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Background: Haoqin Qingdan decoction (HQQD), composed of eleven herbs, is
a traditional Chinese formula widely recognized for its efficacy in treating
pulmonary inflammation induced by viral infections. Despite its extensive use,
the potential pulmonary and intestinal protective effects of HQQD on influenza
viral pneumonia (IVP) and the underlying molecular mechanisms remain unclear.

Materials and Methods: Ultra-high-performance liquid chromatography
coupled with mass spectrometry (UHPLC-MS) was employed to identify the
major chemical constituents of the prescription. Subsequently, network analysis
was conducted to predict the potential therapeutic targets of HQQD in IVP. The
mechanisms by which HQQD mitigates lung and intestinal damage were further
elucidated by assessing NP protein expression, inflammatory factors, TLR7/
MyD88/NF-κB signaling pathway mRNAs and proteins, and through intestinal
flora analysis.

Results: The protective effects of HQQD on pulmonary and intestinal injuries
induced by IVP were thoroughly investigated using comprehensive network
analysis, signaling pathway validation, and gut microflora analysis. UHPLC-MS
analysis identified the primary chemical constituents. Validation experiments
demonstrated a significant reduction in NP protein expression in the lungs.
HQQD notably alleviated immune damage in the lungs and intestines of mice
by inhibiting NP protein expression and the release of inflammatory factors such
as interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α)
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and interferon-gamma (IFN-γ); downregulating the expression levels of TLR7,
MyD88, and phospho-NF-κB p65 (p-p65); lowering serum LPS levels; and
reducing the relative abundance of Proteobacteria.

Conclusion: HQQD exerts therapeutic effects against influenza viral pneumonia
through antiviral and anti-inflammatory mechanisms and by remodeling the
intestinal flora. This study provides initial insights into the “gut-lung” axis
mechanism of HQQD in combating respiratory influenza virus infection.

KEYWORDS

Haoqin Qingdan decoction, influenza viral pneumonia, network analysis, intestinal flora,
traditional Chinese medicine

1 Introduction

Influenza A virus (IAV) is the primary driver of global influenza
pandemics and poses significant risks to both the international
economy and public health. According to the WHO, seasonal
influenza viruses, including H1N1 and H3N2 subtypes of
influenza A and influenza B viruses, are responsible for
approximately 3–5 million severe cases and hundreds of
thousands of deaths annually (Disease and Prevalence, 2016).
Influenza viral pneumonia is a frequent complication of influenza
infection and a major contributor to influenza-related mortality
(Cavallazzi and Ramirez, 2018). The excessive release of
inflammatory cytokines triggered by influenza infection can result
in severe disease and life-threatening conditions (Ryabkova et al.,
2021; Lobo et al., 2019). A hyperactivated immune response leads to
the destruction of lung tissue, acute respiratory distress syndrome,
and multiple organ failure (Kalil and Thomas, 2019). Despite the
widespread availability of vaccines and antiviral therapies, their
effectiveness is often compromised by antigenic drift and
mutations in the virus, limiting their protective capabilities
(Brody, 2019; Uyeki et al., 2019; Klomp et al., 2021; Batool et al.,
2023). Modern antiviral treatments fail to fully prevent the disease
progression associated with cytokine storms (Yao et al., 2022).
Consequently, there is an urgent need to explore alternative
therapeutic strategies for influenza viral pneumonia.

Recent studies have revealed the integrative nature of pulmonary
and intestinal tissues, highlighting the interrelated immunological
responses of the pulmonary and intestinal mucosa and the
synchronous ecological changes between the lungs and intestines
(Budden et al., 2017; Huang et al., 2018; Massart and Hunt, 2020).
For instance, lipopolysaccharide (LPS) stimulation of the lungs in
model mice has been shown to cause a significant increase in
intestinal bacterial populations, underscoring the synchrony
within the lung-gut axis (Sze et al., 2014). Beyond causing
respiratory conditions like acute lung injury, influenza also
impacts the digestive tract, altering the composition and structure
of the gut microbiota (Zhang et al., 2020). Pulmonary infection-
induced ischemia and hypoxia can indirectly damage the intestinal
mucosal barrier, while intestinal bacterial imbalances due to barrier
disruption may exacerbate lung injury by affecting both intestinal
and pulmonary mucosal immunity (Dang and Marsland, 2019; de
Oliveira et al., 2021). The gut microbiota’s influence on pulmonary
immunity through the lung-gut axis has been well-documented
(Taylor et al., 2016). This interconnectedness between lung and
gut ecology illustrates a critical communication pathway between

these organs. However, for viral infectious diseases, particularly
respiratory influenza infections, it remains unexplored whether
HQQD can alleviate symptoms, shorten treatment duration, and
exert therapeutic effects via the lung-gut axis.

