue mass in obese male
SD (Sprague Dawley) rats induced by HFD (Lu et al., 2016). In
addition, capsaicin reduces weight gain and lowered triglyceride
levels in HFD-fed rats without affecting feed intake (Pande and
Srinivasan, 2012). Capsaicin-chitosan microspheres (CCMSs) can
regulate body weight, body mass index, organ index, body fat, fat-to-
weight ratio, and blood lipid levels (Tan et al., 2014). Studies have
also demonstrated that capsaicin could be used in combination with
other treatments or dietary modifications to enhance its protective
effects against liver diseases. In rats fed a western diet, capsaicin
alone or in combination with hesperidin reduces adipocyte size and
induces the browning of WAT and reduces weight gain by
upregulating UCP1 and PRDM16 (Mosqueda-Solís et al., 2018b).
Additionally, capsaicin inhibits the histological features of NAFLD
by decreasing hepatic fat accumulation and increasing leptin levels
associated with inflammation (Seyithanoğlu et al., 2016). Moreover,
dietary curcumin and capsaicin treatment reduced weight gain and
liver lipid levels induced by HFD consumption (Seyithanoğlu et al.,
2016). These findings suggest that capsaicin has significant potential
in managing obesity and NAFLD through various mechanisms,
including promoting the browning of WAT, enhancing
thermogenesis, and improving lipid metabolism.

The application of capsaicin has been shown to reduce liver fat in
mice fed a HFD. Capsaicin stimulates the expression of CPT-1 and
CD36, while decreases the expression of key enzymes involved in fatty
acid synthesis, such as acetyl Co-A carboxylase (ACC) and fatty acid
synthase (FAS). Additionally, capsaicin treatment increases adiponectin
levels in liver tissues. These results suggest that capsaicin inhibits liver fat
accumulation in mice by upregulating β-oxidation and de novo
lipogenesis in HFD-induced NAFLD mice (Shin et al., 2020).

Studies have shown that antibiotics treatment significantly reduces
intestinal inflammation and leakage caused by HFD. Diet capsaicin
increases the expression of PPAR-α in adipose tissue. Animals treated
with both capsaicin and antibiotics showed the least weight gain and
had the smallest fat pad index. Their livers exhibited the lowest levels of
fat accumulation, and this combination therapy also resulted in the
highest insulin responsiveness (Hu et al., 2017). Regardless of whether
the TRPV1 channel was activated, capsaicin reduced food intake and
demonstrated anti-obesity effects, which were mediated by changes in
gut microbiota and concentrations of short-chain fatty acids (SCFAs)
(Wang et al., 2020). One study has shown that the anti-obesity effects of
capsaicin in HFD-fed mice are associated with an increase in the
population of gut bacteria Akkermansia muciniphila (Shen et al.,
2017). Capsanthin-enriched pellets and capsaicin pellets effectively
reduced body weight in mice. Treatment with capsanthin-enriched
pellets resulted in a 37.0% reduction in inguinal adipose tissue and a
43.64% reduction in epididymal adipose tissue (Shanmugham and
Subban, 2022). Capsaicin exhibited an antagonistic effect on HFD-
induced obesity in mice without reducing energy intake (Baskaran
et al., 2017).

There is a positive correlation between dietary capsaicin
consumption and markers of body obesity and fatty liver
(Martínez-Aceviz et al., 2023). A study involving fifteen subjects
has shown that diet capsaicin increases feelings of fullness when food
intake is not restricted, and after dinner, capsaicin prevents the
effects of negative energy balance on appetite (Janssens et al., 2014).
Adding capsaicin to the diet has been shown to increase energy
expenditure, helping to maintain negative energy balance by
counteracting the adverse effects of reduced energy expenditure
components (Janssens et al., 2013). Taking dietary supplements
containing green Tea, capsaicin and ginger extracts for 8 weeks in
overweight women has shown beneficial effects on body weight,
body mass index, insulin metabolism markers, and plasma
glutathione levels (Taghizadeh et al., 2017). Moreover, studies
have shown that a combination of capsaicin, green tea, and CH-19
sweet pepper can reduce body weight in humans by reducing energy
intake, suppressing hunger, and increasing satiety (Reinbach
et al., 2009). These findings suggest that capsaicin could be used
in combination with other treatments or dietary modifications play a
valuable role in weight management and metabolic health,
contributing to improved insulin metabolism and oxidative stress
markers, while also enhancing satiety and energy expenditure.