Traditional Chinese Medicine (TCM) exhibits unique efficacy in
combating influenza by enhancing the body’s overall condition and
mobilizing immune functions, thereby strengthening resistance to
viral infections. This characteristic adaptability, distinct advantages,
and broad development prospects make TCM particularly valuable.
Haoqin Qingdan Decoction (HQQD), a traditional Chinese
formula, is composed of Sweet Wormwood Herb, Baical Skullcap
Root, Dried Tangerine Peel, Pinellia Tuber, Bamboo Shavings,
Indian Buead, Seville Orange Fruit, Indigowoad Leaf, Indigowoad
Root, Liquorice Root, and Talcum (Luo et al., 2016; Zhang et al.,
2013). HQQD has been widely utilized in the treatment of viral
infectious diseases (Yuan et al., 2020; Pan et al., 2010). The antiviral
and anti-inflammatory properties of its components are closely
linked to their underlying mechanisms of action. For instance,
artesunate, an extract of Artemisia annua L., has demonstrated
potent suppression of IAV replication both in vitro and in vivo, while
also inhibiting the release of proinflammatory cytokines such as
TNF-α (Yang et al., 2023; Zhao et al., 2017). Dihydroartemisinin, the
primary active metabolite of artemisinin, has been shown tomitigate
the inflammatory cytokine storm by inhibiting the NF-κB signaling
pathway (Huang et al., 2019). Additionally, oral administration of A.
annua L. hot-water extract has potential as a cost-effective treatment
for coronavirus disease 2019 (COVID-19) (Nair et al., 2022; Nair
et al., 2023). Scutellariae Radix extract has shown considerable
potential in treating acute lung injury induced by IAV (Zhi et al.,
2019). Furthermore, Isatidis Radix-derived extract has been
identified as a potential adjunctive antiviral therapy for IAV
infections (Li et al., 2017; Nie et al., 2020). Animal experiments
have confirmed the efficacy of HQQD in treating influenza viral
pneumonia (IVP) (Luo et al., 2016; Zhang et al., 2013). However, the
precise mechanisms underlying its pulmonary protective effects
remain unclear, and it is yet to be determined whether HQQD’s
therapeutic action against IVP involves modulation of the intestinal
flora and reduction of intestinal injury.

TCM formulas typically exhibit multicomponent, multitarget
synergistic effects (Luo et al., 2020; Yuan et al., 2017). Recently,
network analysis has become a widely applied approach to
investigate the mechanisms of TCM in treating complex diseases
(Zhang et al., 2019). In this study, we aimed to predict the active
compounds and potential targets of HQQD through network
analysis, followed by experimental validation of the pathways
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involved in its efficacy against IVP. Our goal was to confirm the
effectiveness of HQQD and elucidate the pulmonary-gut axis
mechanism in resisting respiratory viral infections. This research
seeks to clarify the mechanisms through which TCM formulas
intervene in IVP and to provide a foundational basis for
expanding clinical treatment options.

2 Materials and methods

2.1 Network construction and analysis

2.1.1 Screening of HQQD candidate compounds
The canonical SMILES of each compound from UHPLC-MS

analysis were collected from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/) and then entered into the Swiss
Target Prediction database (http://www.swisstargetprediction.ch/)
and the PharmMapper database (http://www.lilab-ecust.cn/
pharmmapper/) for target prediction corresponding to the
compounds, with the species restricted to “Homo sapiens.” The
filtering criterion for the Swiss Target Prediction database was as
follows: The targets with a probability greater than 0 were saved
(Tian et al., 2023; Zhi et al., 2023; Mohamed et al., 2023).

2.1.2 Potential targets intersection of HQQD
with IVP

Relevant genes associated with IVP were identified from
multiple databases, including Genecards (https://www.genecards.
org), OMIM (https://www.omim.org), DisGeNet (https://www.
disgenet.org), and TTD (https://db.idrblab.org), using the MeSH
keywords “influenza viral pneumonia” and “primary influenza virus
pneumonia.”

The UniProt database (https://www.uniprot.org/) was employed
to retrieve the official symbols for each protein target related to the
identified chemicals and genes, with the species restricted to “Homo
sapiens.” (Apweiler et al., 2004) Subsequently, an online
bioinformatics platform (http://www.bioinformatics.com.cn) was
utilized to construct the intersecting target network between
HQQD and IVP (Bardou et al., 2014).

2.1.3 Key target screening and network
construction

To thoroughly investigate the molecular mechanism targets of
HQQD in IVP treatment, the CytoHubba and CytoNCA plug-ins in
Cytoscape software (ver. 3.9.0) were used to generate the protein-
protein interaction (PPI) network. Topological analysis was
conducted with six parameters, including network centrality, local
average connectivity-based method, eigenvector centrality, closeness
centrality, degree centrality, and betweenness centrality (BC). The
filtering criterion for the core targets was as follows: The degree values
were greater than the median of each parameter (Wang et al., 2023).
The STRING database (https://string-db.org) was accessed to input
the intersection targets, with “Homo sapiens” as the species, and the
minimum interaction threshold was set to “highest confidence 0.900”
to derive the final interaction network (Szklarczyk et al., 2019). Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis was
conducted using the DAVID database (https://david.ncifcrf.gov/).
(Wan et al., 2024) The resulting diagram from KEGG pathway

analysis was generated using Cytoscape software (ver. 3.9.0) and
the bioinformatics online platform (https://www.bioinformatics.
com.cn/) (Tang et al., 2023).

2.2 Influenza a virus and
experimental animals

The mouse-adapted IAV strain (H1N1/PR8) was propagated
and maintained in the ABSL-2 biosafety laboratory at the Centre for
Animal Experimentation, Guangzhou University of Traditional
Chinese Medicine (Guangzhou, China). The virus was adapted
for replication in BALB/c mouse lungs through eight sequential
passages. The virus, replicated and plaque-purified in MDCK cells
and subsequently replicated in 9-day-old chick embryos, was
determined to have a median lethal dose (LD50) of 2 × 10−15/
50 μL. The virus was then stored at −80°C until further use.

Male BALB/c mice (age: 36–42 days, weight: 18–22 g) were
obtained from Zhuhai BesTest Bio-Tech Co., Ltd. (specific
pathogen-free degree; certificate number: SCXK (yue) 2020-0051).
All experimental procedures were conducted in accordance with the
Declaration of Helsinki.

2.3 Preparation of therapeutic drugs

The composition of HQQD is detailed in Table 1. All Chinese
medicine herbs were purchased from the First Affiliated Hospital of
Guangzhou University of Chinese Medicine. Firstly, all crude drugs
were soaked in 1.5 L water for 40 min, then they were decocted to
boiling at 100°C for 40 min. The drugs were boiled once again for
30 min with 0.75 L water. The decoction was merged and filtered
through four-layer gauze. The corresponding solution concentrations
were 0.46 g/mL, 0.92 g/mL, and 1.85 g/mL. The decoction was then
stored at 4°C for future use. The chemical constituents of the HQQD
preparation were identified using UHPLC-Q/Orbitrap-MS
chromatography, with the procedure and characteristic
chromatogram presented in Supplementary Figure S1.

2.4 Establishment of an H1N1 infection
model and treatment

Fifty male BALB/c mice were randomly assigned into five
groups, with ten mice per group (Disease and Prevalence, 2016):
control group (Cavallazzi and Ramirez, 2018), virus-infected group
(VC) (Ryabkova et al., 2021), low-dose group (LD) (Lobo et al.,
2019), medium-dose group (MD), and (Kalil and Thomas, 2019)
high-dose group (HD). After a 3-day acclimatization period, virus
inoculation commenced. On day 0, mice in groups (Cavallazzi and
Ramirez, 2018)-(5) received intranasal injections of H1N1 virus at a
dose of 2 LD50 to establish the virus-infected model. Subsequently,
from days 0–4, model mice were administered oral medication once
daily. Mice were maintained under a 12-h light/dark cycle at a
temperature of 23°C ± 1°C and relative humidity of 50% ± 5%, with
unrestricted access to food and water. Blood, lung, and colon tissues
were collected on day 5 following anesthesia and sacrifice. The right
upper lung lobe and a 1 cm segment of the colon were fixed in 4%
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paraformaldehyde for pathological evaluation while the remaining
tissues were cryopreserved for further analysis.

2.5 Histopathological examination

Lung and colon tissues were fixed in 4% paraformaldehyde,
dehydrated, and embedded in paraffin wax. Hematoxylin and eosin
(H&E) staining was performed on 3 µm thick sections of paraffin-
embedded tissues, which were then scanned using a panoramic
scanning electron microscope to assess the images. Lung injury
severity was graded on a scale of 0–4 based on four criteria: alveolar
congestion, hemorrhage, leukocyte infiltration or neutrophil
aggregation in the airspaces or blood vessel walls, and alveolar
wall thickness. The total score was the sum of these individual
scores (Tanaka et al., 2008).

2.6 Western blot analysis

Fresh lung tissues were subjected to protein extraction,
quantification, SDS-PAGE electrophoresis, membrane transfer,
blocking, incubation with primary and secondary antibodies, and
chemiluminescence. Semi-quantitative analysis of protein
expression was conducted using ImageJ software for grayscale
scanning of the target and internal reference proteins to
determine relative protein expression levels.