4.2.3 Improve insulin resistance
HFD or overfeeding can reduce muscle glucose uptake and

increase liver gluconeogenesis, leading to insulin resistance. Insulin
resistance in the liver and skeletal muscle leads to hyperglycemia,
hyperinsulinemia, contributing to dyslipidemia and fatty liver (Czech,
2017). Capsaicin has been shown to have protective effects against
NAFLD and metabolic disorders by addressing insulin resistance and
hepatic steatosis (Kang et al., 2010). It also has preventive effects on
insulin resistance in rats fed a western diet (Mosqueda-Solís et al.,
2018a). Capsaicin inhibits sugar absorption in the gut (Zhang et al.,
2017), reduces liver gluconeogenesis, increases glycogen synthesis,
improves intestinal microbiota and bile acids and enhances insulin
resistance (Hui et al., 2019). Nonivamide, a capsaicin analog,
promotes insulin signaling, stimulates glucose transporter 2
(GLUT2) transport to the membrane, and improves NAFLD
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(Wikan et al., 2020). Pelargonic acid vanillylamide (PAVA) alleviates
NAFLD by exhibiting anti-inflammatory effects and improving
insulin resistance mediated by the Janus kinase 2 (JAK2)/signal
transducer and activator of transcription 3 (STAT3) pathway
(Wikan et al., 2023). Oral capsaicin attenuates the proliferation
and activation of autoreactive T cells in the pancreatic lymph
node, protecting mice from the development of type 1 diabetes
(Nevius et al., 2012). In type 2 diabetes, dietary capsaicin
activation of TRPV1 improved abnormal glucose homeostasis and
increases plasma and ileum glucagon-like peptide 1 (GLP-1) levels
(Wang et al., 2012). Capsaicin improves glucose tolerance and insulin
sensitivity in mice by regulating the gut microbial-bile acid-farnesoid
X receptor (FXR) axis (Hui et al., 2019). Studies have suggested that
dietary capsaicin reduces fasting blood sugar, insulin, leptin levels and
significantly reduces impaired glucose tolerance in obese mice (Kang
et al., 2010). It also reduces metabolic disorders in obese/diabetic
KKAy mice by increasing the expression of adiponectin and its
receptors (Kang et al., 2011). Capsaicin enhances insulin secretion
at various stage during hyperglycemic clamp, increases β-cell
proliferation and decreases β-cell apoptosis by enhancing insulin/
IGF-1 signaling, thereby increasing β-cell mass (Kwon et al., 2013). In
addition, regular supplementation of capsaicin improves postprandial
hyperglycemia, hyperinsulinemia and fasting lipid metabolism
disorders in women with gestational diabetes mellitus (GDM)
(Yuan et al., 2016).

In a word, in NAFLD, key molecules and pathways play critical
roles in regulating lipid metabolism and disease progression. CPT-1
and CD36 are essential for promoting β-oxidation and hepatic fatty
acid uptake, while ACC and FAS are central to fatty acid synthesis.
Their expression is tightly controlled, impacting lipid metabolism
directly. The activation of AMPK and inhibition of the AKT/mTOR
pathway are crucial in suppressing hepatic adipogenesis. Increased
PGC-1α levels and autophagy blockade further support hepatic lipid
homeostasis. UCP1 and PRDM16 contribute to NAFLD inhibition
by inducing the browning of WAT and reducing adipocyte size. The
gut microbial-bile acid-FXR axis plays a significant role in
enhancing glucose tolerance and insulin sensitivity, while the
insulin/IGF-1 signaling pathway increases β-cell mass, further
modulating glucose and lipid metabolism.

Capsaicin improves hepatic lipidmetabolism by upregulating CPT-
1 and CD36 and downregulating ACC and FAS, thus promoting β-
oxidation and reducing fatty acid synthesis. This effect is mediated
through AMPK activation and AKT/mTOR inhibition, key regulators
of liver adipogenesis. Capsaicin also blocks autophagy, elevates PGC-1α
levels, reduces adipocyte size, and induces WAT browning by
upregulating UCP1 and PRDM16. Additionally, capsaicin improves
glucose tolerance and insulin sensitivity via modulation of the gut
microbial-bile acid-FXR axis, and enhances β-cell function by
increasing proliferation and reducing apoptosis through insulin/IGF-
1 signaling, thereby augmenting β-cell mass.

5 Liver fibrosis and capsaicin

5.1 Liver fibrosis

Liver fibrosis and end-stage cirrhosis are common consequences
of all major chronic liver diseases, with HSCs activation being the

primary mechanism underlying the deposition of fibrotic tissue
(Elpek, 2014). Fibrosis serves as a wound-healing defense
mechanism triggered by inflammation or injury. However, the
immune system’s destruction of organ structures and inherent
inflammation in the liver lead to immune deficiency and immune
paralysis. Liver fibrosis is characterized by extracellular matrix
deposition and persistent loss of the tissues that perform liver
function (Wang et al., 2023). If left untreated, liver fibrosis can
progress to cirrhosis, HCC and eventually liver failure (Cheng et al.,
2021). The pathophysiology of liver fibrosis is multifactorial, with
the activation of HSCs driving its development. When activated,
HSCs are associated with fibrotic matrix deposition and fibrous
collagen production (Neshat et al., 2021). Unfortunately, there is
currently no effective treatment for liver fibrosis other than liver
transplantation (Wang et al., 2023; Cheng et al., 2021).

5.2 Roles of capsaicin in the treatment of
liver fibrosis

Liver fibrosis caused by the activation of HSCs is associated
with the incidence of liver diseases (Zhang WS. et al., 2022).
Previous studies have supported capsaicin’s inhibitory effect on
HSCs, demonstrating its important role in mitigating liver
fibrosis (Table 3). Capsaicin inhibits M1 macrophage
polarization by targeting Notch signaling, resulting in
decreased secretion of the inflammatory factor TNF-α, which
weakens myofibroblast regeneration and fibrosis formation of
HSCs (Sheng et al., 2020). Capsaicin inhibits
dimethylnitrosamine (DMN)-induced hepatotoxicity, NF-κB
activation, and collagen accumulation. Specifically, capsaicin
reduces the increase of α-SMA, collagen type I, MMP-2 and
TNF-α. In hematopoietic stem cells, capsaicin inhibits TGF-β1-
induced increased expression of α-SMA and collagen type I by
activating PPAR-γ. These results suggest that capsaicin improves
liver fibrosis by inhibiting the TGF-β1/Smad pathway through
PPAR-γ activation (Choi et al., 2017). The inhibitory effect of
dietary capsaicin on liver fibrosis in vivo has been confirmed
using two well-established mouse models of liver fibrosis: bile
duct ligation (BDL) and CCl4. This is demonstrated by reduced
fibrosis related damage, reduced collagen deposition and α-
smooth muscle actin (αSMA)+ cells, and reduced expression of
profibrogenic markers in isolated HSCs (Bitencourt et al., 2015).
Capsaicin also inhibits cell proliferation, reduces cell activation,
and reduces hydrogen peroxide production, lowers levels of
tissue inhibitor of metalloproteinases-1 (TIMP-1) and
transforming growth faction-1 (TGF-1). Consequently,
capsaicin effectively reduces the degree of liver fibrosis,
inhibits the proliferation of HSCs, and promotes cell apoptosis
(Yu FX. et al., 2014).