2.7 Quantitative real-time polymerase
chain reaction

Total RNAwas extracted from frozen lung samples using TRIzol
reagent. The expression levels of TLR7 and MyD88 were measured
via quantitative real-time PCR (qRT-PCR) utilizing the HiScript® II
Q RT SuperMix for qPCR Kit (Vazyme, Nanjing, China) under the
following conditions: initial denaturation at 95°C for 3 min, followed
by 45 cycles of 95°C for 10 s and 60°C for 30 s, with melting curve

analysis from 65°C to 95°C, increasing by 0.5°C every 5 s, and a final
extension at 95°C for 30 s. A BioRad CFX Connect™ system (Bio-
Rad Laboratory, CA, United States) was employed for the qRT-PCR
analysis. The primer sequences used are detailed in Table 2. The
expression levels of all target transcripts were normalized to the
housekeeping gene β-actin within the same tissue.

2.8 Cytokines detection

Plasma and lung samples were collected from mice to assess
cytokine levels. The concentrations of inflammatory cytokines,
including IFN-γ, TNF-α, IL-6, IL-1β, and LPS (JL10967, JL10484,
JL20268, JL18442, JL20691; JiangLai Biotechnology, Shanghai,
China), were quantified using commercially available ELISA kits
according to the manufacturer’s instructions. Absorbance was
measured at 450 nm using a Bio-Tek Synergy H1 microplate reader.

2.9 Immunohistochemistry assay of the
relative protein expression

Paraffin-embedded lung specimens were sectioned into 3 µm
thick slices using a microtome. After drying, dewaxing, dehydration,
antigen retrieval, and quenching of endogenous peroxidase activity,

TABLE 1 The main drugs contained in the Haoqin Qingdan formula.

Plant names Family Genus Authorities Weight (g)

Artemisia Annua L Compositae Artemisia Sweet Wormwood Herb 10

Scutellariae Radix Labiatae Scutellaria Baical Skullcap Root 15

Citri Reticulatae Pericarpium Rutaceae Citrus Dried Tangerine Peel 6

Pinelliae Rhizoma Araceae Pinellia Pinellia Tuber 10

Bambusae Caulis in Taenias Poaceae Bambusa Bamboo Shavings 10

Poria Polyporaceae Wolfiporia Indian buead 15

Aurantii Fructus Rutaceae Citrus Seville orange fruit 10

Isatidis Folium Brassicaceae Isatis Indigowoad Leaf 15

Isatidis Radix Brassicaceae Isatis Indigowoad Root 15

Radix Glycyrrhizae Fabaceae Glycyrrhiza Liquorice Root 6

Talcum — — Talcum 30

TABLE 2 The primers used for TLR7, MyD88 and β-actin.

Gene RNA oligos

TLR7 Forward 5′-ATGTGGACACGGAAGAGACAA-3′

Reverse 5′-GGTAAGGGTAAGATTGGTGGTG-3′

MyD88 Forward 5′-TCATGTTCTCCATACCCTTGGT-3′

Reverse 5′-AAACTGCGAGTGGGGTCAG-3′

β-actin Forward 5′-GGCTGTATTCCCCTCCATCG-3′

Reverse 5′-CCAGTTGGTAACAATGCCATGT-3′
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the sections were blocked with 5% BSA for 30min. The samples were
then incubated overnight at 4°C with antibodies against NF-κB
p65 and p-p65 (8242S, CST, United States; ab131100, Abcam,
United Kingdom). This was followed by incubation at 37°C with
an HRP-conjugated goat anti-rabbit IgG antibody. The slides were
subsequently stained using the DAB chromogenic substrate
solution. Images were captured using a panoramic scanning
electron microscope, with five fields observed per sample. The
average optical density (AOD), calculated as the integrated
optical density (IOD) over the positive area, was determined.

2.10 16S rRNA gene sequencing

Using 16S rRNA sequencing, the diversity of cecal intestinal flora
was analyzed in five randomly selected fecal samples from each group.
Total bacterial DNA was extracted, and its concentration and purity
were measured using a NanoDrop One spectrophotometer (Thermo
Fisher Scientific, MA, United States). The V3-V4 region of the 16S
rRNA gene was then amplified using specific primers for polymerase
chain reaction (PCR). The forward primer “ACTCCTACGGGAGGC
AGCA” and the reverse primer “GGACTACHVGGGTWTCTAAT”
were employed to amplify these regions. Primers with a 12 bp barcode
were synthesized by Invitrogen (Carlsbad, CA, United States). The
quality of the PCR products was evaluated using 1% agarose gel
electrophoresis, and the PCR products were subsequently purified
with an E. Z.N.A. Gel Extraction Kit (Omega, United States).