6 Liver cancer and capsaicin

6.1 Liver cancer

Liver cancer is one of the most common malignancies and the
third leading cause of cancer-related death worldwide (Sung et al.,
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2021). The common types of liver cancer include HCC,
cholangiocarcinoma (CC), and hepatocellular cholangiocarcinoma
(HCC/CC) (Zhang and Zhou, 2019). Liver cancer exhibits high
incidence and mortality rates, and traditional treatments, such as
transarterial chemoembolization (TACE) or sorafenib, have
significant limitations, including cancer recurrence, drug
ineffectiveness, and adverse reactions (Kim et al., 2022). Natural
products have shown promising anti-liver cancer properties, anti-

oxidation, induction of apoptosis, inhibition of cancer cell
proliferation and inhibition of angiogenesis (Diab et al., 2022;
Guo et al., 2019; Waziri et al., 2018). The pathogenesis of HCC
is complex, involving processes such as abnormal cell and tissue
regeneration, angiogenesis, genomic instability, cell proliferation
and alterations in signal pathway. Studies have found that
capsaicin plays a role in various stages of liver cancer
progression (Table 4).

TABLE 3 Effects of capsaicin on liver fibrosis.

Model Capsaicin dosage Main functions Reference

CCl4-induced liver fibrosis in mice 0, 2.5 and 5 mg/kg ↓TNF-α Sheng et al. (2020)

DMN-induced liver fibrosis in rats 0.5 and 1.0 mg/kg ↓α-SMA, collagen type I, MMP-2, and TNF-α, TGF-β1
↑Smad7

Choi et al. (2017)

CCl4-induced fibrosis in mice 0.01% ↓Col1a1, αSMA and Loxl2 Bitencourt et al. (2015)

CCl4-induced fibrosis in rats 0, 2.5, 5.0 and 7.5 mg/kg ↓TIMP-1, TGF-1, Bcl-2
↑Bax, cyto c, caspase-3

Yu et al. (2014b)

TABLE 4 Effects of capsaicin on liver cancer.

Model Capsaicin dosage Main functions Reference

HepG2 cells 0,25,50,75,100 and 200 μM ↓Bcl-2; Bax/Bcl-2 ratio Chen et al. (2018)

Trpv1 null (Trpv1−/−) mice, wide type
C57BL/6 (Trpv1+/+) mice, and NOD/SCID
female mice

2 mg/kg ↓AFP and Ki67 Xie et al. (2019)

Western-type diet in mice 0.5 mg/kg ↓ALT and AST Sarmiento-Machado et al.
(2021)

HepG2 cells 0,50,100,200 and 250 μM ↑ROS Lee et al. (2004)

HepG2 cells 50–250 μM ↑ROS Baek et al. (2008)

HepG2 cells 0–800 µM ↑TOS, 8-OHdG, CASP3, CYC, Bax, and
NOX4 levels; ↓Bcl-2, GSH, and SIRT1

Hacioglu (2022)

HepG2 cells 10, 50, 100 and 200 μM ↑ROS Huang et al. (2009)

HepG2 cells 5, 10, 25, 50, 100 and 200 μM VROS Joung et al. (2007)

HepG2 cells 150 and 250 μM ↑intracellular Ca2+ Kim et al. (2005)

Hep3B and HepG2 cells 0,50,100,150,200 and 250 μM ↑DR5 Moon et al. (2012)

SK-Hep-1 cells 0,50,100,150 and 200 μM ↓Bcl-2; ↑Bax Jung et al. (2001)

HepG2 cells 50, 100 and 200 μM ↑LC3-II and beclin-1 Chen et al. (2016)

Sprague-Dawley rats 1 mg/kg and 2 mg/kg ↓SIRT1 and SOX2 Xie et al. (2022)

LM3, Hep3B, Huh7 cells and BALB/C nude
mice

LM cells: capsaicin (0.100,130,160,190,220 μM)
and sorafenib (0,2,3,4,5,6,7 μM); Hep3B cells:
capsaicin (0,8,16,32,64,128 μM) and sorafenib
(0,0.25,0.5,1,2,3,4 μM); Huh7 cells: capsaicin
(0,25,50,75,100,125) μM and sorafenib
(0,0.5,0.75,1,1.25,1.5,1.75 μM); mice:5 mg/kg
capsaicin and 50 mg/kg sorafenib

↓EGFR Dai et al. (2018)

PLC/PRF/5, Huh7, and HepG2 cells capsaicin (0, 50, 100, 150, 200, and 250 μM) and
sorafenib (0, 0.3, 1, 3, 10, and 30 μM)

↑Bax; ↓Bcl-2 Zhang et al. (2018)

HepG2, Huh-7 cells and nu/nu mice HepG2 cells: capsaicin (0,20,40,75,150,200 μM)
and sorafenib (0,1,1.5,2,2.5,3 μM); Huh7 cells:
capsaicin (0,10,20,40,80,100 μM) and sorafenib
(0,0.2,0.4,0.75,1.5,3 μM)

↑caspase-9 and PARP Bort et al. (2017)
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6.2 Roles of capsaicin in the treatment of
liver cancer

6.2.1 Specific effects of capsaicin on TRPV1
Capsaicin is a natural bioactive compound that activates TRPV1

(Abdillah and Yun, 2024). TRPV1 is a Ca2+ permeable cation
channel and serves as the primary heat and capsaicin sensor in
humans (Kwon et al., 2021). Capsaicin, in combination with a static
magnetic field (SMF), synergistically inhibits the growth of
HepG2 through the mitochondria-dependent apoptosis pathway.
SMF significantly enhanced the inhibitory effect of capsaicin on
cancer cells. The mechanism was that SMF enhances the inhibitory
effect of capsaicin on cancer cells by inducing conformational
changes in the TRPV1 ion channel (Chen et al., 2018). In vivo
studies have shown that treating tumor-bearing mice with capsaicin
significantly reduces tumor volume and improves overall survival
rate. In addition, TRPV1 expression is increased in capsaicin-treated
mice, while alpha-fetoprotein (AFP) and Ki67 expression are
decreased (Xie et al., 2019). Preventive capsaicin dietary
(specifically 0.02%) mitigates carcinogenic liver damage and the
development of pretumor lesions. Capsaicin reduces
diethylnitrosamine (DEN)-induced oxidative damage by
improving the glutathione (GSH) axis, and reducing hepatocyte
necrosis and inflammation (Sarmiento-Machado et al., 2021).

6.2.2 Oxidative stress
Oxidative stress is a condition where the oxidative and anti-

oxidant effects in the body is disrupted. It has become a key factor in
the initiation and progression of many diseases, including liver
cancer (Tang et al., 2022; Li Z. et al., 2023). ROS are the most
prevalent reactive chemical involved in oxidative stress during
disease progression. Oxidative stress plays a unique role in the
development of HCC, with excessive ROS generation being
common in liver diseases of various etiologies (Liu et al., 2023).
NADPH oxidase-mediated ROS production plays an important role
in the mechanism of capsaicin-induced apoptosis (Lee et al., 2004).
Capsaicin increases ROS production in HepG2 cells (Baek et al.,
2008). The increase in total oxidant status (TOS) level and the
decrease in GSH level indicate that capsaicin induces oxidative
stress. The levels of 8-hydroxydeoxyguanosine (8-OHdG) levels
are significantly increased in capsaicin-treated HepG2 and HL-
7702 cells (Hacioglu, 2022). Capsaicin may covalently bind to
NAD(P)H:quinone oxidoreductase (NQO1), thereby inhibiting its
activity and leading to ROS production. Furthermore, p-Akt is
activated, which increases the nuclear translocation of Nrf2,
enhances the binding of ARE, and upregulates the expression of
heme oxygenase-1 (HO-1) (Joung et al., 2007).