Following themanufacturer’s instructions, index codes were added,
and sequencing libraries were constructed using the NEBNext®

UltraTM II DNA Library Prep Kit for Illumina® (New England
Biolabs, MA, United States). Library quality was assessed using a
Qubit@ 2.0 Fluorometer (Thermo Fisher Scientific, MA,
United States). The library was ultimately sequenced on an Illumina
Nova6000 platform, and sequences were referenced using the Silva
132 database. Operational taxonomic unit (OTU) clustering analysis
was conducted with Usearch v10.0.240 at a 97% sequence similarity
threshold. Subsequent analyses were performed based on these results.

2.11 Statistical analysis

All statistical analyses were conducted using GraphPad Prism
9 software (Inc., CA, United States). Data fitting a normal
distribution underwent a homogeneity of variance test, and if
homogeneity was confirmed, one-way analysis of variance
(ANOVA) was performed for comparisons among multiple
groups. A P-value of <0.05 was considered statistically significant.

3 Results

3.1 HQQD therapy reduced the levels of
intestinal and pulmonary damage in the
model mice

Following IAV infection, the IVP model was successfully
established (Figure 1A). Six days post-infection, the VC group
exhibited a significant reduction in body weight compared to the

control group, whereas the HD group maintained a notably higher
body weight than the VC group (P < 0.01), indicating that HD
treatment provided protective effects on weight in mice (Figure 1B).

The lung index was significantly elevated in the VC group
compared to normal mice but was markedly reduced in the HD
treatment group (P < 0.05; Figure 1C). Histopathological analysis
using H&E staining revealed severe structural distortion in the lungs
of the VC group, including hyperplasia of connective tissue and
deformation of the bronchi, alveoli, and alveolar tubes. There was
also notable infiltration of inflammatory cells in the pulmonary
interstitium, an abundance of red blood cells in the lung vasculature,
and exudation in the bronchial lumen. In contrast, the HD group
showed significantly less lung damage compared to the VC group
(P < 0.01). Additionally, pathogenic factors induced gut mucosal
damage, evidenced by the infiltration of inflammatory cells, villus
separation, significantly reduced villi, and a disrupted brush border
in the VC group, which were not observed in the control group. The
HD intervention mitigated these intestinal damages compared to the
VC group (Figures 1D, E). Furthermore, NP protein expression in
the lungs was significantly decreased in the HD group (P <
0.05; Figure 1F).

3.2 Potential therapeutic mechanisms by
which HQQD acts on influenza

UHPLC-MS analysis identified 236 chemical constituents in
HQQD, which were linked to 1176 compound-related targets.
Supplementary Table S1 provided detailed information on these
candidate bioactive ingredients. Additionally, 2964 IVP-associated
genes were extracted from the Genecards, OMIM, DisGeNET, and
TTD databases. The overlapping targets were visualised using a Venn
diagram. Of these intersecting targets, 364 targets were closely
associated with the treatment of IVP (Figure 2A). To further
elucidate the PPI of HQQD, datasets were processed using
Cytoscape 3.9.0 software to construct a PPI network. Moreover, the
MCC method was employed to identify key hub target genes,
enhancing screening accuracy (Chin et al., 2014). The primary genes
ranked by BC were considered as hub targets, such as STAT3, TNF, IL-
6, and IL-1β (Figure 2B). Furthermore, the top 20 pathways obtained by
KEGG enrichment analysis were showed in Figure 2C (P < 0.05) (Huo
et al., 2022). Then, the formula-components-targets-pathways network
between HQQD and IVP contained 7 core components, 16 potential
targets, and 20 related pathways (Figure 2D). (Wan et al., 2024; Wu
et al., 2024) The toll-like receptor signaling pathway and the TNF
signaling pathway were particularly associated with HQQD’s
mechanism in treating IVP. There are 7 notable compounds
correspond to core targets and potential mechanisms for pathways:
caffeic acid, limonin, medicarpin, alpinetin, xanthotoxol, 4-
hydroxycoumarin, and dihydroartemisinin, which may be closely
related to the Protective effect of HQQD.

3.3 HQQD regulated the TLR7/MyD88/NF-
κB signaling pathway in lung tissue

Host cells initiate an immune response against the influenza
virus by activating both innate and adaptive immunity upon
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recognition of the virus. Toll-like receptors (TLRs), a class of
pattern recognition receptors primarily expressed in antigen-
presenting cells, play a pivotal role in both acquired and innate
immunity. TLR7, a receptor for single-stranded RNA (ssRNA), is
located in the membranes of endosomes, particularly in
phagocytic cells like macrophages. It is essential for
recognizing the influenza virus and triggering the secretion of
inflammatory cytokines from neutrophils (Diebold et al., 2004).
Upon binding to ssRNA, TLR7 activates a unique MyD88-
dependent pathway, leading to the activation of NF-κB
family members, which subsequently promote the production
of IFN-α/β (Akira et al., 2006). NF-κB mediates the host antiviral
immune response by translocating to the nucleus, where it
stimulates the synthesis of various cytokines (Jiang and
Zhang, 2021).