6.2.3 Cell proliferation, apoptosis and survival
Malignant cells are characterized by abnormal signaling

pathways involved in proliferation, apoptosis and angiogenesis
(Davis et al., 2010). Capsaicin inhibits cell proliferation and
induced apoptosis of HepG2 cells through the downregulation of
Bcl-2 and the activation of pro-apoptotic molecules caspase-3 and
p53 (Baek et al., 2008). Capsaicin induces apoptosis by promoting
the expression of Bax, and decreasing Bcl-2 and increasing caspase-3
activation in HepG2 cells (Huang et al., 2009). Capsaicin has been
shown to inhibit the proliferation of HepG2 cell. As an epigenetic

marker, the expression of miR-126 is upregulated and the expression
of piR-Hep-1 is downregulated after treatment. Additionally,
capsaicin treatment leads to a decrease in the expression of Ki-
67, phosphoinositide 3-kinase (PI3K), and mTOR, while increasing
the expression of non-phosphorylated AKT. This indicates that
capsaicin exerts both genetic and epigenetic effects on cell
proliferation. Furthermore, capsaicin affects carcinogenesis by
modulating the expression of miR-126 and piR-Hep-1 in
different ways (Ates et al., 2022). Pepper fruit extracts have been
found to alter the anti-oxidant capacity ofHepG2 cell lines,
enhancing catalase activity and reducing the activity of NADPH-
producing enzymes (Rodríguez-Ruiz et al., 2023). Activation of the
Phospholipase C and the release of intracellular Ca2+ from inositol
1,4,5-trisphosphate (IP3) sensitive stores (Kim et al., 2005).
Capsaicin enhances the apoptotic effect of tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) on various cancer cells
by inducing the expression of TRAIL receptor DR5 on the cell
surface throughSp1 promoter activation. These findings suggest that
capsaicin upregulates DR5 via calcium inflow-dependent
Sp1 activation, thereby sensitizing HCC cells to TRAIL-mediated
apoptosis (Moon et al., 2012). The inhibitory effect of capsaicin on
SK-Hep-1 cells is primarily due to apoptosis induced by DNA
fragmentation and nuclear aggregation. In addition, capsaicin
effectively induces the apoptosis of SK-Hep-1 cells through a
caspase-3-dependent mechanism (Jung et al., 2001). Capsaicin
induces autophagy and apoptosis in HCC cells. The ROS-STAT3
pathway is involved in capsaicin-induced autophagy of HCC cells,
and inhibition of autophagy enhances capsaicin’s effects in HCC
cells (Chen et al., 2016). Sirtuin 1 (SIRT1) is overexpressed in liver
cancer and acts as a tumor promoter through deacetylation by sex-
determining region Y-box 2 (SOX2). Capsaicin treatment
downregulates SIRT1, resulting in reduced deacetylation and
degradation of SOX2. These results indicate that capsaicin
inhibits liver cancer progression through the SIRT1/
SOX2 signaling pathway (Xie et al., 2022).

6.2.4 Interaction of capsaicin with sorafenib or
5-FU

Sorafenib is an oral kinase inhibitor known for its ability to
inhibit tumor cell proliferation and angiogenesis and while inducing
apoptosis in cancer cells, thereby improving survival rates for
patients with advanced HCC (Kong et al., 2021). Capsaicin or
sorafenib alone could inhibit cell proliferation and induce
apoptosis (Dai et al., 2018; Zhang et al., 2018). Notably, capsaicin
and sorafenib have shown synergistic effects in inhibiting the
growth, invasion and metastasis of liver cancer cells, as well as
enhancing cell apoptosis (Dai et al., 2018) (Zhang et al., 2018). And
intratumoral injection of capsaicin did not cause significant severe
toxicity (Zhang et al., 2018). Sorafenib combined with capsaicin
demonstrated an enhanced anti-cancer effect. Sorafenib induced
AKT activation, which led to drug resistance, whereas capsaicin’s
inhibition of AKT might sensitize cells to sorafenib therapy (Bort
et al., 2017). Additionally, 5-Fluorouracil (5-FU) is a widely used
chemotherapy agent for various cancers (Shi et al., 2023). Capsaicin
has been found to enhance the activity of anti-cancer drugs when
used in combination. Capsaicin significantly enhanced the drug
sensitivity of QBC939 to 5-FU. In addition, the combination of
capsaicin and 5-FU demonstrated a synergistic effect in
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cholangiocarcinoma (CCA) xenografts, with the combined therapy
yielding greater inhibition than 5-FU alone. Further research found
that capsaicin inhibited 5-FU-induced autophagy in CCA cells by
activating the PI3K/AKT/mTOR pathway (Hong et al., 2015).

7 Conclusion and perspective

This study found that capsaicin has numerous beneficial effects,
including protection against liver damage, anti-diabetes, anti-
obesity, anti-liver fibrosis, anti-liver cancer, pain relief and anti-
oxidant. The studies mentioned indicate limited clinical studies on
fatty liver. Most basic studies and a few clinical studies have shown
that capsaicin improves liver inflammation and fat infiltration
through mechanisms mediated by TRPV1 or independent
pathways, preventing the progression of fatty liver, and providing
liver protection effect. Capsaicin also improves systemic metabolic
issues, including blood lipid, blood sugar, and insulin resistance.
Geographically, fatty liver disease is prevalence across China, with
higher rates in northern regions compared to the southern and
southwestern regions (Yip et al., 2023). Moderate spicy eating may
benefit fatty liver, be safe, and potentially reduce mortality. In
another study on HCC incidence, patients from two hospitals in
western China (Chongqing) and eastern China (Shanghai) were
examined, revealing a higher incidence of HCC in eastern China.
Epidemiological studies have shown that unhealthy diet, living
environment and multiple carcinogenic factors may explain the
regional differences in HCC incidence (Liao et al., 2017).

The capsaicin content varies among chili pepper varieties, with
some being very hot and others less so or even non-spicy. An intake
of 2.56 mg of capsaicin induces satiety, equivalent to 1–2 g of chili
pepper. An intake of 5 mg improves blood sugar metabolism,
equivalent to 2–4 g of chili pepper (Janssens et al., 2014). Clinical
studies have shown that in pregnant women with gestational
diabetes, taking 5 mg of capsaicin per day for 4 weeks, without
changes in food calories or composition, improved blood sugar
control and insulin resistance, and reduced the birth rate of larger-
than-gestational-age infants (Yuan et al., 2016). Cancer-related
fatigue is common symptom among Cancer patients, and
exercise is a treatment (Li J. et al., 2023). Studies have found that
capsaicin reduces serum lactate, ammonia, BUN (blood urea
nitrogen) and creatine kinase (CK) levels, reduces physical
fatigue and improves exercise performance in mice (Hsu et al.,
2016). Studies have found that the 8% capsaicin patch appears to be
effective in the short and medium term for treating peripheral
neuropathic pain, as it not only reduces pain intensity but also
decreases the pain area. Most patients tolerate its application well
(Goncalves et al., 2020). Moreover, in Europe, capsaicin patches
(179 mg) have been approved for the local treatment of peripheral
neuropathic pain, either as a monotherapy or in combination with
other medications (Maihöfner et al., 2021).

Moreover, whole chili peppers or other capsaicin-containing
foods have an effect on liver health. Research indicates that dietary
preferences in China vary geographically, influenced by local climate
and consumption levels. Spicy regions are mainly in the southwest,
centered around Sichuan province, which also has lower diabetes
prevalence, possibly due to capsaicin, the main spicy ingredient in
chili peppers (Zhao et al., 2020). A 2021 study showed that