To assess cytokine levels, plasma and lung tissues were collected
from the mice. When the permeability of intestinal wall cells is
increased and their structure compromised, LPS, a product of gut
bacteria, can translocate from the gut into the circulatory system
(Liu et al., 2020). The serum of the VC group exhibited a substantial
increase in the release of IFN-γ, TNF-α, and LPS (P < 0.01; Figures
3A–C). The release levels of TNF-α, IL-6, and IL-1β in the lung of
the VC group were significantly increased (P < 0.01; Figures 3D–F).
In contrast, HD treatment significantly inhibited the secretion of
these inflammatory factors compared to the VC group (P < 0.01).
Overall, the findings indicated that high-dose HQQD treatment
effectively suppressed the inflammatory response in the lungs and
colons of IVP mice.

The results also showed that mRNA expression levels
of TLR7 and MyD88 were significantly elevated in the lung

FIGURE 1
Evaluation of the efficacy of HQQD Decoction. (A) Schematic diagram of the drug efficacy experiment. (B) Body weight trend chart following virus
infection. (C) Lung indices in the validation experiment. (D)HE staining scores of lung tissue in mice. (E)HE staining images of lung and intestine tissues in
mice (scale bar: 200 and 50 μm). (F) Western blot analysis showing the inhibitory effect of HQQD against influenza virus (n = 4). Data are presented as
means ± standard errors of the means.
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tissues of the VC group but were markedly downregulated in
the HD group (P < 0.05; Figures 4A, B). Additionally,
there was a significant increase in p-p65 protein
expression in the VC group, which was reduced in the HD-
treated group (P < 0.01; Figures 4C–E). In conclusion, high-
dose HQQD may effectively mitigate the overactive
immune response by downregulating the expression of
key mRNAs and proteins in the TLR7/MyD88/NF-κB
p65 signaling pathway.

3.4 HQQD improved the abundance and
structure of the gut microbiota

OTU data were obtained by sequencing five samples per group,
with sequences classified as OTUs based on a similarity threshold
of >97% through bioinformatics analysis. The control group exhibited
1,394 OTUs, the VC group 1,728 OTUs, the LD group 1,194 OTUs,
the MD group 1,095 OTUs, and the HD group 1,203 OTUs. A total of
300 OTUs were shared across all five groups (Figure 5A).

FIGURE 2
Results of Network Analysis. (A) Venn diagram illustrating 364 common targets between HQQD and IVP. (B) PPI network diagram depicting protein
interactions, where targets are represented by nodes and protein-protein interactions by edges. The size and color of nodes are governed by degree
centrality, with larger nodes and red underpainting indicating higher degree centrality. (C) Top 20 signaling pathways identified through KEGG
enrichment analysis, with larger points indicating greater gene enrichment. (D) Sankey diagram of “formula-components-targets-pathways”. The
lines represent the properties of targets and pathways.
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At the phylum level, and based on a criterion of total relative
abundance exceeding 95%, the dominant microbiomes were
identified as Bacteroidetes, Firmicutes, Verrucomicrobia, and
Proteobacteria. Figures 5B–D reveal that Proteobacteria
proportions significantly increased following H1N1 infection (P <
0.05). However, high-dose treatment led to a significant
downregulation in the proportions of Proteobacteria and
Deferribacteres (P < 0.05). No significant variations in gut flora
were observed at the family or genus levels among the five groups.

Alpha diversity analysis based on OTUs showed no significant
differences between the VC and HD groups (P > 0.05; Figure 5E).
Principal component analysis (PCA) indicated that while the gut
microbiota of the HQQD-treated group resembled that of the
control group, the VC group’s microbiota significantly diverged
from the control group (Figure 5F).

Community structure variations were further assessed using
linear discriminant analysis effect size (LEfSe). The bar graph
highlighted species with statistically significant differences in
abundance between the groups (p < 0.05). The results
demonstrated that, compared to the control group, the VC group
exhibited significant over-representation of Erysipelotrichaceae,
Staphylococcaceae, Aerococcaceae, Streptococcaceae, Family_XIII,
Desulfovibrionaceae, Enterobacteriaceae, Corynebacteriaceae,
Brevibacteriaceae, Eggerthellaceae, Dermabacteraceae,
Tannerellaceae, Proteobacteria, and Actinobacteria. These changes
were associated with damage to the intestinal wall barrier and a
notable increase in pathogenic bacteria (P < 0.05; Figure 6A). In
contrast, the HD group showed upregulation of Moraxellaceae and
downregulation of Deferribacteraceae, Desulfovibrionaceae,
Rikenellaceae, Marinifilaceae, and Streptococcaceae (P < 0.05;

FIGURE 3
Effect of the HQQDon serum and lung cytokine levels. (A), (B), (C) ELISA analysis of serum inflammatory factor levels (IFN-γ, TNF-α, and LPS) inmice
(n = 6). (D), (E), (F) ELISA analysis of lung inflammatory factor levels (TNF-α, IL-6, and IL-1β) in mice (n = 6). Data are presented as means ± standard errors
of the means.
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Figure 6B). Overall, H1N1 infection resulted in an upregulation of
Proteobacteria, primarily within Enterobacteriaceae and
Desulfovibrionaceae, with the HD group significantly
downregulating Desulfovibrionaceae compared to the VC group.

4 Discussion

The current research elucidates the underlying mechanisms by
which HQQD treats influenza virus-infected mice. HQQD, a
traditional Chinese herbal preparation, has shown potential in
treating pulmonary illnesses, including COVID-19 (Zhang et al.,
2013). Previous studies have suggested its efficacy in this regard (Luo
et al., 2016; Zhang et al., 2013). Given the complexity of TCM and
the intricate composition of prescriptions, the application of
network analysis and 16S rRNA bacterial gene sequencing has
proven to be effective in uncovering the specific treatment
mechanisms of traditional Chinese remedies. By employing these
omics technologies, this study systematically elucidated the

fundamental mechanisms through which HQQD addresses lung
and gut damage caused by IVP, with findings validated through
animal experiments. The results indicate that HQQD’s therapeutic
effects are dose-dependent, significantly enhancing body weight,
reducing lung indices and NP protein expression, mitigating
inflammatory cytokine storms mediated by the TLR7/MyD88/
NF–κB p65 signaling pathway, and restoring disordered flora.

The construction of PPI networks identified 24 intersecting
targets relevant to IVP therapy. The combined data highlighted
TNF, IL-6, and IL-1β as important targets in regulating immunity
and inflammation. Through a formula-components-targets-
pathways network analysis, we identified 7 potential core
components. Several components have been shown to have
antiviral and anti-inflammatory properties. Caffeic acid had
direct antiviral effects and inhibited the multiplication of
influenza A virus in vitro (Utsunomiya et al., 2014). Limonin,
alpinetin, and 4-hydroxycoumarin had the potential to reduce
LPS-induced acute lung injury by suppressing inflammation
(Liang et al., 2023; Zhang and Ma, 2024; Li et al., 2024).

FIGURE 4
Treatment Mechanism of HQQD for IVP. (A), (B) Expression levels and quantitative analysis of TLR7 and MyD88 mRNA in lung homogenates (n = 6).
(C), (D), (E) Immunohistochemical staining and AOD calculation of NF-κB p65 and p-p65 in lung tissue of model mice (scale bar: 50 μm; n = 4). Data are
presented as means ± standard errors of the means.
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Dihydroartemisinin has been shown to mitigate theinflammatory
cytokine storm via the suppression of the NF-κB signaling pathway
(Huang et al., 2019). In future work, we will further screen other
potential active ingredients in the HQQD decoction and clarify
whether these components have direct antiviral or anti-
inflammatory effects. Furthermore, KEGG pathway analysis
identified the toll-like receptor signaling pathway and TNF
signaling pathway as primary targets of HQQD in IVP treatment.
The combined analysis of the KEGG pathway and PPI data suggests
that HQQD’s mechanisms are closely linked to the regulation of
immunological, antiviral, and anti-inflammatory processes.

TLR7 recognizes the ssRNA genome of influenza viruses,
triggering cytokine release, inflammatory responses, and NF-κB

p65 activation through MyD88 (Arora et al., 2019). MyD88 is a key
adaptor molecule in the TLR signaling pathways and a key node for
downstream signal transduction (Jiang and Zhang, 2021), leading
to the activation of NF-κB, which initiates the inflammatory
cascade. In its resting state, NF-κB is inactive, but upon
stimulation, it becomes active, producing p-NF-κB, which
translocates from the cytosol to the nucleus to regulate
transcription and promote the release of various inflammatory
factors (Mulero et al., 2019). Validation experiments in IVP mice
demonstrated that HQQD significantly reduced the release of
inflammatory cytokines in plasma and lung, such as IL-6, IL-1β,
TNF-α and IFN-γ. Moreover, high-dose HQQD therapy
downregulated the mRNA expression levels of TLR7 and

FIGURE 5
Intestinal Flora Diversity Analysis on Day Six. (A) Venn diagram showing different strains identified through OTU analysis. (B) Relative abundance and
composition of microbial communities at the phylum level. (C) Relative abundance and composition of microbial communities at the family level. (D)
Relative abundance and composition of microbial communities at the genus level. (E) Alpha diversity analysis represented by the Chao1 index. (F) PCA
analysis showing differences between samples at the OTU level.
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MyD88, as well as the protein expression level of p-NF-κB p65 in
lung tissues.