compared to those who do not eat spicy food, individuals who
consume spicy food have reduced risks of esophageal, stomach, and
colorectal cancers. The benefits are greater among non-drinkers and
non-smokers (Chan et al., 2021). Furthermore, compared to
individuals who consume spicy foods less than once a week, even
a modest intake of spicy foods-just 1–2 days per week-has been
associated with observable health benefits. Notably, consuming
spicy foods 6 to 7 times per week is linked to a 14% reduction in
all-cause mortality and a 22% reduction in ischemic heart disease-
related mortality (Lv et al., 2015). A foreign cohort study with
22,000 participants followed for 8.2 years showed that regular chili
pepper consumption reduced all-cause mortality by 23% and
cardiovascular event mortality by 34% (Bonaccio et al., 2019).
Another cohort study with over 50,000 people found that weekly
chili pepper consumption reduced high blood pressure incidence by
28% among non-drinkers (Wang et al., 2021). A meta-study has
found that eating chili peppers reduces the risk of death, potentially
due to capsaicin promoting fat metabolism, increasing energy
expenditure, and controlling blood sugar, thereby reducing
obesity and metabolic syndrome risks, and cardiovascular disease
mortality (Kaur et al., 2021). Regular chili pepper consumption (at
least once a week) was shown to reduce all-cause mortality by 12%
and cardiovascular event mortality by 18% (Ofori-Asenso et al.,
2021). Moreover, Defatted pepper seed ethanolic extract (DPSE)
reduces HFD-induced weight gain and liver cholesterol content
(Sung et al., 2016). The study found that the consumption of black
pepper or chili is significantly associated with a reduced risk of
overall mortality (Hashemian et al., 2019). Additionally, the study
also found that green Capsicum annuum exhibits hepatoprotective
effects (Das et al., 2018).

While capsaicin has demonstrated significant anti-cancer potential
in various preclinical models, its translation into clinical application
presents several key challenges, particularly in terms of dosage
determination and safety. Firstly, establishing a dosage that is both
effective and safe poses a substantial challenge. The effective doses
observed in animal models may not be directly applicable to humans
due to differences in metabolism and toxicity responses across species.
Therefore, extensive dose-escalation studies are necessary to identify an
appropriate therapeutic range. Secondly, the safety profile of capsaicin
cannot be overlooked. High doses of capsaicinmay cause adverse effects
such as gastrointestinal cramps, stomach pain, nausea, diarrhea,
vomiting, increased circulating blood volume, heart rate, tachycardia
and stomach cancer risk (López-Carrillo et al., 2003; Merritt et al.,
2022). Some studies suggest capsaicin may also be a carcinogen,
promoting cancer metastasis (Cheng et al., 2023a; Deng et al., 2023;
Cheng et al., 2023b). Despite its anti-cancer activity, capsaicin’s clinical
use as an anti-cancer drug remains problematic due to poor
bioavailability and water solubility (Giri et al., 2016). Furthermore,
the delivery method of capsaicin is another significant challenge. While
local delivery may help mitigate systemic toxicity, ensuring sufficient
concentration at the tumor site without causing widespread adverse
effects remains a critical area for further research, especially in the
treatment of systemic cancers (Giri et al., 2016; Lu et al., 2020).
Therefore, patients with liver disease are advised to consume spicy
food in moderation to satisfy appetite without aggravating
their condition.

Research on chronic liver diseases has increasingly focused on
fatty liver disease, particularly NAFLD, due to its close association
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with metabolic syndrome. Studies have shown that capsaicin
consumption may have beneficial effects, such as improving
cardiovascular outcomes and reducing all-cause mortality, which
is particularly relevant in the context of fatty liver disease. Given
these findings, the long-term effects of capsaicin on chronic liver
diseases, especially metabolic-related fatty liver, could be a
promising area for future research. However, more studies are
needed to fully understand its impact compared to other liver
conditions, such as hepatic injury or HCC. Future research could
focus on determining the optimal dosage and safety profile of
capsaicin for clinical use, particularly in the treatment of liver
diseases and cancers, while also exploring the mechanisms
through which capsaicin exerts its protective effects on liver
health and its potential impact on systemic metabolic issues.
Additionally, investigating regional dietary habits in China,
especially the varying impacts of capsaicin consumption on
health outcomes, could provide valuable insights. Exploring novel
delivery methods for capsaicin to improve its bioavailability and
minimize adverse effects represents another crucial area for future
investigation.
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