The complex microbial ecosystem known as gut flora is essential
for maintaining host health (Lane et al., 2023). The physiological
effects of gut flora on the host are mediated by microbial metabolites
(Li et al., 2014). Increasing evidence suggests that gut flora plays a
protective role in the lungs against viral infections by modulating the
innate immune response (Dumas et al., 2018). Our findings indicated
that IVP disrupted microbiota balance and increased gut barrier
permeability. Following H1N1 infection, the proportion of
Proteobacteria increased, particularly within Enterobacteriaceae and
Desulfovibrionaceae. In contrast, the HD group showed significant
downregulation of Desulfovibrionaceae and Moraxellaceae compared
to the VC group. Alterations in intestinal flora can directly impair

intestinal tight junction proteins and indirectly compromise intestinal
integrity by disrupting phosphorylation and dephosphorylation
processes, leading to elevated levels of LPS in systemic circulation
(Stephens and von der Weid, 2020). LPS from Enterobacteriaceae has
been shown to exacerbate intestinal damage and increase permeability
(Zeng et al., 2017). Desulfovibrio, the predominant genus within
Desulfovibrionaceae, is a major sulfate-reducing bacterium (SRB) in
the gut (Christophersen et al., 2011). SRBs consume short-chain fatty
acids, crucial for intestinal epithelial cells, and produce hydrogen
sulfide, which can damage intestinal epithelial cells. Additionally, LPS
produced by these bacteria strongly induces inflammation (Lu et al.,
2023; Wei et al., 2015).

It is well-established that LPS produced by intestinal bacteria can
aggravate intestinal damage, increase permeability, mediate elevated

FIGURE 6
LEfSe Analysis of Intestinal Flora on Day Six. (A) LEfSe analysis at the phylum and family levels in the VC and control groups. (B) LEfSe analysis at the
phylum and family levels in the VC and HD groups.
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LPS levels in the intestinal lumen and systemic circulation, and
trigger systemic proinflammatory and immunomodulatory
responses (Di Lorenzo et al., 2019; Mao et al., 2020). Dysbiosis of
intestinal flora and compromise of the intestinal epithelial barrier
can allow LPS from pathogenic bacteria to enter systemic
circulation, activating innate immunity in the lungs and
exacerbating inflammatory injury. Once TLRs in alveolar
capillary endothelial and epithelial cells are activated, the
downstream TLR/NF-κB signaling pathway is triggered, leading
to the upregulation of genes associated with inflammation.
Studies have shown that intestinal dysbiosis in influenza virus-
infected mice causes severe damage to lung and intestinal tissues,
whereas restoring intestinal microbiota can alleviate inflammation
and pneumonia via the TLR7 signaling pathway (Gao et al., 2023).
Previous research underscores the importance of intestinal flora
recovery and innate immune responses in pathogen defense and
maintaining immune system homeostasis (Fu et al., 2018). In
summary, disruption of intestinal microbiota weakens the
mucosal barrier, allowing LPS to enter systemic circulation and
activate the lung TLR/NF-κB signaling pathway, potentially
worsening lung inflammation. Our research suggests that high-
dose HQQD treatment may regulate gut microbiota and preserve
the intestinal epithelial barrier’s function. By reducing the
overabundance of pathogenic bacteria and limiting endotoxin
entry into systemic circulation, HQQD likely exerts its
therapeutic effects on pneumonia by modulating the gut-lung
axis, closely linked to lowering intestinal barrier permeability and
eliminating harmful microorganisms.

5 Conclusion

In summary, our findings provide a theoretical foundation for
the protective effects of HQQD against IVP. By inhibiting NP
protein expression and blocking the activation of the TLR7/NF-
κB signaling pathway, HQQD may reduce the production of
inflammatory mediators. Additionally, HQQD combats IVP by
enhancing gut flora diversity and preserving the function of the
intestinal epithelial barrier. This process also lowers the levels of LPS
entering systemic circulation and suppresses excess pathogenic
microbes. Our research confirms that the antiviral, anti-
inflammatory, and gut homeostasis-regulating properties of
HQQD are crucial to its efficacy in treating respiratory disorders,
offering experimental support for the Chinese medicine theory of
“simultaneous pulmonary and intestinal therapy.” Building on these
results, further exploration into additional treatment mechanisms
will be conducted using a mouse model of antibiotic-induced gut
microbiota dysbiosis combined with the active
components of HQQD.
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